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___________________________________________________________________________ 

Abstract The phenomena of shape phase transitions and shape coexistence in even-even heavy nuclei 

are analysed within the covariant density functional framework. Spectroscopic observables that 

characterize low-lying collective excitations associated with order parameters are computed using the 

corresponding generalized microscopic collective Hamiltonians with deformations as dynamical collective 

coordinates. The parameters of the Hamiltonians are determined by relativistic Hartree-Bogoliubov 

calculations based on the energy density functional DD-PC1, and a finite-range pairing interaction. 

Keywords Covariant density functional theory, shape coexistence, shape phase transitions, 

collective Hamiltonian.  

___________________________________________________________________________ 

INTRODUCTION 

The study of shape phase transitions and shape coexistence represents a highly active area of research 

in low-energy nuclear physics, as highlighted in Refs. [1–7]. These phenomena can manifest in light, 

medium-heavy, heavy, and superheavy nuclei, providing valuable insights into the organization of 

nucleons in finite nuclei. In their ground state configuration, the majority of nuclei deviate from 

spherical shapes, often displaying quadrupole deformed shapes resulting from strong proton-neutron 

correlations in open-shell nuclei with axial and reflection symmetry. Additionally, less frequently, 

nuclei exhibit “pear-like” octupole shapes, either in a stable or dynamic manner, arising from the 

spontaneous breaking of their intrinsic reflection symmetry.  

In certain regions of the nuclear chart, the evolution of equilibrium shapes with variations in 

nucleon number can undergo sudden changes, leading to phenomena such as shape coexistence and 

quantum phase transitions. The density functional theory [8,9] serves as a unified and comprehensive 

framework for describing nuclear shapes across the entire nuclear chart. Within this framework, the 

manuscript presents recent findings [10] derived from studies on nuclear shape phase transitions and 

shape coexistence using covariant density functional theory (CDFT) [9]. 

STRUCTURAL EVOLUTION IN THE NEUTORN DEFICIENT MERCURY ISOTOPES 

In the vicinity of Z=82, particularly near the neutron midshell N=104, the phenomena of shape 

coexistence and phase transitions were initially identified in studies of hyperfine structure [11]. Later 

spectroscopic investigations [12–23] revealed that the structure of isotopes in this region is 

characterized by intruder prolate deformed configurations coexisting with less deformed oblate ground 

states. The low-lying excited states of the intruder band exhibit a parabola shape as a function of neutron 

number, starting from 188Hg down to the midshell at N=104, with a minimum observed at 182Hg and 

going up to 180Hg and 178Hg [24,25]. In contrast, in the heavier transitional isotopes with 190<A<200, 

the energy levels of the yrast band exhibit minimal variation.  

This contribution presents constrained self-consistent mean field (SCMF) calculations for even-

even isotopes of 176-190Hg within the relativistic Hartree-Bogoliubov [9] method. The calculations 

employ the density-dependent point-coupling (DD-PC1) [26] energy density functional in the particle-
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hole channel and a separable pairing force [27] in the particle-particle channel. In this analysis, the 

pairing strength was adjusted individually for each Hg isotope to reproduce the odd-even staggering 

effect, resulting in an increase by a factor of 10-20%, depending on the specific isotope. 

To illustrate the rapid change of equilibrium shapes, Fig. 1 presents the potential energy surfaces 

(PES) of even-even isotopes 176-190Hg. Starting with the lighter isotopes, 176Hg and 178Hg, the energy 

surfaces exhibit γ-soft characteristics with small oblate deformations. In 180Hg a second prolate 

deformed minimum emerges on the potential surface, becoming the dominant one in182Hg. The energy 

surfaces of 184Hg and 186Hg display a relatively flat profile in the γ-direction, with two minima at an 

energy difference of 500 keV, indicating a case of shape coexistence between the two different 

configurations. The equilibrium configuration is prolate in 184Hg and oblate in 186Hg. The prolate 

minimum diminishes in 188-190 Hg, and the isotopes become oblate deformed. For all isotopes, the ground 

state configurations are oblate deformed, except for 182Hg and 184Hg which exhibit a prolate 

deformation. 

 

Figure 1. Self-consistent RHB triaxial quadrupole energy surfaces of even-even 176-190Hg isotopes in the β-γ 

plane (00<γ<600). All energies are normalized with respect to the binding energy of the corresponding ground 

state. 

 

A five-dimensional collective Hamiltonian (5DCH) with quadrupole deformations as dynamical 

collective coordinates [28,29] is used to calculate the low-energy excitation spectrum. The microscopic 

self-consistent solutions of deformation-constrained triaxial relativistic Hartree-Bogolyubov (RHB) 

calculations, the single particle wave functions, occupation probabilities, and quasiparticle energies, are 

used to calculate the Hamiltonian parameters. The moments of inertia are calculated with the Inglis-

Belyaev formula [30,31] and the mass parameters with the cranking approximation [32]. The collective 

potential is obtained by subtracting the zero-point energy corrections [32] from the total energy that 

corresponds to the solution of constrained triaxial SCMF calculations. The resulting collective potential 

and inertia parameters as functions of the collective coordinates determine the dynamics of the 5DCH. 

In Fig. 2, the excitation energy systematics for isotopes 176−200Hg, obtained with the 5DCH, are 

presented. The model successfully reproduces the nearly parabolic trend observed in the energy levels 

of 176Hg up to 190Hg, a crucial feature experimentally interpreted as indicative of shape coexistence in 

these isotopes (see Fig. 10 of Ref. [6]). Conversely, a relatively flat behavior in the excitation energies 

is observed with increasing neutron number for the heavier Hg nuclei (A>190), aligning well with 

experimental data. A noteworthy observation is the near-degeneracy between the levels of the excited 

band and the levels of the ground state with two additional units of angular momentum. Specifically, 
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pairs of levels such as 4+
1/2

+
2, 6

+
1/4

+
2, 8

+
1/6

+
2, and so on, exhibit almost the same energy in 176-186Hg, 

signaling configuration mixing. This phenomenon is more pronounced in the spectrum of neutron-

deficient Pb isotopes around N=104 (see Fig. 12 of Ref. [6]). Additionally, the model captures the 

lowest excitation energy of the second 02
+ state at N=102 (A=182), close to the neutron midshell. A 

structural change is observed in the energy spectrum from 192Hg to 194Hg, corresponding to the 

disappearance of the prolate minimum and increased stiffness of the potential around the oblate 

equilibrium point. Furthermore, the calculated spectra for 176Hg and 178Hg display a vibrational-like 

behavior with R4/2 = E(4+
1)/E(2+

1) ratios around 1.9, and close-lying 4+
1, 2

+
2, and 0+

2 levels, indicative 

of a vibrational level structure. On the other hand, isotopes with 180<A<192 are γ-soft, consistent with 

the respective potential energy surfaces at the mean-field level. 

 

 
Figure 2. Energy systematics of the low-lying excited states in even-even neutron-deficient mercury isotopes. The 

blue lines correspond to the levels of the ground state band, while the red ones to the excited band. 

OCTUPOLE SHAPE PHASE TRANSITIONS IN NEUTRON RICH ACTINIDES  

In the case of actinides with atomic number Z~96 and neutron number N~196, the coupling of 

neutron orbitals h11/2 and k17/2, along with the coupling of proton single-particle states f7/2 and i13/2, can 

give rise to octupole deformations. This study focuses on the analysis of shape phase transitions and 

critical points in octupole-deformed neutron-rich actinides, specifically Cm, Cf, Fm, and No. A 

microscopic realization of a quantum phase transition (QPT) from non-octupole to stable octupole 

deformation and to octupole vibrations is presented. 

The analysis employs the axially reflection-asymmetric implementation of the relativistic Hartree-

Bogoliubov (RHB) model [33-35] and the quadrupole-octupole collective Hamiltonian (QOCH) [33-

35]. These models are constructed to calculate excitation spectra and observables associated with 

quantum order parameters. The mean-field potential in this analysis is determined by the relativistic 

density functional DD-PC1 [26] in the particle-hole channel, while a separable pairing force [27] is 

utilized in the particle-particle channel. The calculations presented here have been partially discussed 

in [10]. 

Already at the mean-field level the RHB model predicts a very interesting structural evolution with 

transitions from non-octupole to pronounced octupole deformations and to shallow β3 potentials, as 

illustrated in Fig. 3. In the case of 282Cm the potential energy surface is softer, with the energy minimum 

at (β2,β3)~(0,0). With the increase of neutron number more pronounced quadrupole and octupole 
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deformations develop. For 288Cm with N=192 the energy minimum is found in the non-zero octupole 

deformation region, located at (β2,β3)~(0.09,0.14). The potentials become more rigid in β2 and softer in 

β3. The maximum gain in binding energy due to octupole deformation is found in 292Cm at neutron 

number N=196.  

 

 
Figure 3. Microscopic DD-PC1 self-consistent relativistic Hartree-Bogoliubov axially symmetric energy surfaces 

of the nuclei 282-296Cm in the (β2,β3)-plane. The contours join points on the surface with the same energy and the 

separation between neighboring contours is 0.5 MeV. 

 

To quantitatively investigate shape transitions and critical point phenomena, it is essential to move 

beyond a simple Kohn-Sham approximation and consider the restoration of broken symmetries at the 

mean-field level, along with fluctuations in collective coordinates. Spectroscopic properties relevant 

for characterizing shape transitions are examined using a quadrupole-octupole collective Hamiltonian, 

which is a gamma-rigid axially symmetric version of the general quadrupole-octupole Bohr 

Hamiltonian. 

 

 
 

Figure 4. (Color online) Theoretical energy ratios E(Jπ)/E(2+
1) of the yrast states of (a) 96Cm, (b) 98Cf, (c) 100Fm, 

and (d) 102No, including both positive (J even) and negative (J odd) parity, as functions of J.  
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The odd-even staggering in the energy ratio E(Jπ)/E(2+
1), where π=+ for even-spin and π=- for odd-

spin yrast states, serves as evidence of phase transitions from non-octupole to octupole deformation and 

octupole vibrations, particularly for shallow β3 potentials. If an alternating-parity rotational band is 

formed, the energy ratio would depend quadratically on J. However, if the even-spin and odd-spin yrast 

states constitute a separate rotational band built on the octupole vibration, the ratio is expected to exhibit 

a pronounced odd-even-spin staggering. In Fig. 4, the ratios E(Jπ)/E(2+
1) for both positive- and negative-

parity yrast states of 282-296Cm, 284-298Cf, 286-300Fm and 288-302No are displayed as functions of the angular 

momentum J. Notably, the odd-even staggering is negligible for N<190 in all isotopic chains, with the 

π=+ and π=- states lying close in energy, indicating they merge into a single band. The staggering 

becomes more pronounced starting at N=192, suggesting the onset of octupole vibrations, where the 

negative-parity band is a separate rotational band built on the octupole bandhead. For isotopes with 

N=186-190 close to the neutron shell closure at N=184, the equidistant energy levels signify a 

quadrupole vibrational structure with E(4+
1)/E(2+

1) ~ 2. On the other hand, for heavier nuclei with 

N>194, the behavior is of rotational type L(L+1) with E(4+
1)/E(2+

1) ~ 3.33. Specifically, for 288Cm192, 

the E(4+
1)/E(2+

1) ratio is approximately 2.7, close to the value 2.71 predicted by the X(4) model [36], 

suggesting a critical point of a quadrupole phase transition between spherical and quadrupole-deformed 

prolate shapes. Any discrepancy could be attributed to missing triaxial correlations in the QOCH. These 

results signify shape phase transitions from non-octupole to stable octupole deformations and to 

octupole vibrations as a function of the control parameter –the neutron number. The energy ratio 

E(Jπ)/E(2+
1) can be considered as an order parameter for the octupole shape transition. 

CONCLUSIONS 

The covariant density functional framework has been applied to study the phenomena of shape 

phase transitions and shape coexistence in neutron rich actinides and neutron deficient mercury 

isotopes.  

In the case of neutron deficient even-even Hg isotopes the self-consistent mean field calculations 

suggest configuration mixing and shape coexistence already at the mean field level. This can be further 

supported by extending the analysis beyond the mean field, employing a quadrupole collective 

Hamiltonian. The systematics of the low-lying energy levels of the excited states exhibit a parabolic 

trend for isotopes with 178<A<190, reaching a minimum at 182Hg (N=102). Additionally, the levels of 

the excited band are nearly degenerate with the levels of the ground state but with two units of angular 

momentum higher. Specifically, pairs such as 4+
1/2

+
2, 6

+
1/4

+
2, 8

+
1/6

+
2 have identical energy values. These 

features are characteristic and align with experimental observations in isotopes of Hg and Pb, where 

shape coexistence is a well-established phenomenon. 

In the neutron-rich actinides, specifically Cm, Cf, Fm, and No with neutron numbers 186<N<200, 

results obtained using the relativistic Hartree-Bogoliubov model and a collective quadrupole-octupole 

Hamiltonian indicate phase transitions from non-octupole to octupole deformed shapes and to octupole 

vibrations. Critical points for these transitions are identified at neutron numbers N=192 and N=196, 

respectively. Within the isotopic chain of Cm, the calculations suggest the onset of a double phase 

transition from spherical to quadrupole-deformed and from non-octupole to octupole-deformed shapes. 

Notably, 288Cm is identified as being closest to the critical point. The neutron-rich actinides under 

consideration exhibit a complex structure with octupole and triaxially deformed shapes. A more 

comprehensive description of their properties would necessitate model extensions capable of handling 

the reflection asymmetric degree of freedom and triaxial deformation simultaneously. Experimental 

studies in this region would be crucial in identifying any deficiencies in the model, such as missing 

degrees of freedom or shortcomings in describing underlying shell structures and pairing correlations. 
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