Rare Isotope Production in peripheral heavy-ion collisions in the energy range 15-25 MeV/nucleon


A. Papageorgiou
G. A. Souliotis
Y. K. Kwon
K. Tshoo
S. C. Jeong
M. Veselsky
A. Bonasera
Abstract

In this contribution we summarize recent efforts to describe the production of rare isotopes with beams of 15–25 MeV/nucleon expected from low-energy facilities. We first present calculated production cross sections of proton-rich nuclides from collisions of stable beams of mass A∼60–80. Our calculations are performed with the phenomenological deep-inelastic transfer (DIT) model and the microscopic con- strained molecular dynamics model (CoMD). De-excitation of the excited quasipro- jectiles from the dynamical stage of the reaction is performed with the statistical multifragmentation model (SMM). In addition to the efforts on proton-rich nuclides, we investigated the possibility of producing neutron-rich rare isotopes in the mass range A∼180–200, i.e. near the third r-process peak of A=195. We performed calcu- lations for a 208Pb (15MeV/nucleon) beam and find that the multinucleon transfer mechanism leads to very neutron-rich nuclides in this mass range. We believe that our continued progress on the study of multinucleon transfer reactions using heavy- ion beams of 15–25 MeV/nucleon, can provide new opportunities in rare isotope research in the near future, as planned at the KOBRA facility of RISP in Korea.

Article Details
  • Section
  • Poster contributions
References
RISP main page: www.risp.re.kr/eng/pMainPage.do
K. Tshoo, Y. K. Kim, Y. K. Kwon et al, Nucl. Instrum. Meth. B 317, 242 (2013).
K. Tshoo, H. Chae, J. Park, J. Y. Moon, Y.K. Kwon, G.A. Souliotis et al., Nucl. Instrum. Meth. B 376, 188 (2016).
P.N. Fountas, G.A. Souliotis et al., Phys. Rev. C 90, 064613 (2014).
K. W. Brown et al., Phys. Rev. C 92, 034329 (2015).
A. A. Ciemny et al., Phys. Rev. C 92, 014622 (2015).
I. Mukha et al., Phys. Rev. Lett. 115, 202501 (2015).
M. Pomorski et al., Phys. Rev. C 83, 061303 (2011).
R.J. Carroll et al., Phys. Rev. Lett. 112, 092501 (2014).
U. Chowdhury et al., Phys. Rev. C 92, 045803 (2015).
X. L. Tu et al., Nucl. Phys. A 945, 89 (2016).
L. Tassan-Got and C. Stephan, Nucl. Phys. A 524, 121 (1991).
M. Veselsky and G.A. Souliotis, Nucl. Phys. A 765, 252 (2006).
M. Papa, A. Bonasera et al., Phys. Rev. C 64, 024612 (2001).
G. A. Souliotis, J. Phys. CS 205, 012019 (2010).
G.A. Souliotis, A.S. Botvina et al., Phys. Rev. C 75, 011601 (2007).
A.S. Botvina and I.N. Mishustin, Phys. Rev. C 63, 061601 (2001).
N. Buyukcizmeci, R. Ogul and A.S. Botvina, Eur. Phys. J. A 25, 57 (2005).
Y. X. Watanabe et al., Phys. Rev. Lett. 115, 172503 (2015).
T. Kurtukian-Nieto et al., Phys. Rev. C 89, 024616 (2014).
R. Pfaff et al., Phys. Rev. C 53, 1753 (1996).
M. Mocko et al., Phys. Rev. C 74, 054612 (2006).
Y. Blumenfeld, T. Nilsson and P. Van Duppen, Phys. Scr. T152 014023 (2013).
G.A. Souliotis, K. Hanold, W. Loveland et al, Phys. Rev. C 57, 3129 (1998).
G.A. Souliotis, Physica Scripta T 88, 153 (2000).
M. Thoennessen, Rep. Prog. Phys. 76, 056301 (2013).