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___________________________________________________________________________ 

Abstract We consider a quarkyonic matter model in which, for large values of density and Fermi 

energies, we assume particles as quasiparticles where the low Fermi momentum states are occupied by 

quarks and the higher states in phase space are occupied by baryons. This idea has the aim to explain with 

a consistent way the phase transition in the interior of a neutron star or a hybrid star and to provide an 

equation of state which can produce neutron stars with masses greater than 2Msun without violating causality. 

At extremely high density, quarkyonic matter is inferred from the properties of QCD when Nc is large and 

is a qualitative way to describe the particles in the momentum space. This state of matter can provide the 

sound velocity as a non-monotonic function of the baryon density which for higher values of density tends 

asymptotically to the conformal limit 1/√3. 

Keywords Quarkyonic matter, neutron stars, phase transition, equation of state, sound velocity 

___________________________________________________________________________ 

INTRODUCTION 

Recent gravitational wave, radio and X-ray detection from neutron stars and merging binary neutron 

star systems gave us some interesting insights about the structure of dense matter. The observation of 

neutron stars (NS) with masses greater than two-Solar masses shows that the pressure inside the inner 

core of a neutron star should be large. Also, gravitational wave detection placed an upper limit in radii 

of a NS, to not exceed the value of R=13.5 km [1,2]. So, we seek an equation of state to provide the 

sound velocity that increases rapidly as a function of the density. If we consider asymptotic freedom for 

large energy values, we expect to have a phase transition inside the inner core of a NS, from hadrons to 

quarks. The quarkyonic matter model is a theory candidate to describe with a consistent way this 

transition from hadronic to quark matter. It is not based on the QCD Lagrangian but it implements some 

features of QCD when Nc is large [3-5]. In this quarkyonic model, we consider that quarks form a Fermi 

sphere in the momentum space from zero momentum up to a fermi momentum kFQ and baryons occupy 

higher momentum states and form a thin Fermi shell with a width of Δ. This idea can be illustrated in 

Fig. 1 [1]. 

 

Figure 1. The phase space in the quarkyonic model 
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In the left-hand side of Fig. 1 we can see schematically the occupation of the states in momentum 

space and in the right panel we can see the energy and distribution functions, for quarks and baryons 

respectively, as a function of momentum. We assume that Chiral symmetry remains broken in our model 

so quark masses are obtained as mQ = mN/Nc, where Nc is the number of colors. For the thickness of the 

Fermi shell where nucleons reside, we impose the following relation [1,2], 

 
Δ =

Λ𝑄𝑦𝑐
3

ℏ3𝑐3𝑘𝐹𝑁
2 + 𝜅𝑄𝑦𝑐

Λ𝑄𝑦𝑐
ℏ𝑐𝑁𝑐2

 
(1) 

 

where ΛQyc and κQyc are parameters with values ΛQyc ≈ ΛQCD ≈ 200-300 MeV and κQyc ≈ 0.2-0.3. The 

number density for quarks and nucleons will be 

 

𝑛𝑄 =
𝑔𝑠𝑁𝐶
2𝜋2

∑ ∫ 𝑘2𝑑𝑘

𝑘𝐹𝑄

0𝑄=𝑢,𝑑

 (2) 

 

𝑛𝑄 =
𝑔𝑠𝑁𝐶
2𝜋2

∑ ∫ 𝑘2𝑑𝑘

𝑘𝐹𝑁

𝑘𝐹𝑁−Δ
𝑁=𝑝,𝑛

 (3) 

The energy density will be in the form 

 

𝜖𝑄 =
𝑔𝑠𝑁𝐶
2𝜋2

∑ ∫ 𝑘2√(ℎ𝑐𝑘)2 +𝑚𝑄
2 𝑐4𝑑𝑘

𝑘𝐹𝑄

0𝑄=𝑢,𝑑

 (4) 

 

𝜖𝑁 =
𝑔𝑠
2𝜋2

∑ ∫ 𝑘2√(ℎ𝑐𝑘)2 +𝑚𝑄
2 𝑐4𝑑𝑘

𝑘𝐹𝑁

𝑘𝐹𝑁−Δ
𝑁=𝑝,𝑛

+𝑉(𝑛𝑁) (5) 

for quarks and for nucleons respectively. Initially, we consider that quarks are non-interacting and 

nucleons interact via a potential that depends on the number density. The chemical potentials and 

pressure are obtained from the thermodynamic relations, 

 
𝜇𝑖 =

𝜕𝜖𝑖
𝜕𝑛𝑖

 (6) 

 𝑃 = −𝜖 +∑𝜇𝑖𝑛𝑖
𝑖

 (7) 

THE NDU QUARQYONIC MODEL 

We start the study of quarkyonic matter with a simple model that consists of neutrons, up and down 

quarks. We ignore protons because all insights show that the proton fraction is very small inside a 

neutron star. We assume that the Fermi momentum for down quarks is kFd = (kFn - Δ)/3 and kFd = 21/3kFu 

to impose charge neutrality. Also, we set the number of colors and the spin degeneracy to be equal to 

Nc = 3 and gs = 2. The number density for quarks and neutrons will become, 

 
𝑛𝑄 = 𝑛𝑢 + 𝑛𝑑 =

1

𝜋2
(𝑘𝐹𝑢

3 + 𝑘𝐹𝑑
3 ) (8) 

 
𝑛𝑛 =

1

3𝜋2
(𝑘𝐹𝑛

3 − (𝑘𝐹𝑛 − Δ)
3
) (9) 

so the total baryon density will be, 
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𝑛𝐵 = 𝑛𝑛 +

(𝑛𝑢 + 𝑛𝑑)

3
=

1

3𝜋2
(𝑘𝐹𝑛

3 − (𝑘𝐹𝑛 − Δ)
3
+ 𝑘𝐹𝑢

3 + 𝑘𝐹𝑑
3 ) (10) 

 
The total energy density of quarkyonic matter is 

 
 

𝜖𝑡𝑜𝑡 = 𝜖𝑛 + 𝜖𝑄 =
𝑔𝑠
2𝜋2

∫ 𝑘2√(ℎ𝑐𝑘)2 +𝑚𝑛
2𝑐4𝑑𝑘

𝑘𝐹𝑁

𝑘𝐹𝑁−Δ

+𝑉(𝑛𝑛)

+ ∑
𝑔𝑠𝑁𝑐
2𝜋2

∫ 𝑘2√(ℎ𝑐𝑘)2 +𝑚𝑄
2𝑐4𝑑𝑘

𝑘𝐹𝑖

0𝑖=𝑢,𝑑

 

(11) 

 

where we assume a potential energy which depends only on the neutron number density. The potential 

energy for this model is in the form, 
 

𝑉(𝑛𝑛) = 𝛼𝑛𝑛 (
𝑛𝑛
𝑛0
) + 𝑏𝑛𝑛 (

𝑛𝑛
𝑛0
)
2

 (12) 

 
where n0=0.16 fm-3 is the saturation density and for the coefficients we set α=-28.8 MeV 

and b=10 MeV. We also set ΛQyc = 380 MeV and κQyc = 0.3 and we extract the equation of state and the 

sound velocity. 

The sound velocity can be derived from the following relation, 
 𝑐𝑠

2

𝑐2
=
𝜕𝑃

𝜕𝜖
 (13) 

 

After these calculations we extracted the quarkyonic matter equation of state for this simple potential 

and the sound velocity. We plot the Pressure versus the total energy density and the sound velocity as a 

function of the baryon density. We did so for a pure neutron model (consists only of neutrons) to 

compare it with the quarkyonic one and the results are illustrated in the following figures. 

 

 

 
Figure 2. The total pressure versus the energy 

density 

 

 
Figure 3. The sound speed as a function of 

baryon density

In Fig. 2 we can see the equation of state for quarkyonic matter (blue line) compared with a pure 

neutron model (orange line). In Fig. 3 we see the sound velocity for these two models (blue line 

corresponds to quarkyonic matter and the orange line to pure neutron matter). 
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THE NDU QUARKYONIC MODEL WITH MOMENTUM DEPENDENT 

INTERACTION 
 

In the second model we assume the same quarkyonic state of matter including neutrons, up and 

down quarks but now we consider that both neutrons and quarks interact via a momentum dependent 

interaction (MDI) [6-8]. We introduce a potential in which the first terms depend on the baryon density 

and the last one has a momentum dependence and has been inserted to include finite range forces and 

short range repulsion. The potential energy we impose is in the form 

 

𝑉𝑖𝑛𝑡(𝑛𝑛, 𝑘𝐹𝑛) =
1

3
𝐴𝑛0(1 + 𝑥0)𝑢

2 +

2
3𝐵𝑛0

(1 − 𝑥3)𝑢
𝜎+1

1 +
2
3𝐵

′𝑛0(1 − 𝑥3)𝑢𝜎−1

+ 𝑢 ∑
1

5
[6𝐶𝑖 − 8𝑍𝑖]ℑ𝑛

𝑖

𝑖=1,2

 

(14) 

where u = nn/n0 and 
 

ℑ𝑛 =
2

(2𝜋)3
∫𝑑3𝑘 𝑔(𝑛, Λ𝑖)𝑓𝜏 

=
2

(2𝜋)3
∫ 4𝜋 [1 + (

𝑘

Λ𝑖
)
2

]

−1

𝑘2𝑑𝑘

𝑘𝐹𝑛

𝑘𝐹𝑛−Δ

 

(15) 

 

is the finite range forces term for neutrons and 
 

ℑ𝑄 =
2

(2𝜋)3
∫𝑑3𝑘 𝑔(𝑛, Λ𝑖)𝑓𝜏 

=
2

(2𝜋)3
∫ 4𝜋 [1 + (

𝑘

Λ𝑖
)
2

]

−1

𝑘2𝑑𝑘

𝑘𝐹𝑄

0

 

(16) 

 

for quarks, respectively. kFQ becomes kFu for up quarks and kFd for down quarks, respectively. The first 

two terms in Eqn. 14 are both momentum-independent. The first one corresponds to an attractive 

interaction, while the second term express a repulsive force and is dominant at high densities (n>0.6 

fm-3). The last one concerns to the momentum dependent part of the potential and corresponds to an 

attractive interaction. The total energy density now will be in the form, 

 

𝜖𝑡𝑜𝑡 = 𝜖𝑛 + 𝜖𝑄 =
𝑔𝑠
2𝜋2

∫ 𝑘2√(ℎ𝑐𝑘)2 +𝑚𝑛
2𝑐4𝑑𝑘

𝑘𝐹𝑁

𝑘𝐹𝑁−Δ

+𝑉𝑖𝑛𝑡(𝑛𝑛, 𝑘𝐹𝑛)

+ ∑
𝑔𝑠𝑁𝑐
2𝜋2

∫ 𝑘2√(ℎ𝑐𝑘)2 +𝑚𝑄
2 𝑐4𝑑𝑘

𝑘𝐹𝑖

0𝑖=𝑢,𝑑

+ 𝑉𝑖𝑛𝑡(𝑛𝑖, 𝑘𝐹𝑖) 

(17) 

 

as in the previous model with the difference that in this case, we impose interactions also for quarks and 

the potential energy is given by Eqns. 14-16. For this potential we set up the parameters as: 

Λ1=1.5kF0, Λ2=3kFo, A=-46.65 MeV, B=39.45 MeV, B'=0.3 MeV, σ=1.663 MeV, C1=-83.84 MeV, C2=23 

MeV, χ0=1.654 MeV, χ3=-1.112 MeV, Z1=3.81 MeV, Z2=13.16 MeV, ΛQyc=220 MeV, κQyc=0.3.  

After that, we calculate again the total pressure and the sound velocity as before and we extract the 

following diagrams (Figs. 4 and 5). 

In Fig. 4 we can see the equation of state (pressure versus energy density) for quarkyonic matter 

(blue line) and for pure neutron matter (orange line), both for the momentum dependent interaction. In 

Fig. 5 we see the sound velocity as a function of the baryon density for the quarkyonic matter (blue line) 

and for pure neutron matter (orange line) both for the same momentum dependent interaction (MDI). 
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Figure 4. The total Pressure versus the energy 

density 

 

Figure 5. The sound speed as a function of 

baryon density 

 

APPLICATIONS IN NEUTRON STARS -TOLMAN-OPPENHEIMER-VOLKOFF 

EQUATIONS 
 

After the construction of equations of state for pure neutron and quarkyonic matter, we apply them 

in Einstein equations, for a static, spherically symmetric neutron star. This system of equations is the so 

called Tolman-Oppenheimer-Volkoff equations (TOV) which are in the following form, 

 𝑑𝑚(𝑟)

𝑑𝑟
= 4𝜋𝑟2𝜌(𝑟)  

 𝑑𝑃(𝑟)

𝑑𝑟
= 𝜌(𝑟)𝑐2 (1 +

𝑃(𝑟)

𝜌(𝑟)𝑐2
)
𝑑𝜙(𝑟)

𝑑𝑟
 (18) 

 𝑑𝜙(𝑟)

𝑑𝑟
=
𝐺𝑚(𝑟)

𝑐2𝑟2
(1 +

4𝑃(𝑟)𝑟3

𝑚(𝑟)𝑐2
)(1 −

2𝐺𝑚(𝑟)

𝑟𝑐2
)

−1

  

 

where G is the gravitational constant, c is the speed of light, P(r) is the total pressure, m(r) is the enclosed 

mass of the star, ρ(r) is the total mass density, and φ(r) is the gravitational field. We solve TOV equations 

numerically together with the equation of state and we get values for the mass and the radius of a neutron 

star for a central pressure. Then we repeat this process for several values of the central pressure, and we 

get the mass-radius diagram for each equation of state we constructed. In Figs. 6 and 7 we present our 

results. 

 

  
 

Figure 6. Mass-Radius diagram for QM and PNM 

 

 

Figure 7. Mass-Radius diagrams. QM versus 

PNM for the MDI model 
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In Fig. 6 we see the mass-radius diagram for the quarkyonic matter (QM) (blue line) versus the 

pure neutron matter (PNM) (orange line) for the density dependent potential (Eqn.12). In the Fig. 7 we 

see the mass-radius diagram for the quarkyonic matter (blue line) and for the pure neutron matter 

(orange line) interacting via a momentum dependent potential (Eqn. 14). 

 

RESULTS AND DISCUSSION 
 

After this initial effort we can note some interesting features of quarkyonic matter. First of all, 

quarkyonic matter provides the sound speed as a non-monotonic function of the baryon density. We 

obtain a rapid increase up to a maximum value, without exceeding the speed of light, after it decreases 

and eventually it is reaching asymptotically the value 1/√3 which is the conformal limit. In the first 

model the transition from neutrons to quarks occurs around a baryon density nB=0.24 fm-3 and the sound 

speed has a maximum value about 0.9c. In the momentum dependent quarkyonic model the phase 

transition occurs around a baryon density nB=0.2 fm-3 and the sound speed reaches a maximum value 

about 0.96c. Quarkyonic matter can predict more massive neutron stars (about 2.5-2.8 Solar masses), 

without violating the causality in contrast with pure hadronic matter models which violate causality and 

can’t provide neutron stars with masses greater than 2.2Msun. Also, we can see from M-R diagrams that 

this state of matter predicts slightly greater values for the radius of a neutron star for the same masses. 

If we compare the quarkyonic matter model with the potential given by Eqn.12 and the quarkyonic 

matter model interacting via the momentum dependent interaction, we can see that in the second one, 

quarks appear at lower densities and also this equation of state gives greater masses for a neutron star. 

Ιt is important to note that for the momentum dependent interaction model, the sound speed does not 

exceed the speed of light neither in the pure neutron matter case. This will be a very interesting feature 

for the study of nuclear matter and condensed matter physics, as in the study of the structure of a neutron 

star. 

 

CONCLUSIONS 
 

We study quarkyonic matter, a hybrid state of matter in which we consider that quarks are 

deconfined for low momentum states and form a fermi sphere in the momentum space. For higher 

values of momentum, quarks are confined into baryons and form a fermi shell which surrounds the 

quarks fermi sphere. We believe that this state of matter exists at densities close to that of nuclear matter 

and at high fermi energies. We construct equations of state for a simple model which includes only 

neutrons, up and down quarks for two different potentials and we compare them with pure neutron 

matter equations of state. We extract some interesting results which shows the advantages of this theory. 

This theory is very recent and there are a lot of open questions about it, but also has many perspectives 

and applications in several theoretical physics fields. In future work we have to extend our model to 

include protons and electrons to impose β-equilibrium and to apply quarkyonic matter in finite 

temperature neutron stars. Also, we must investigate if there is any fundamental theory which can 

provide this state of matter [9-11]. We expect that future gravitational wave detections from binary 

neutron star systems will lead us to constrain further some of the microscopic parameters of our model, 

so that to test and to improve our equations of state. 
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