| More

Nucleon numbers for nuclei with shape coexistence

Views: 27 Downloads: 18
Andriana Martinou, Dennis Bonatsos, N. Minkov, T. J. Mertzimekis, I. E. Assimakis, S. Peroulis, S. Sarantopoulou
Andriana Martinou, Dennis Bonatsos, N. Minkov, T. J. Mertzimekis, I. E. Assimakis, S. Peroulis, S. Sarantopoulou

Abstract


We consider two competing sets of nuclear magic numbers, namely the harmonic oscillator (HO) set (2, 8, 20, 40, 70, 112, 168, 240,...) and the set corresponding to the proxy-SU(3) scheme, possess- ing shells 0-2, 2-4, 6-12, 14-26, 28-48, 50-80, 82-124, 126-182, 184-256... The two sets provide 0+bands with different deformation and bandhead energies. We show that for proton (neutron) numbers starting from the regions where the quadrupole-quadrupole (Q · Q) interaction, as derived by the HO, becomes weaker than the one obtained in the proxy-SU(3) scheme, to the regions of HO shell clo- sure, the shape coexistence phenomenon may emerge. Our analysis suggests that the possibility for appearance of shape coexistence has to be investigated in the following regions of proton (neutron) numbers: 8, 18-20, 34-40, 60-70, 96-112, 146-168, 210-240,...


Keywords


shape coexistence; proxy-SU(3)

Full Text:

PDF

References


J. P. Elliott, Proc. Roy. Soc. Ser. A Vol. 245, 562, (1958).

C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics, Volume I (Herman, Paris, 1977).

H. J. Lipkin, Lie Groups for Pedestrians (North-Holland, Amsterdam, 1965).

D. J. Rowe, Rep. Prog. Phys. 48, 1419 (1985).

J. P. Draayer, Y. Leschber, S. C. Park and R. Lopez, Comput. Phys. Commun. 56, 279 (1989).

M. Harvey et al., in Advances in Nuclear Physics, Vol. 1, (Plenum, New York, 1968) 67.

S. G. Nilsson and I. Ragnarsson, Shapes and Shells in Nuclear Structure (Cambridge University Press, Cambridge, 1995).

D. Bonatsos et al., Phys. Rev. C 95, 064325 (2017).

D. Bonatsos et al., Phys. Rev. C 95, 064326, (2017).

R. Casten et al., Algebraic Approaches to Nuclear Structure, (Harwood, 1993).

K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).

J.L. Wood et al., Phys. Rep. 215, 101 (1992).




DOI: http://dx.doi.org/10.12681/hnps.1804

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 A. Martinou, D. Bonatsos, N. Minkov, T. J. Mertzimekis, I. E. Assimakis, S. Peroulis, S. Sarantopoulou

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.