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___________________________________________________________________________ 

Abstract The nuclear symmetry energy plays an important role on the structure of finite nuclei, as 

well as on the bulk properties of neutron stars. In the present study we study the effects of the symmetry 

energy on some properties of hybrid stars, which consist mainly of hadron and quark matter. To this end, 

for the hadron matter of hybrid stars, we parameterize the equation of state which describes the 

asymmetric and symmetric nuclear matter with the help of the parameter η = (K0L2)1/3, where K0 is the 

incompressibility and L is the slope parameter. 

Keywords symmetry energy, hybrid stars, quark matter, phase transition 
___________________________________________ 

INTRODUCTION 

The Nuclear Symmetry Energy (NSE) is one of the most fundamental quantities relevant to the study 

of both neutron- rich finite nuclei and neutron stars. The uncertainty that exists in the knowledge of 

the symmetry energy, especially at low densities of nuclear matter, similar to those found in finite 

nuclei, can be partly addressed by terrestrial experiments. However, its values at high densities, which 

are encountered in astrophysical objects such as neutron stars, are completely uncertain and the 

corresponding empirical data have a large error. In this work, we study some effects of the symmetry 

energy on hybrid stars, which consist mainly of hadron and quark matter.  

HADRON MATTER 

The key quantity in our calculations is the energy per particle of asymmetric nuclear matter, 

where in good approximation, at least for densities close to the saturation density, is given by the 

expression: 

 𝑬(𝒏, 𝜶) = 𝑬𝟎 +
𝑲𝟎

𝟏𝟖𝒏𝟎
𝟐 (𝒏 − 𝒏𝟎)𝟐 + 𝑺(𝒏)𝜶𝟐 

where E0 = E(n0,0) is the energy per particle at the saturation density n0, K0 is the incompressibility 

and S(n) is the symmetry energy. The parameter α, given by α = (nn – np)/n, is the asymmetry 

parameter with nn and np being the neutron and proton number densities, respectively, and n is the 

total number density (n=nn+np).  

 

The nuclear symmetry energy (NSE) S(n) can be developed in a series around the saturation 

density, where, expanding up to the 1st order term we have: 

𝑆(𝑛) = 𝐽 +
𝐿

3𝑛0
(𝑛 − 𝑛0)+. ..  

where J=S(n0). The slope parameter is related to the second derivative of the NSE according to the 

definition 
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 𝐿 = 3𝑛0 (
𝑑𝑆

𝑑𝑛
)

𝑛=𝑛0

. 

 

The pressure is given by 

𝑃𝑏 = 𝑛2
𝑑(𝜀𝑏 𝑛⁄ )

𝑑𝑛
 

 

where εb is the energy density. We also consider a lepton contribution for the hadron part of the star 

(electrons). The contribution to the total energy density and pressure by electrons is given by the well-

known formula for the relativistic Fermi gas, that is: 

𝜀𝑒 =
(𝑚𝑒𝑐2)4

8𝜋2(ℏ𝑐)3 [𝑧(2𝑧2 + 1)√1 + 𝑧2 − 𝑙𝑛 (𝑧 + √𝑧2 + 1)] 

𝑃𝑒 =
(𝑚𝑒𝑐2)4

24𝜋2(ℏ𝑐)3 [𝑧(2𝑧2 − 3)√1 + 𝑧2 + 3𝑙𝑛 (𝑧 + √𝑧2 + 1)] 

where  

𝑧 =
(ℏ𝑐)(3𝜋2𝑛𝑒)

1 3⁄

𝑚𝑒𝑐2 ,        𝑛𝑒 = 𝑥𝑝𝑛 

and xp is the proton fraction. The density dependence of the proton fraction for the hadron part of the 

star, is calculated by the following equation, which results from beta equilibrium: 

4(1 − 2𝑥𝑝)𝑆(𝑛) = ℏ𝑐(3𝜋2𝑛𝑒)1 3⁄ = ℏ𝑐(3𝜋2𝑛𝑥𝑝)
1 3⁄

 

Now the total energy density and total pressure for matter that is charge neutral and in β-equilibrium 

are: 

𝜀𝑡𝑜𝑡 = 𝜀𝑏 + 𝜀𝑒 

𝑃𝑡𝑜𝑡 = 𝑃𝑏 + 𝑃𝑒 

We parameterize the different EoS that we construct, with the help of the parameter η, where 

η=(K0L2)1/3. This parameter describes the compound effect of both the incompressibility K0 and the 

slope parameter L. 

QUARK MATTER MODEL 

For the quark matter part of the hybrid star, we consider in our study, three flavor, color 

superconducting quark matter. In particular, we use the quark matter model used by D. Blaschke et al 

[1], where for u, d, s massless quarks we have for the pressure and the energy density: 

𝑃𝑄(𝜇) =
3

4𝜋2 𝑎4 (
𝜇

3
)

4
+

3

𝜋2 𝛥2 (
𝜇

3
)

2
− 𝐵𝑒𝑓𝑓, 

𝜀𝑄(𝜇) =
9

4𝜋2
𝑎4 (

𝜇

3
)

4

+
3

𝜋2
𝛥2 (

𝜇

3
)

2

+ 𝐵𝑒𝑓𝑓 

where a4 is a dimensionless parameter, Δ is the diquark pairing gap (in MeV) and Beff is the effective 

Bag pressure of the model (in MeV4). 

 



 
M. Divaris et al. HNPS Advances in Nuclear Physics vol. 31, pp.27-33 (2025) 

HNPS2024 
doi: 10.12681/hnpsanp.8164 

page 29 

 

HADRON TO QUARK MATTER PHASE TRANSITION 

We employ in our study the Maxwell construction, in which the phase transition from hadron to 

quark matter inside the hybrid star, occurs when the pressures and the chemical potentials of the two 

phases become equal, i.e. when  

𝑃𝐻 = 𝑃𝑄 = 𝑃0 

and  

𝜇𝐻 = 𝜇𝑄 = 𝜇0 

where P0 and μ0 are the critical pressure and critical chemical potential respectively. The chemical 

potentials for the hadron and quark phases, for T=0, are calculated by the relations [2]: 

𝜇𝐻 =
𝜀𝐻+𝑃𝐻

𝑛𝐻
 , 

𝜇𝑄 =
𝜀𝑄 + 𝑃𝑄

𝑛𝑄
 

CALCULATION OF ASTROPHYSICAL OBSERVABLES 

In order to extract some astrophysical observables, namely the mass M and the radius R of the 

hybrid star, we have to solve the well-known Tolman-Oppenheimer-Volkoff (TOV) system of 

differential equations, given by 

𝑑𝑃(𝑟)

𝑑𝑟
= −

𝐺𝜀(𝑟)𝑀(𝑟)

𝑐2𝑟2 (1 +
𝑃(𝑟)

𝜀(𝑟)
) (1 +

4𝜋𝑃(𝑟)𝑟3

𝑀(𝑟)𝑐2 ) (1 −
2𝐺𝑀(𝑟)

𝑐2𝑟
)

−1
, 

𝑑𝑀(𝑟)

𝑑𝑟
=

4𝜋𝑟2

𝑐2 𝜀(𝑟). 

An important and well measured quantity by the gravitational wave detectors is the 

dimensionless tidal deformability Λ. During the inspiral phase of binary neutron star systems that are 

in the process of merging, tidal effects can be detected. The tidal number k2 describes the response of 

the neutron star (in our work the hybrid star) to the tidal field. This quantity depends on the hybrid 

star mass and also on the applied EoS. The tidal love number k2 is given by 

𝑘2 =
8𝛽5

5
(1 − 2𝛽)2[2 − 𝑦𝑅 + (𝑦𝑅 − 1)2𝛽]

× [2𝛽(6 − 3𝑦𝑅 + 3𝛽(5𝑦𝑅 − 8))

+4𝛽3(13 − 11𝑦𝑅 + 𝛽(3𝑦𝑅 − 2) + 2𝛽2(1 + 𝑦𝑅))

+3(1 − 2𝛽)2[2 − 𝑦𝑅 + 2𝛽(𝑦𝑅 − 1)]𝑙𝑛(1 − 2𝛽)]−1

 

where β=GM/Rc2 is the compactness of the hybrid star. The parameter yR=y(R) is determined by 

solving the following differential equation: 

𝑟
𝑑𝑦(𝑟)

𝑑𝑟
+ 𝑦2(𝑟) + 𝑦(𝑟)𝐹(𝑟) + 𝑟2𝑄(𝑟) = 0. 

The functions F(r) and Q(r) are functions of the energy density ε(r), pressure P(r), and mass M(r), and 

are defined by the following equations: 
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𝐹(𝑟) = [1 −
4𝜋𝑟2𝐺

𝑐4 (𝜀(𝑟) − 𝑃(𝑟))] (1 −
2𝑀(𝑟)𝐺

𝑟𝑐2 )
−1

, 

𝑟2𝑄(𝑟) =
4𝜋𝑟2𝐺

𝑐4
[5𝜀(𝑟) + 9𝑃(𝑟) +

𝜀(𝑟) + 𝑃(𝑟)

𝜕 𝑃(𝑟) 𝜕𝜀(𝑟)⁄
]

× (1 −
2𝑀(𝑟)𝐺

𝑟𝑐2 )

−1

− 6 (1 −
2𝑀(𝑟)𝐺

𝑟𝑐2 )

−1

−
4𝑀2(𝑟)𝐺2

𝑟2𝑐4 (1 +
4𝜋𝑟3𝑃(𝑟)

𝑀(𝑟)𝑐2 )

2

(1 −
2𝑀(𝑟)𝐺

𝑟𝑐2 )

−2

 

Now the dimensionless deformability is given by the equation 

𝛬 =
2

3
𝑘2 (

𝑐2𝑅

𝐺𝑀
)

5

 

The differential equation for y(r) must be solved numerically and self consistently with the TOV 

equations, under the following boundary conditions, which hold for the center of the star (i.e. r=0):  

y (0)= 2, P(0)= Pc (where Pc is the central pressure of the star), and M(0)=0. 

 

For the EoS of the core of the hybrid star, we use the piecewise function: 

𝜀(𝑃) = {
     𝜀𝑡𝑜𝑡(𝑃),    𝑃𝑚

𝑐 < 𝑃 ≤ 𝑃0

𝜀𝑄(𝑃),    𝑃 > 𝑃0
 

where Pm
c is the maximum pressure which holds for the crust. As we can see, this EoS is in 

accordance with the Maxwell construction, where the phase transition occurs at constant pressure 

(equal to the critical pressure P0), but with an energy density jump. 

RESULTS AND DISCUSSION 

By constructing the pressure P – chemical potential μ curves for the hadron and quark matter 

cases, we can extract the critical pressure P0 and critical chemical potential μ0, by finding the 

intersection points of the two curves. Then we can construct the EoS of the core of the hybrid star and 

then solve the aforementioned differential equations to extract the M-R and Λ-M diagrams. Another 

important quantity we can compute is the critical hadron matter number density, in saturation density 

units, nc/n0. 

Below we present our results for two quark matter cases: for a4=0.7, Δ=0 MeV, Beff
1/4 = 160 MeV 

and for a4=0.7, Δ=50 MeV, Beff
1/4 = 160 MeV. 

For both sets of quark matter parameters, we note firstly that Mmax is a decreasing function of η, 

whereas RMmax, R1.4 are increasing functions of η. For the second case of parameters (Δ=50 MeV), Λ1.4 

obtains a minimum value. For the first set of parameters (Δ=0 MeV), due to the phase transition 

occurring for various η cases in the range 𝑃0 ∈ [21.0603,47.1477] MeV fm-3, the values of R1.4 are 

relatively higher, compared to the second case of parameters (Δ=50 MeV), where the corresponding 

range for the critical pressure is 𝑃0 ∈ [3.15892,5.78213] MeV fm-3. It appears that an increase in Δ 

has a decisive effect on the critical pressure P0 , leading to smaller values for P0, and consequently for 

R1.4.   
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Figure 1. P-μ diagrams for 11 cases of η. The quark matter characteristics used are: a4 = 0.7, Δ=0 MeV, Beff
1/4 

= 160 MeV (left panel) and a4 = 0.7, Δ=50 MeV, Beff
1/4 = 160 MeV (right panel). 

 

Figure 2.   M-R diagrams for 11 cases of η. The quark matter characteristics used are: a4 = 0.7, Δ=0 MeV, 

Beff
1/4 = 160 MeV (left panel) and a4 = 0.7, Δ=50 MeV, Beff

1/4 = 160 MeV (right panel). 

Figure 3.   Λ-Μ diagrams for 11 cases of η. The quark matter characteristics used are: a4 = 0.7, Δ=0 MeV, 

Beff
1/4 = 160 MeV (left panel) and a4 = 0.7, Δ=50 MeV, Beff

1/4 = 160 MeV (right panel). 
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Table 1.  The incompressibility K0 (in MeV), the slope parameter L (in MeV), the parameter η (in MeV), RMmax 

(in Km), Mmax (in M⊙), R1.4 (in Km), Λ1.4, µ0 (in MeV), p0 (in MeV fm−3) and nc/n0 correspond to the various 

equations of state. The quark matter characteristics used are: a4 = 0.7, Δ=0 MeV, Beff
1/4 = 160 MeV. 

K0            L            η                            RMmax         Mmax           R1.4             Λ1.4            μ0               p0              nc/n0    

220     40      70.607       10.5532     1.72952      11.9253      276.427     1115.71     47.1477     2.488

  

224     48      80.2128     10.5756     1.72503      11.999        284.358     1102.61     41.0373     2.3487 

228     56      89.4205     10.602       1.72162      12.0709      291.481     1092.49     36.4622     2.2310 

232     64      98.3141     10.6319     1.71897      12.1455      299.001     1084.5       32.9374     2.13 

236     72      106.953     10.6654     1.71687      12.2246      307.424     1078.03     30.1431     2.0419 

240     80      115.38       10.7043     1.71524      12.3118      317.98       1072.73     27.8873     1.9644 

244     88      123.628     10.7474     1.71397      12.409        330.708     1068.29     26.0236     1.8952 

248     96      131.724     10.7971     1.71304      12.5207      346.594     1064.54     24.4721     1.8332 

252     104    139.687     10.8549     1.7124        12.6511      366.644     1061.35     23.1591     1.7772 

256     108    147.534     10.9231     1.71202      12.8064      392.253     1058.57     22.0307     1.726 

260     112    155.279     11.0063     1.71195      12.9981      426.323     1056.17     21.0603     1.6792 

 
Table 2.  The incompressibility K0 (in MeV), the slope parameter L (in MeV), the parameter η (in MeV), RMmax 

(in Km), Mmax (in M⊙), R1.4 (in Km), Λ1.4, µ0 (in MeV), p0 (in MeV fm−3) and nc/n0 correspond to the various 

equations of state. The quark matter characteristics used are: a4 = 0.7, Δ=50 MeV, Beff
1/4 = 160 MeV. 

K0       L       η                RMmax         Mmax           R1.4             Λ1.4             μ0              p0               nc/n0    

220     40      70.607       10.0639      1.74766     10.7861      108.739      984.88       5.78213     1.3424 

224     48      80.2128     10.0737      1.7473       10.8047      108.286      983.135     5.17583     1.2577 

228     56      89.4205     10.0845      1.74703     10.8248      107.852      981.792     4.71153     1.1836 

232     64      98.3141     10.097      1.74682     10.8487      107.657      980.738     4.3482  1.1179 

236     72      106.953     10.112      1.74668     10.8796      107.815      979.903     4.06146     1.0594 

240     80      115.38       10.1296      1.74658     10.9061      108.352      979.227     3.82941     1.0065 

244     88      123.628     10.151      1.74653     10.9469      109.379      978.682     3.64301     0.9585 

248     96      131.724     10.1763      1.74651     10.9944      110.893      978.226     3.48718     0.9140 

252     104    139.687     10.2071      1.74652     11.0521      113.052      977.85       3.35892     0.8727 

256     108    147.534     10.2451      1.74658     11.1234      115.991      977.537     3.25207     0.8341 

260     112    155.279     10.2926      1.74666     11.2135      119.946      977.264     3.15892     0.7972 
 

On the other hand, an increase in Δ from 0 to 50 MeV, only leads to a small increase in the 

values of the maximum mass of the star, Mmax. Apparently, the existence of quark matter in hybrid 

stars plays a decisive role for the mass M and radius R of the star, leading to significantly smaller 

values, as compared to the case of neutron stars with no quark matter. Actually, as can be seen, for 

both cases of quark matter, the maximum mass for hybrid stars (HS) obeys the inequality 𝑀𝑚𝑎𝑥
𝐻𝑆 ≤

1.74766𝑀𝑆𝑢𝑛,when, for neutron stars (NS) with the same hadron model, it was found [3] that 𝑀𝑚𝑎𝑥
𝑁𝑆 ≤

2.442𝑀𝑆𝑢𝑛. Also, the onset of quark matter for lower values of critical pressure P0 with the increase of 

Δ, leads to significantly smaller values for Λ1.4. Finally, another important aspect is the higher values 

for the hadron matter critical densities nc ,  for the case Δ=0 MeV, with a maximum value of hadron 

density equal to 2.488 times the saturation density n0. 

CONCLUSIONS 

So far, in the present study, we have studied the effects of the symmetry energy on some of 

hybrid stars’ properties. For the specific hadron and quark matter models that we use, we find that a 

change in the parameter η (which encloses the combined effect of the incompressibility K0 and the 

slope parameter L) has a stronger effect in Λ1.4 , the critical pressure P0 , and the critical hadron 



 
M. Divaris et al. HNPS Advances in Nuclear Physics vol. 31, pp.27-33 (2025) 

HNPS2024 
doi: 10.12681/hnpsanp.8164 

page 33 

 

number density nc , as compared to its milder effect to other astrophysical observables of the hybrid 

star, RMmax, Mmax, R1.4. 

Comparing the two quark matter cases that we present in this work, which differ only in the 

diquark pairing gap Δ by 50 MeV, we have found that an increase of Δ from 0 to 50 MeV, lowers 

significantly the critical pressure values P0 for various cases of η. This leads to important differences 

between the two cases of hybrid stars, for quantities such as R1.4 and nc/n0.  

Our future goals include among others, study of extra cases of quark parameters and an effort to 

connect hybrid star properties with finite nuclei properties. 
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