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Symmetry energy effects on the quark deconfinement
phase transition

M. Divaris” and Ch.C. Moustakidis

Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract The nuclear symmetry energy plays an important role on the structure of finite nuclei, as
well as on the bulk properties of neutron stars. In the present study we study the effects of the symmetry
energy on some properties of hybrid stars, which consist mainly of hadron and quark matter. To this end,
for the hadron matter of hybrid stars, we parameterize the equation of state which describes the
asymmetric and symmetric nuclear matter with the help of the parameter n = (KoL?)¥?, where K is the
incompressibility and L is the slope parameter.

Keywords  symmetry energy, hybrid stars, quark matter, phase transition

INTRODUCTION

The Nuclear Symmetry Energy (NSE) is one of the most fundamental quantities relevant to the study
of both neutron- rich finite nuclei and neutron stars. The uncertainty that exists in the knowledge of
the symmetry energy, especially at low densities of nuclear matter, similar to those found in finite
nuclei, can be partly addressed by terrestrial experiments. However, its values at high densities, which
are encountered in astrophysical objects such as neutron stars, are completely uncertain and the
corresponding empirical data have a large error. In this work, we study some effects of the symmetry
energy on hybrid stars, which consist mainly of hadron and quark matter.

HADRON MATTER

The key quantity in our calculations is the energy per particle of asymmetric nuclear matter,
where in good approximation, at least for densities close to the saturation density, is given by the
expression:

E(n,a) =E, + K—"Z(n —n9)? + S(n)a?
18n0

where Eo = E(no,0) is the energy per particle at the saturation density no, Ko is the incompressibility
and S(n) is the symmetry energy. The parameter a, given by a = (N, — np)/n, is the asymmetry
parameter with n, and n, being the neutron and proton number densities, respectively, and n is the
total number density (n=n,+n,).

The nuclear symmetry energy (NSE) S(n) can be developed in a series around the saturation
density, where, expanding up to the 1% order term we have:

S(n) =] + i (n —ng)+. .

where J=S(no). The slope parameter is related to the second derivative of the NSE according to the
definition

* Corresponding author: edivar@auth.gr
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L =3n, (Zi)n=n0.

The pressure is given by
,d(&/n)
n —

Py = dn

where g, is the energy density. We also consider a lepton contribution for the hadron part of the star
(electrons). The contribution to the total energy density and pressure by electrons is given by the well-
known formula for the relativistic Fermi gas, that is:

(mec™)” [(22 + 1)1+ 22— ln(z+ ZZ+1)]

Fe = 8n2(h )3

(mec” [ (222 = 31+ 22 +3In (2 + /22 + 1)

Fe = 24n2(h )3
where

_ (ko) (371’2713)1/3

meC2 ! ne = xpn

and X, is the proton fraction. The density dependence of the proton fraction for the hadron part of the
star, is calculated by the following equation, which results from beta equilibrium:
4(1 - 2x,)S(n) = he(3m?n,)Y/3 = hc(3n2nxp)1/3
Now the total energy density and total pressure for matter that is charge neutral and in B-equilibrium
are:
Etot = €p T &
Peot = Py + P,

We parameterize the different EoS that we construct, with the help of the parameter n, where
N=(KoL?)¥3. This parameter describes the compound effect of both the incompressibility Ko and the
slope parameter L.

QUARK MATTER MODEL

For the quark matter part of the hybrid star, we consider in our study, three flavor, color
superconducting quark matter. In particular, we use the quark matter model used by D. Blaschke et al
[1], where for u, d, s massless quarks we have for the pressure and the energy density:

Po = s (5) + 542 (5) - By

e(l) = —5a (g) + %42 (%)2 + Bery

where a4 is a dimensionless parameter, A is the diquark pairing gap (in MeV) and Bes is the effective
Bag pressure of the model (in MeV*).
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HADRON TO QUARK MATTER PHASE TRANSITION

We employ in our study the Maxwell construction, in which the phase transition from hadron to
quark matter inside the hybrid star, occurs when the pressures and the chemical potentials of the two
phases become equal, i.e. when

PH=PQ=P0
and
Hue = Hq = Ho

where Po and po are the critical pressure and critical chemical potential respectively. The chemical
potentials for the hadron and quark phases, for T=0, are calculated by the relations [2]:

_ 8H+PH
nLlH - ny ’
"y = & t+ Py

o= ———
Mo

CALCULATION OF ASTROPHYSICAL OBSERVABLES

In order to extract some astrophysical observables, namely the mass M and the radius R of the
hybrid star, we have to solve the well-known Tolman-Oppenheimer-Volkoff (TOV) system of
differential equations, given by

dP(r) _ _ Ge(mM() (1 + @) (1 + 41'[P(r)r3) (1 B M)_ly

dr c2r? e(r) M(r)c? c?r
dM(r)  4nr?
—_— = Tr).
dr c? g( )

An important and well measured quantity by the gravitational wave detectors is the
dimensionless tidal deformability A. During the inspiral phase of binary neutron star systems that are
in the process of merging, tidal effects can be detected. The tidal number k. describes the response of
the neutron star (in our work the hybrid star) to the tidal field. This quantity depends on the hybrid
star mass and also on the applied EoS. The tidal love number k; is given by

8> 5
ky = T(l —2B)*[2 —yr + (yr — D2p]
x [2B(6 — 3yg + 385y — 8))
+483(13 — 11yg + fByr — 2) + 28%(1 + yr))
+3(1-2B)%[2 —yr + 2B(yr — D]in(1 — 28)]7*

where B=GM/Rc? is the compactness of the hybrid star. The parameter yr=y(R) is determined by
solving the following differential equation:

dy(r)

r—
dr

+y*(r) +y(F () +r?*Q(r) = 0.

The functions F(r) and Q(r) are functions of the energy density &(r), pressure P(r), and mass M(r), and
are defined by the following equations:
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F(r) = [1 _4mr?G (s(r) B P(r))] (1 _ ZM(T)G)_l,

4mr2G £(r) + P(r)
r2Q(r) = - [55(7”) +9P(r) + W

-1 -1
y (1 B 2M(r2)(;> e (1 B 2M(7;)G)
rC rc
2 -2
B 4M?(r)G* <1 N 4nr3P(r)> (1 _ 2M(r)G>

r2ct M (r)c? rc?

Now the dimensionless deformability is given by the equation

L2, (R °
~372\GM
The differential equation for y(r) must be solved numerically and self consistently with the TOV

equations, under the following boundary conditions, which hold for the center of the star (i.e. r=0):
y (0)= 2, P(0)= P. (where P is the central pressure of the star), and M(0)=0.

For the EoS of the core of the hybrid star, we use the piecewise function:

E(P):{ £ror(P), PM <P <P,
SQ(P), P>PO

where P™; is the maximum pressure which holds for the crust. As we can see, this EoS is in
accordance with the Maxwell construction, where the phase transition occurs at constant pressure
(equal to the critical pressure Po), but with an energy density jump.

RESULTS AND DISCUSSION

By constructing the pressure P — chemical potential p curves for the hadron and quark matter
cases, we can extract the critical pressure Po and critical chemical potential po, by finding the
intersection points of the two curves. Then we can construct the EoS of the core of the hybrid star and
then solve the aforementioned differential equations to extract the M-R and A-M diagrams. Another
important quantity we can compute is the critical hadron matter number density, in saturation density
units, ne/no.

Below we present our results for two quark matter cases: for a,=0.7, A=0 MeV, Besr/* = 160 MeV
and for a;=0.7, A=50 MeV, Ber/* = 160 MeV.

For both sets of quark matter parameters, we note firstly that Mmax is a decreasing function of 1,
whereas Rvmax, R1.4 are increasing functions of 1. For the second case of parameters (A=50 MeV), A14
obtains a minimum value. For the first set of parameters (A=0 MeV), due to the phase transition
occurring for various n cases in the range Py € [21.0603,47.1477] MeV fm3, the values of Ry4 are
relatively higher, compared to the second case of parameters (A=50 MeV), where the corresponding
range for the critical pressure is P, € [3.15892,5.78213] MeV fm=, It appears that an increase in A
has a decisive effect on the critical pressure Py , leading to smaller values for Po, and consequently for
Ry
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Figure 1. P-u diagrams for 11 cases of 5. The quark matter characteristics used are: as = 0.7, A=0 MeV, Bt
=160 MeV (left panel) and a4 = 0.7, 4=50 MeV, Be'* = 160 MeV (right panel).
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M-R diagrams for 11 cases of n. The quark matter characteristics used are: as = 0.7, A=0 MeV,
Berr* = 160 MeV (left panel) and as = 0.7, A=50 MeV, Beg* = 160 MeV (right panel).
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Figure 3. A-M diagrams for 11 cases of n. The quark matter characteristics used are: as = 0.7, 4=0 MeV,
Berrt* = 160 MeV (left panel) and as = 0.7, 4=50 MeV, Bes** = 160 MeV (right panel).
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Table 1. The incompressibility Ko (in MeV), the slope parameter L (in MeV), the parameter 1 (in MeV), Rmmax
(in Km), Mmax (in M), Ri4 (in Km), A14, Ho (in MeV), po (in MeV fm=) and n¢/no correspond to the various
equations of state. The quark matter characteristics used are: a; = 0.7, A=0 MeV, Ber”* = 160 MeV.

Ko L n RMmax M max Ri4 A1 | 179) Po Ne/No
220 40 70.607 105532 1.72952 11.9253 276.427 1115.71 47.1477 2.488

224 48 80.2128 10.5756 1.72503  11.999 284.358 1102.61 41.0373 2.3487
228 56 89.4205 10.602  1.72162 12.0709 291.481 1092.49 36.4622 2.2310
232 64 98.3141 10.6319 1.71897 12.1455 299.001 1084.5 329374 2.13
236 72 106.953 10.6654 1.71687 12.2246 307.424 1078.03 30.1431 2.0419
240 80 11538  10.7043 1.71524 12.3118 317.98  1072.73 27.8873 1.9644
244 88 123.628 10.7474 1.71397 12.409 330.708 1068.29 26.0236 1.8952
248 96 131.724 10.7971 1.71304 125207 346.594 1064.54 24.4721 1.8332
252 104 139.687 10.8549 1.7124 12.6511 366.644 1061.35 23.1591 1.7772
256 108 147.534 10.9231 1.71202 12.8064 392.253 1058.57 22.0307 1.726
260 112 155.279 11.0063 1.71195 12.9981 426.323 1056.17 21.0603 1.6792

Table 2. The incompressibility Ko (in MeV), the slope parameter L (in MeV), the parameter 1 (in MeV), Rmmax
(in Km), Mmax (in M@), R4 (in Km), A14, Ho (in MeV), po (in MeV fm3) and nc/no correspond to the various
equations of state. The quark matter characteristics used are: a; = 0.7, A=50 MeV, Be/* = 160 MeV.

Ko L nq Rmmax Mumax Ri4 Aig Mo Po N¢/No
220 40 70.607 10.0639 1.74766 10.7861 108.739 984.88 5.78213 1.3424
224 48 80.2128 10.0737 1.7473 10.8047 108.286 983.135 5.17583 1.2577
228 56 89.4205 10.0845 1.74703 10.8248 107.852 981.792 4.71153 1.1836
232 64 98.3141 10.097 1.74682 10.8487 107.657 980.738 4.3482 1.1179
236 72 106.953 10.112 1.74668 10.8796 107.815 979.903 4.06146 1.0594
240 80 115.38 10.1296 1.74658 10.9061 108.352 979.227 3.82941 1.0065
244 88 123.628 10.151 1.74653 10.9469 109.379 978.682 3.64301 0.9585
248 96 131.724 10.1763 1.74651 10.9944 110.893 978.226 3.48718 0.9140
252 104 139.687 10.2071 1.74652 11.0521 113.052 977.85 3.35892 0.8727
256 108 147534 10.2451 1.74658 11.1234 115.991 977.537 3.25207 0.8341
260 112 155.279 10.2926 1.74666 11.2135 119.946 977.264 3.15892 0.7972

On the other hand, an increase in A from 0 to 50 MeV, only leads to a small increase in the
values of the maximum mass of the star, Mmax. Apparently, the existence of quark matter in hybrid
stars plays a decisive role for the mass M and radius R of the star, leading to significantly smaller
values, as compared to the case of neutron stars with no quark matter. Actually, as can be seen, for
both cases of quark matter, the maximum mass for hybrid stars (HS) obeys the inequality M5, <
1.74766Ms,,,when, for neutron stars (NS) with the same hadron model, it was found [3] that M%3, <
2.442M,,,. Also, the onset of quark matter for lower values of critical pressure Py with the increase of
A, leads to significantly smaller values for A14. Finally, another important aspect is the higher values
for the hadron matter critical densities n., for the case A=0 MeV, with a maximum value of hadron
density equal to 2.488 times the saturation density no.

CONCLUSIONS

So far, in the present study, we have studied the effects of the symmetry energy on some of
hybrid stars’ properties. For the specific hadron and quark matter models that we use, we find that a
change in the parameter 1 (which encloses the combined effect of the incompressibility Ko and the
slope parameter L) has a stronger effect in Ai4 , the critical pressure Po , and the critical hadron
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number density n. , as compared to its milder effect to other astrophysical observables of the hybrid
star, Rmmax, Mmax, R1.4.

Comparing the two quark matter cases that we present in this work, which differ only in the
diquark pairing gap A by 50 MeV, we have found that an increase of A from 0 to 50 MeV, lowers
significantly the critical pressure values Py for various cases of 1. This leads to important differences
between the two cases of hybrid stars, for quantities such as R1.4 and n¢/no.

Our future goals include among others, study of extra cases of quark parameters and an effort to
connect hybrid star properties with finite nuclei properties.

References

[1] D. Blaschke, etal., Phys. Rev. C 105, 035804 (2022); doi: 10.1103/PhysRevC.105.035804
[2] L.L.Lopes, et al., Phys. Rev. C 109, 045801 (2024); doi: 10.1103/PhysRevC.109.045801
[3] M. Divaris, et al., Phys. Rev. C 109, 055805 (2024); doi: 10.1103/PhysRevC.109.055805


http://www.tcpdf.org

