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___________________________________________________________________________ 

Abstract  The structure and basic properties of dense nuclear matter still remain one of the open 

problems of physics. In particular, the composition of the matter that composes neutron stars is under 

theoretical and experimental investigation. Among the theories that have been proposed, apart from the 

classical one where the composition is dominated by hadrons, the existence or coexistence of free quark 

matter is a dominant guess. An approach towards this solution is the phenomenological view according 

to which the existence of quarkyonic matter plays a dominant role in the construction of the equation of 

state (EOS). In this paper we propose a phenomenological model for quarkyonic matter, borrowed from 

corresponding applications in hadronic models, where the interaction in the quarkyonic matter depends 

not only on the position but also on the momentum of the quarkynions. This consideration, as we 

demonstrate, can have a dramatic consequence on the shape of the EOS and thus on the properties of 

neutron stars. 

Keywords Quarkyonic matter, neutron stars, equation of state, sound velocity 

___________________________________________________________________________ 

INTRODUCTION 

One of the fundamental problems of physics remains the composition of dense nuclear matter as well 

as its basic properties both at zero and at finite temperature [1–4]. In particular, the equation of state 

of neutron star matter is the key quantity to study these objects. In this effort, a key problem that often 

arises is the inability of the EOSs to predict maximum masses for neutron stars that are compatible 

with recent observations (well above two solar masses) without simultaneously violating the sound 

speed causality.  

Figure 1. The momentum space of the quarkyonic matter 

An interesting attempt in this direction is the consideration of a hybrid state of dense nuclear 

matter called quarkyonic matter. Following the analysis of Ref. [5,6] the basic assumption of 

quarkyonic matter is that at large Fermi energy, the degrees of freedom inside the Fermi sea may be 

treated as quarks, and confining forces remain important only near the Fermi surface where nucleons 

emerge through correlations between quarks. In this case one can consider that quarks, confinement at 
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the Fermi surface, occupying a momentum shell of width ∆ ≃ ΛQCD, produce triplets with spin 1/2, 

that are the baryons [5,7,8]. To better understand this idea, we illustrate schematically the momentum 

space in Fig. (1), where we indicate, with different colors, the low and high momentum states which 

are occupied by quarks and baryons, respectively.  

PURE NEUTRON MATTER CASE 

We start our calculations with a pure neutron model to compare it with the quarkyonic one. First 

of all, we have to compute the number density of neutrons which will be in the form, 

𝑛𝑛 = ∫
𝑑3𝑘

(2𝜋)3

𝑘𝐹𝑛

0

=
𝑔𝑠
6𝜋2

𝑘𝐹𝑛
3 (1) 

 We obtain the energy density in the following form as, 

𝜀𝑛 =
𝑔𝑠
2𝜋2

∫ 𝑑𝑘
𝑘𝐹𝑛

0

𝑘2√(ℏ𝑐𝑘)2 +𝑚𝑛
2𝑐4 + 𝑉(𝑘𝐹𝑛) (2) 

where the first term is the kinetic part and is obtained in the relativistic form and Vint(kFn) is the 

potential energy. After that, the chemical potential of neutrons will be given from the familiar 

thermodynamic relation, 

𝜇𝑛 =
𝜕𝜀𝑛
𝜕𝑛𝑛

(3) 

and the total pressure will be, 

𝑃 = 𝜇𝑛𝑛𝑛 − 𝜀𝑛 (4) 

so to construct the equation of state. 

As an initial effort, we assume that neutrons interact via a momentum dependent potential in the 

following form [1], 

𝑉(𝑘𝐹𝑛) =
1

3
𝐴𝑛𝑠(1 + 𝜒0)𝑢

2 +

2
3𝐵𝑛𝑆

(1 − 𝜒3)𝑢
𝜎+1

1 +
2
3𝐵

′𝑛𝑠(1−𝜒3)𝑢
𝜎−1

+ 𝑢 ∑
1

5
[6𝐶𝑖 − 8𝑍𝑖]𝐽𝑛

𝑖

𝑖=1,2

(5) 

where,  

𝐽𝑛
𝑖 =

2

(2𝜋)3
∫ 𝑑3
𝑘𝐹𝑛

0
𝑘𝑔(𝑛𝑛, 𝛬𝑖) =

2

(2𝜋)3
∫ 𝑑𝑘
𝑘𝐹𝑛

0
4𝜋𝑘2 [1 +

𝑘

𝛬𝑖
]

−1

(6) 

The parameterization we used for the momentum dependent potential, Eq. (5), is the following: 

A=−46.65, B=39.45, B′=0.3, σ=1.663, C1=−83.84, C2=23, χ0=1.654, χ3=−1.112, Z1=3.81, Z2=13.16, 

Λ1=1.5kFn0, Λ2=3kFn0, u=nn/n0, the saturation density n0=0.16 fm−3 and kFn0 is the neutron Fermi 

momentum at the saturation density. 

The first two terms in Eq. (5) are both momentum independent and correspond to an attractive 

and a repulsive interaction respectively. The last term of the potential energy is momentum dependent, 

corresponds to an attractive interaction and expresses the finite range interaction forces. 

We construct the equation of state for each model and we compute the sound velocity,  

𝑐𝑠
𝑐
= √

𝜕𝑃

𝜕𝜀
(7) 
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THE NDU (NEUTRONS, UP AND DOWN QUARKS) QUARQYONIC MODEL WITH 

MOMENTUM-DEPENDENT INTERACTION 

To study quarkyonic matter and its effects in the neutron star properties, we start with a simple 

model in which we consider a neutron star that consists of only neutrons, up and down quarks, (NDU) 

model) [5, 9]. Also we assume that neutrons interact via a momentum dependent potential and quarks 

are asymptotically free. In this case, the equation for charge neutrality will take the simple form, 

𝑛𝑑 = 2𝑛𝑢 (8) 

which in terms of the Fermi momentum becomes, 

𝑘𝐹𝑑 = 21 3⁄ 𝑘𝐹𝑢 (9) 

In this model we assume that the system is not in chemical equilibrium. Instead of this, we 

consider a simple relation for the Fermi momentum of down quarks and neutrons as in Ref. [5,10], kFd 

= (kFn – Δ)/3, which derived by the basic assumption of the quarkyonic scenario, where ∆ is the width 

of the momentum shell where baryons reside and we take it the form Δ = ΛQyc
3 /ℏ3c3kFn

2 + κQyc ΛQyc 

/ℏcNc
2 Ref. [5]. 

We set the parameters ΛQyc ≈ ΛQCD and κQyc = 0.3. Also we set the quark masses to be 

mu=md=mQ=mn/Nc , the degeneracy of the spin and the number of colors for quarks to be gs = 2 and  

Nc = 3 respectively. We compute the energy density, the number density and chemical potentials for 

quarks and neutrons respectively as before,  

𝑛𝑄 =
𝑔𝑆𝑁𝑐
2𝜋2

∑ ∫ 𝑘2
𝑘𝐹𝑖

0𝑖=𝑢,𝑑

𝑑𝑘 (10) 

𝜀𝑄 =
𝑔𝑆𝑁𝑐
2𝜋2

∑ ∫ 𝑘2
𝑘𝐹𝑖

0𝑖=𝑢,𝑑

√(ℏ𝑐𝑘)2 +𝑚𝑄
2𝑐4𝑑𝑘 (11) 

𝑛𝑛 =
𝑔𝑆
2𝜋2

∫ 𝑘2
𝑘𝐹𝑛

𝑘𝐹𝑛−𝛥

𝑑𝑘 (12) 

𝜀𝑄 =
𝑔𝑆
2𝜋2

∑ ∫ 𝑘2
𝑘𝐹𝑛

𝑘𝐹𝑛−𝛥𝑖=𝑢,𝑑

√(ℏ𝑐𝑘)2 +𝑚𝑛
2𝑐4𝑑𝑘 + 𝑉(𝑛𝑛 , 𝑘𝐹𝑛) (13) 

The interaction term for neutrons energy density will be in the form of Eq. (5), but in this case, 

the integration in the momentum space of the term in Eq. (6) is restricted in the momentum shell with 

the width equal to the parameter Δ. 

The total baryon density and total energy density will be,  

𝑛𝐵 = 𝑛𝑛 +
𝑛𝑢 + 𝑛𝑑

3
=

1

3𝜋2
(𝑘𝐹𝑛

3 − (𝑘𝐹𝑛 − 𝛥)3 + 𝑘𝐹𝑢
3 + 𝑘𝐹𝑑

3 ) (14) 

and the total energy density will be, 

𝜀𝑡𝑜𝑡 = 𝜀𝑛 + 𝜀𝑄 (15) 

The chemical potential for each species of matter will be in the form, 

𝜇𝑖 =
𝜕𝜀𝑡𝑜𝑡
𝜕𝑛𝑖

(16) 

and the total pressure will be, 
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𝑃 = −𝜀𝑡𝑜𝑡 + ∑ 𝜇𝑖
𝑖=𝑛,𝑢,𝑑

𝑛𝑖 (17) 

where index i express neutrons, up and down quarks respectively. After that, we compute the sound 

velocity from relation (7). 

 

RESULTS AND DISCUSSION 
 

The first result we extracted is the speed of sound for each model and for various values of the 

microscopic parameters. The reason is to see if the equations of state we provided are causal. We 

investigate several values of the transition density (ntr) as well as for the parameter ΛQyc. We present 

these results in Fig. 2.  

 

Figure 2. The sound velocity for the quarkyonic matter (QM) interacting via the momentum-dependent 

interaction (upper figure) as a function of baryon density for ntr = 0.2, 0.25, 0.3, 0.4fm−3 (blue, yellow, green 

and black lines respectively) and for ΛQyc = 160, 180, 200 MeV (solid, dotted and dashed-dotted lines 

respectively). The solid red line corresponds to the pure neutron matter model (PNM). 

It is important to note that for the different values of transition density, the pick in the speed of 

sound as a function of the baryon density is not affected at all. On the other hand, we can see that as 

the parameter ΛQyc increases, the maximum speed of sound also increases, leading to a violation of 

causality for values ΛQyc > 210 MeV. 
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After the construction of equations of state for the pure neutron case as well as for quarkyonic 

model, we solve Tolman-Oppenheimer-Volkoff (TOV) equations so to calculate mass, radius, tidal 

deformability and other bulk quantities of a neutron star. 

This system of equations for a static, spherically symmetric neutron star has the following form,  

𝑑𝑚(𝑟)

𝑑𝑟
= 4𝜋𝑟2𝜌(𝑟),

𝑑𝑃(𝑟)

𝑑𝑟
= 𝜌(𝑟)𝑐2 (1 +

𝑃(𝑟)

𝜌(𝑟)𝑐2
)
𝑑𝛷(𝑟)

𝑑𝑟
,

𝑑𝛷(𝑟)

𝑑𝑟
=
𝐺𝑚(𝑟)

𝑐
(1 +

4𝑃(𝑟)𝑟3

𝑚(𝑟)𝑐2
)(1 −

2𝐺𝑚(𝑟)

𝑟𝑐2
)

−1

(18) 

 

where P(r) is the total pressure, m(r) is the enclosed mass of the star and ρ(r) is the total mass density. 

We present the results for mass and radius relations in Fig. (3). 

In Fig. 2 we can see the sound velocity as a function of the baryon density. As a general result,  

the sound speed increasing rapidly until a maximum value at densities 2-3 times greater the nuclear 

saturation density (0.16 fm-3). After that, when quarkyonic matter appears, it dicreases and 

assymtotically it converges to the conformal limit (1/√3). So quarkyonic matter provides a stiff-soft 

equation of state and predicts massive neutron stars without violating the causality. 

In Fig. 3, we present our results for the mass and radius for a cold neutron star. We assume for 

transition density the values ntr=0.2, 0.25, 0.3, 0.4 fm−3 and for parameter ΛQyc we set ΛQyc=160, 180, 

200 MeV. Also, we include some recent observational data from LIGO and HESS experiments, so to 

make a comparison with our results. Our goal is to make some constrains for the transition density 

and ΛQyc. 

One can see in Fig. 3 that quarkyonic model for ntr=0.3 and 0.4 fm−3, as well as the pure neutron 

matter model, predict neutron stars with masses around 1.4 solar masses to have radius about 13-13.5 

km, which is compatible with the observational data resulting from LIGO. If we set the transition 

density to be 0.3 fm−3 and below, our predictions are far away from the observational data.  

Another interesting feature to notice is that for values of transition density near the saturation density 

and below, the masses and the radius provided are very large, and as we increase the transition density, 

the quarkyonic model tends to be equivalent to the pure neutron case. 

CONCLUSIONS 

After this initial effort we can note some interesting features of quarkyonic matter. First of all, 

quarkyonic matter provides the sound speed as a non-monotonic function of the baryon density, 

without exceeding the speed of light and it is reaching asymptotically the value 1/ √ 3 which is the 

conformal limit. This fact, along with the maximum neutron star masses predicted by quarkyonic 

equations of state, constitutes an important tool for explaining the properties of dense nuclear matter 

as well as the bulk properties of compact objects. Also, quarkyonic matter may bridge the gap 

between hadronic and quark matter and explain a possible phase transition between these two phases. 

In this work we achive to constrain some microscopical parameters from recent gravitational 

wave data as long as from the speed of sound causality. The fisrt one is the transition density, which in 

our model can’t be lower than 0.3 fm-3. Also the parameter Λqyc is constrained to be lower than 210 

MeV. 

In future work we have to extend our model to include protons and electrons to impose β-

equilibrium and to apply quarkyonic matter in finite temperature neutron stars. Also we have to 

investigate if there is any fundamental theory which can provide this state of matter [2, 3, 10]. We 

expect that future gravitational wave observations from binary neutron star systems will give us 
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information to constrain further some of the microscopic parameters of our model, so that to test and 

to improve our equations of state. 

 

 
Figure 3. M-R diagrams for the quarkyonic model (QM) for ntr=0.2, 0.25, 0.3, 0.4 fm−3 (blue, yellow, green and 

black lines, respectively) and for ΛQyc=160, 180, and 200 MeV (solid, dotted and dashed-dotted lines, 

respectively). The solid red line corresponds to the pure neutron matter. The shaded regions correspond to 

possible constraints on the maximum mass from the observation of PSRJ0348+0432, PSR J0740+6620 and PSR 

J0952+0607 [11–15]. The purple lines correspond to data resulting from LIGO and the grey one corresponds to 

data from the HESS observation [16]. 
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