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___________________________________________________________________________ 

Abstract Relativistic energy density functionals have been extensively used to describe shape 

transitions and coexistence. They provide a consistent framework for studying static and dynamic 

properties of nuclei across the nuclear chart. Presently, we explore shape coexistence/transitions in the 

neutron deficient side with N=96–112 around the Z = 82 magic number and in particular for the Hg and 

Pb isotopes. This area has been extensively researched experimentally, with well-established shape 

coexistence observed in several isotopes, making it a suitable testing ground for theoretical approaches. 

Our model is based on the microscopic theory of relativistic energy density functionals. In the first step it 

involves calculations at the mean-field level, wherein the relativistic Hartree-Bogoliubov equations are 

solved under constraints on the shape parameters. This enables the construction of potential energy 

surfaces for the nuclei, revealing the position of the absolute minimum of the ground state and the 

existence, or absence, of secondary or more minima at different deformations. The second step extends 

beyond the static mean-field level encompassing the dynamics of rotations and vibrations as collective 

excitations of the system. The constrained calculations are used to derive mass, inertial parameters and 

the potential of a five-dimensional collective Hamiltonian (5DCH). Solving the corresponding 

eigenvalue problem allows for the calculation of excitation energies, of low-lying levels and B(E2) 

transition probabilities that can be directly compared with observations. In both steps, we demonstrate 

how the strength of the pairing interaction affects the theoretical description both quantitatively and 

qualitatively.  

Keywords Relativistic mean-field theory, Nuclear structure, Shape coexistence 

___________________________________________________________________________ 

INTRODUCTION 

The study of neutron-deficient Hg and Pb isotopes offers a unique opportunity to explore shape 

coexistence, a phenomenon where nuclei exhibit multiple configurations with distinct shapes at low 

energies [1,2]. In the region of neutron numbers 96 < N < 114, these isotopes display a rich variety of 

shapes, ranging from spherical to oblate and prolate deformations, driven by the interplay between 

single-particle and collective degrees of freedom. A powerful tool for theoretical investigations of 

such phenomena is the framework of energy density functionals (EDFs). In this work, we employ the 

relativistic Hartree-Bogoliubov (RHB) approximation [3,4], based on Lorentz invariant functionals, 

combined with a finite range pairing interaction, to perform self-consistent mean-field calculations 

constrained in the quadrupole deformation parameters β and γ. These calculations reveal the evolution 

of nuclear shapes and the emergence of coexisting minima in the projected energy surfaces (PESs).  

    To include collective correlations, we construct a quadrupole collective Hamiltonian using 

parameters derived from the constrained RHB calculations [5]. This allows us to examine low-energy 

spectra and transition probabilities, providing insights into the collective behavior of these nuclei. 

Special attention is given to the role of pairing correlations, which significantly influence both 

ground-state properties and excitation spectra. By adjusting the pairing strength, we aim to improve 

the theoretical description of shape coexistence and collective dynamics, ensuring better agreement 

with experimental observations. This study highlights the evolution of nuclear shapes in Hg and Pb 
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isotopes and underscores the importance of pairing correlations in understanding complex nuclear 

phenomena 

THEORETICAL FRAMEWORK 

Energy density functionals are a powerful tool in the theoretical modelling of nuclear structure 

phenomena. The starting point is an effective interaction between nucleons that defines the form of  

the energy functional, which in turn depends on the single particle density 𝜌𝑛′𝑛 = ⟨𝛷|𝑐𝑛′
† 𝑐𝑛|𝛷⟩ where Φ 

is the ground state wavefunction and 𝑐𝑛′
† 𝑐𝑛 are single nucleon creation and annihilation operators. In 

the relativistic version a Lorentz covariant interaction is assumed, where nucleons are treated as dirac 

spinors, that interact through the exchange of virtual mesons and the electromagnetic field for protons. 

In addition to the single particle density, it is necessary to include a pairing tensor 𝜅𝑛′𝑛 = ⟨𝛷|𝑐𝑛′𝑐𝑛|𝛷⟩ 

since in most nuclei, neutrons and protons fill partially their respective shells. In the end one has the 

energy functional 𝐸𝑅𝐻𝐵[𝜌, 𝜅] = 𝐸𝑅𝑀𝐹[𝜌] + 𝐸𝑝𝑎𝑖𝑟[𝜅]. Variation of E with respect to the density and pairing 

tensor leads to the Relativistic Hartree-Bogoliubov (RHB) matrix equation (1): 

(
ℎ̂𝐷 − 𝜆 𝛥̂

−𝛥̂
†

ℎ̂𝐷
†
− 𝜆

) (
𝑈𝑘

𝑉𝑘
) = 𝐸𝑘 (

𝑈𝑘

𝑉𝑘
) (1) 

with ℎ̂𝐷 =
𝛿𝐸

𝛿𝜌̂
 the Dirac hamiltonian and 𝛥 =

𝛿𝐸

𝛿𝜅̂
 the pairing gap. This scheme is solved numerically in 

the mean-field approximation and once the U and V Bogoliubov wavefunctions are found, one can in 

principle calculate any observable of the static ground state of the specific nucleus. Within this 

framework it is also possible to map the potential energy surface as a function of quadrupole 

deformation parameters, by solving the RHB equation under constraints on the axial β and triaxial γ 

degree of freedom.  

In order to calculate excitation spectra and transition probabilities of quadrupole vibrations and 

rotations, we need to include the collective correlations by restoring the symmetries that are broken in 

the mean-field level. The more formal way is to use the Generator Coordinate Method (GCM) starting 

from the set of the constrained RHB calculation and projecting the total wavefunction to good 

quantum numbers. However this is a computationally demanding method especially for heavy nuclei. 

A similar approach is to use the constrained results for the mapping of the energy surface as input for 

the construction of a collective Bohr-type Hamiltonian (2): 

𝐻𝑐𝑜𝑙𝑙 = 𝑇𝑣𝑖𝑏(𝛽, 𝛾)+ 𝛵𝑟𝑜𝑡(𝛽, 𝛾,𝛺)+𝑉𝑐𝑜𝑙𝑙(𝛽, 𝛾) (2) 

The three terms of the hamiltonian are the vibrational kinetic energy 𝛵𝑣𝑖𝑏 =
1

2
𝐵𝛽𝛽 + 𝛽𝛣𝛽𝛾𝛽̇𝛾̇ +

1

2
𝛽2𝛣𝛾𝛾𝛾

2̇, the rotational kinetic energy 𝛵𝑟𝑜𝑡 =
1

2
∑ 𝐼𝑘
3
𝑘=1 𝜔𝑘

2 , and the collective potential 

𝑉𝑐𝑜𝑙𝑙(𝛽, 𝛾) = 𝛦𝑟𝑜𝑡(𝛽, 𝛾) − 𝛥𝑉𝑣𝑖𝑏(𝛽, 𝛾) − 𝛥𝑉𝑟𝑜𝑡(𝛽, 𝛾). The entire dynamics of the collective 

Hamiltonian is governed by seven functions of the intrinsic deformations β , γ and Ω the three Euler 

angles: the three mass parameters 𝐵𝛽𝛽 , 𝛣𝛽𝛾 , 𝛣𝛾𝛾, the three moments of inertia 𝐼𝑘 and the collective 

potential. These are all fully determined by the choice of the effective interaction at the starting point 

of the mean-field calculation. 

 In this work the parameter sets of DD-ME2 [6] and DD-PC1 [7] have been chosen for the 

relativistic interaction that takes care of the long-range correlations. For the short-range correlations, 

the finite range pairing force of Tian, Ma and Ring (TMR) [8] has been selected. This particular force 

is a modified version of the two body Gogny pairing force, which doesn’t require a specific energy 

cutoff. In coordinate space it has the form 𝑉(𝑟1, 𝑟2, 𝑟1′, 𝑟2′) = −𝐺𝛿(𝑅 − 𝑅′)𝑃(𝑟)𝑃(𝑟′)
1

2
(1 − 𝑃𝜎), 

with R the center of mass and r the relative distance coordinates. The finite range is given by 𝑃(𝑟) =



K.E. Karakatsanis HNPS Advances in Nuclear Physics vol. 31, pp.71-78 (2025) 
HNPS2024 

doi: 10.12681/hnps.8155 
page 73 

 

 

1

(4𝜋𝑎2)3 2⁄ 𝑒−𝑟
2 4⁄ 𝑎2. The values of the two parameters G=728 MeV fm3 for the strength and a=0.644 fm 

for the range, have been adjusted to match the pairing gap of the Gogny D1S parametrisation in 

symmetric nuclear matter. However, in various applications of the described model like the study of 

rotating nuclei, fission barriers, shape transitions a proper quantitative description is shown to be 

sensitive to pairing. A common procedure is to readjust the strength parameter using a scaling factor f. 

A global analysis of pairing gap calculations across the nuclear chart, using the relativistic functional 

NL5 [9], has indicated a specific functional dependence of f on the neutron and or proton number. For 

those reasons we also examine how pairing adjustment improves our theoretical results using the two 

functionals DD-PC1 and DD-ME2. More explicitly for each isotope we examine, the scaling factor is 

chosen as such, so that the calculated neutron and proton pairing gap equals the pairing gap given by 

the 3-point odd even staggering formula, 

𝛥𝑖
3(𝑄0) =

𝜋𝑄0
2

[𝐵(𝑄0 − 1) − 2𝐵(𝑄0) + 𝐵(𝑄0 + 1)] (3) 

Depending on the isotope, this leads to an increase of about 10-20% in pairing strength.  

RESULTS AND DISCUSSION 

Mean-field results 

We will first show results obtained by constrained RHB calculations with default and adjusted 

pairing strength. Since our main objective is to study shape coexistence, we will concentrate our 

attention at the Projected Energy Surfaces (PES) of each isotope. These are constructed as circular 

sector diagrams with 60o angle. The radial coordinate represents the β2 quadrupole axial deformation 

with values from 0 to 0.6. The angular coordinate represents the γ quadrupole triaxial variable with 

values from 0o, which corresponds to prolate elongation, to 60o which corresponds to oblate 

elongation. In each separate diagram the global minimum that identifies the shape of the mean-field 

ground state, is depicted with a red star.  

Fig. 1 contains the PES of Hg isotopes with proton number Z=80 and neutrons between N=96–

110, constructed from the RHB calculations with the DD-ME2 interaction and default TMR pairing. 

Fig. 2 has the same PESs but for TMR pairing adjusted to (3). 

The PESs of the Hg isotopes with default TMR exhibit a prolate minimum at approximately 

β2~0.3, which is already present at 176Hg (N=96). This prolate minimum disappears beyond 190Hg 

(N=110), suggesting that shape coexistence (SC) is expected to occur between neutron numbers N=96 

and 110. For the isotopes 184Hg to 188Hg, the PESs show increased rigidity in the γ direction, 

indicating a stronger connection between the prolate and oblate minima. Additionally, the absolute 

minimum for 190Hg to 188Hg, remains on the prolate side, consistent with earlier results obtained using 

the NL1 parameter set. 

In comparison in the adjusted pairing PESs, the appearance of the prolate minimum at β2~0.3 

begins later at 178Hg (N=98) and stops earlier at 188Hg (N=108), limiting the range of shape 

coexistence to 6 isotopes instead of 8. The PESs of 190Hg to 188Hg exhibit greater softness in the γ 

direction, indicating a weaker connection between the prolate and oblate minima. Additionally, the 

absolute minimum is better described as being on the oblate side at β2 ~ 0.15, with only 182Hg and 
184Hg retaining a prolate absolute minimum. This contrasts with the default pairing results, where the 

prolate minimum was more persistent across a broader range of isotopes.  
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Figure 1. PES of even-even isotopes 176-190Hg using the DD-ME2 interaction and default TMR pairing. 

 

 

 

 
Figure 2. Same as Fig. 1, but with adjusted TMR pairing. 

 
The same procedure was applied for Pb isotopes with Z = 82, which is exactly at the proton shell 

closure and for the same number of neutrons. Specifically, in Fig. 3 the PESs of N=96–110 Pb 

isotopes are presented, using the DD-ME2 force and default pairing and figure 4 is the same but with 

adjusted pairing. 

In principle one would expect that all isotopes would acquire a spherical shape. Indeed, a 

minimum is located at (0,0o) which is the global minimum for the 178-184Pb (N=96–102) nuclei. In 

addition to that, two distinct configurations one oblate at (0.15,60o) and one prolate (0.3,0o) start to 

appear at 180Pb (N=98). The prolate minimum becomes very shallow at 186-192Pb (N=110) and it 

essentially disappears for heavier isotopes. In contrast the oblate minimum becomes dominant, and it 

is the ground state shape for the isotopes 186-192Pb (N=104–110). For heavier isotopes as we approach 

the doubly magic isotope 208Pb the oblate minimum comes closer to the spherical one until they 

merge. It is important to note that a triple shape coexistence is expected based on these calculations at 
182-192Pb (N=98–110).  
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Comparing Fig. 3 with Fig. 4, the adjusted pairing calculations suggest that the prolate minimum 

at (0.3,0o) appears later in the isotopic chain at 182Pb (N=100) and it has already disappeared at 192Pb 

(N=110). This means that triple shape coexistence is now limited to 182-190Pb (N=100–108). The shape 

attribution to the ground state is also different with only 190-192Pb having an oblate shape, with the rest 

of the isotopes being spherical. 

 

 
Figure 3. PES of even-even isotopes 180-192Pb using the DD-ME2 interaction and default TMR pairing. 

 

 

 
Figure 4. Same as Fig. 3, but with adjusted TMR pairing. 

Collective Hamiltonian Results 

Evidence of shape coexistence can be found experimentally in the collective spectrum of nuclei. 

Specifically, the existence of a second collective band of excitation corresponding to a different 

configuration alongside the ground state band. The position of the low lying states and the band head 

being close in energy with the levels of the ground state. Increased configuration mixing between the 

two bands which is measured through the significant value of monopole transition probabilities. It is 

thus important from a theoretical standpoint to be able to calculate the energies and transition 

probabilities of the low-lying collective states.  
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Within our theoretical framework this is done through the collective Hamiltonian, as explained in 

the previous section. The results of these calculations are shown in the following figures. More 

specifically, the diagrams in Fig. 5 contain the systematics of the low energy collective states with 

quantum number up to Iπ
 = 8+, belonging to the first two bands of the spectrum. With blue dots and 

continuous lines are the excited states built on the ground state and with red dots and dashed lines are 

the excited states built on the second configuration. In the left panel we see the states for Hg isotopes 

with neutron number N=96–114 using the DD-PC1 force. In the right panel we have the Pb isotopes 

for the same neutron numbers and DD-ME2 force. In both cases the default parameters of TMR 

pairing were used. Fig. 6 concentrates in the Hg isotopes, showing the systematics of the same states 

in the left diagram but this time with adjusted pairing parameters and for comparison in the right 

diagram there are their experimental values. Fig.7 is the same as Fig. 6, but for Pb isotopes.  

 

Figure 5. Low-lying collective levels systematics for Hg (left panel) and Pb (right panel) isotopes with neutron 

number N=96–114 and default TMR pairing.  

Results with default pairing parameters present a similar pattern of the systematics of their low- 

lying states for both Hg and Pb isotopic chains. The energies of all levels decrease from N=96 to 

N=98. In the region from N=98 to N=110 the excited states of the ground states remain flat, while the 

energies of the second configuration increase slightly with a peak at the mid-shell N=104 and 

fluctuate at that energy till N=110. Beyond N=110 all energies show a rapid increase. The fact that for 

N=98 and N=110 we get those drastic changes in the systematics is related to the structural changes 

observed in the PESs of Hg and Pb. Experimentally, this is the neutron region where the characteristic 

parabolic intrusion of the states of the secondary excited bands takes place (see right panels of Figs. 6 

and 7). That is an indication of shape coexistence [1]. The diagrams, however, for the default pairing 

calculations do not reproduce clearly this feature. In fact, there is the irregular pattern of the 

secondary excited states that was described with a peak at N=104, which is pronounced in the case of 

the 0+
2 state for Hg. In addition, the energy of the first excited 2+

1 state sits far too low in the N=98–

110 region. 

Adjusting the pairing force at the mean-field level significantly improves the qualitative picture 

of the systematics. As Fig. 6 shows the calculated excited energies in Hg, follow a parabolic shape for 

N=96 to N=112, with a minimum at N=104, in accordance with the experimental pattern. The position 

of the first excited 2+
1 also agrees better with the experimental values and 0+

2 has a normalized 

behavior. An important property that appears within N=96–108, is the degeneracy between the states 

of the first and second band that differ by 2 units of total angular momentum i.e. the pairs of states 

4+
1/2+

2, 6+
1/ 4+

2, 8+
1/ 6+

2. One has to note though, that the level density is smaller as compared to both 

the default pairing calculations and to the experimental data. 
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Figure 6. Theoretical (left) and experimental (right) low-lying collective levels systematics for Hg with adjusted 

pairing force. 

 

Figure 7. Same as Fig. 6, but for Pb isotopes. 

The same improvements can be observed for Pb isotopes in Fig. 7. The characteristic parabolic 

intrusion in the N=96–112 neutrons, is not as smooth and symmetrical as in the Hg case. The position 

of the first excited 2+
1 follows the experiment until N=104, but then remains constant instead of 

increasing. Energy degeneracy of the pairs of the states 2+
1/0+

2, 4+
1/ 2+

2, 6+
1/ 4+

2, 8+
1/2+

2 exists in the 

neutron range N=96–104.  
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Figure 8. B(E2: 2+ → 0+) transition probabilities for Hg (left) and Pb (right) isotopes.  

 

Finally, Fig. 8 depicts the behavior of B(E2:2+→0+) transition probabilities in Hg and Pb isotopes 

under default and adjusted pairing schemes. For default pairing, a significant jump is observed at 

N=96, followed by a plateau with very large values for 98<N<108, indicating excessively strong 

collectivity. A step down occurs at N=110, with a gradual decrease toward N=114. In contrast, 

adjusted pairing results in a smooth inverted parabolic trend for Hg, with a peak at N=102, while Pb 

exhibits a more linear up-and-down curve with the same peak. Both approaches overestimate 

experimental data for Hg, though the adjusted pairing provides less enhanced B(E2) values, aligning 

more closely with experimental observations.  

CONCLUSIONS 

Self-consistent mean-field calculations constrained in β and γ deformation were performed for 

neutron-deficient Hg and Pb isotopes within 96<N<114, using the relativistic Hartree-Bogoliubov 

(RHB) method based on the DD-PC1/DD-ME2 energy density functionals and the TMR pairing 

interaction. The projected energy surfaces (PESs) reveal a shape evolution from spherical-weakly 

oblate to coexisting oblate and prolate minima, and back to spherical-weakly oblate for Hg isotopes, 

while Pb isotopes exhibit triple shape coexistence around the mid-shell at N=104. A quadrupole 

collective Hamiltonian, with parameters determined by self-consistent constrained triaxial RHB 

calculations, was employed to study low-energy spectra and reduced transition probabilities. 

Adjusting the pairing interaction significantly improves the description at both the mean-field level, 

by correcting the position of ground-state minima, and beyond mean-field, particularly in reproducing 

the parabolic pattern of low-lying collective states and the magnitude of B(E2) transition probabilities.  
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