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Microscopic analysis of octupole shape phase transitions and
critical points in neutron rich actinides

. *
Vaia Prassa

Department of Physics, Faculty of Science, University of Thessaly, 3* Km Old National Road Lamia -Athens,
Lamia, 35100, Greece

Abstract Octupole constrained energy surfaces and spectroscopic observables of four isotopic chains
of: Cm, Cf, Fm and No with neutron numbers 186 <N<200 are analysed using a collective quadrupole -
octupole Hamiltonian (QOCH). The parameters of the Hamiltonian are determined by axially reflection-
asymmetric relativistic Hartree-Bogoliubov calculations based on the energy density functional DD-PC1,
and a finite-range pairing interaction. The theoretical results suggest quantum phase transitions from non-
octupole to octupole deformed shapes and to octupole vibrations with increasing neutron number. 2*Cm
is possibly close to the critical point of a simultaneous phase transition from spherical to prolate deformed
and from non-octupole to stable octupole deformed configurations.

Keywords Relativistic density functionals, quadrupole-octupole collective Hamiltonian, octupole
shapes, phase transitions

INTRODUCTION

The nuclear shape is one of the most extensively explored properties of atomic nuclei in low-energy
nuclear physics, both experimentally and theoretically. The atomic nucleus is a many-body quantum
system, and as such, the spontaneous symmetry breaking will cause the shape to be distorted from
spherical and the nucleus to be deformed. The simplest shape distortion is quadrupole deformation with
axial and reflection symmetry. Less often, nuclei are characterized by octupole “pear-like” shapes
(stable or dynamical) due to spontaneous breaking of their intrinsic reflection symmetry. Reflection-
asymmetric shapes in nuclei are due to the long-range octupole-octupole correlations that depend on
the coupling of orbitals with A j = A 1= 13 in the vicinity of the Fermi surface [1]. Regions of the nuclear
chart that this condition is fulfilled are for proton Z and neutron numbers N close to 34, 56, 88, and 134
[1-4].

In the case of actinides (Z ~ 96 and N ~ 196), the coupling of the neutron orbitals h11/2 and k17/2,
and that of the proton single-particle states £7/2 and 113/2, can lead to octupole deformations. Stable
octupole deformation is characterized by the formation of the so called “octupole band” consisting of
level sequences with alternating parities and enhanced electric dipole and octupole transitions. In the
case of octupole vibrations, the negative-parity levels are systematically at higher energy than the ones
in the y-rast configuration, forming a seperate collective band. In some regions of the nuclear chart,
the evolution of the equilibrium shapes with the variation of nucleon number can be sudden and
phenomena such as shape coexistence and quantum phase transitions may occur. Thorough theoretical
and experimental efforts were performed investigating the phenomena of phase transitions in even-even
nuclei near shell closures. Most of them focus on transitions between quadrupole collective degrees of
freedom and only recently transitions from stable to dynamical octupole shapes have been considered.
Nuclear structure models that have been used in theoretical studies of this type of transitions are
algebraic (interacting boson) models (see for example in [6-8]), phenomenological collective models
(see for example in [9-15]), cluster models (see for example [16-18]) and self-consistent mean-field
models (see for example [19-26]).
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A systematic search for axial octupole deformation in the region of actinides and superheavy nuclei
with proton numbers Z = 88-126 and neutron numbers from the two-proton drip line up to N = 210
within the covariant density functional theory (DFT) was performed in [24]. The existence of a region
of octupole deformed nuclei around Z ~ 96 and N ~ 196 was confirmed in this study, in agreement with
other studies in this region, based on the Skyrme DFT [27] and microscopic - macroscopic [28]
calculations. In Ref. [25] reflection-asymmetric relativistic mean-field plus BCS (RMF+BCS) model,
with the effective interaction in the particle-hole channel defined by the relativistic density functional
PC-PK1 and an EDF-based quadrupole-octupole collective Hamiltonian was applied in a systematic
analysis of octupole phase transition in eight neutron-rich isotopic chains - Ra, Th, U, Pu, Cm, Cf, Fm,
and No.

In this work the axially reflection-asymmetric implementation of the relativistic Hartree-
Bogoliubov (RHB) model [21, 23, 25], and the quadrupole-octupole collective Hamiltonian [21,23,31]
constructed to calculate the excitation spectra and observables that can be related to quantum order
parameters, are used. Shape phase transitions and critical points in the octupole deformed neutron-rich
actinides: Cm, Cf, Fm and No are analysed and a microscopic realization of a QPT from non-octupole
to stable octupole deformation and to octupole vibrations is presented. Calculations shown here have
been partially presented in [41].

POTENTIAL ENERGY SURFACES AND SPECTROSCOPIC PROPERTIES

The RHB model provides a unified description of particle-hole (ph) and particle-particle (pp)
correlations on a mean-field level. In the present analysis, the mean-field potential is determined by the
relativistic density functional DD-PC1 [29] in the ph channel, and a separable pairing force [30] is used
in the pp channel. The DD-PC1 functional has been successfully applied to various properties of finite
nuclei, such as the phenomena of quantum phase transitions [32-34] and shape coexistence [35,36].

Already at the mean-field level, the RHB model predicts a very interesting structural evolution
with transitions from non-octupole to pronounced octupole deformations and to shallow 3 potentials
(Fig. 1). In the case of ***Cm, the potential energy surface (PES) is softer, with the energy minimum at
(B2, B3)~(0,0). With the increase of neutron number, more pronounced quadrupole and octupole
deformations develop. For ***Cm with N=192, the energy minimum is found in the non-zero octupole
deformation region, located at (B2, B3)~(0.09, 0.14). The potential becomes more rigid in B, and softer
in 3. The maximum gain in binding energy due to octupole deformation [AEc=E°'(B2, PB3)-
E®2d(B°,,8°3=0), cf. Ref. [22,24] is found in ?*>Cm at neutron number N=196.

To quantitatively study shape transitions and critical point phenomena, one must go beyond a
simple Kohn-Sham approximation and take into account the restoration of broken symmetries at the
mean-field level, and fluctuations in the collective coordinates. Spectroscopic properties relevant for
the characterization of shape transitions are investigated using a quadrupole-octupole collective
Hamiltonian that is a gamma rigid axially symmetric version of the general quadrupole-octupole Bohr
Hamiltonian. The constrained self-consistent solutions of the relativistic Hartree-Bogoliubov equations
at each point on the energy surface determine the mass parameters Boa, B23, B33, the three moments of
inertia Iy, and the zero-point energy corrections as functions of the deformation parameters 3, and [3;.
The moments of inertia are calculated according to the Inglis-Belyaev formula [37,38] and the mass
parameters are calculated in the perturbative cranking approximation [23,39]. The collective potential
is obtained by subtracting the zero-point energy corrections [39] from the total energy that corresponds
to the solution of self-consistent mean field (SCMF) calculations. The diagonalization of the resulting
Hamiltonian yields the low-energy excitation spectrum, collective wavefunctions, and reduced
transitions probabilities of even-even nuclei.

Figures 2 and 3 display the systematics of the low-energy excitation spectra of the positive-parity
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band (K™= 0";) and the lowest negative-parity band (K™ = 07), respectively, in the isotopic chains of
Cm, Cf, Fm and No.
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Figure 1. Microscopic DD-PC1 self-consistent relativistic Hartree-Bogoliubov axially symmetric energy surfaces

of the nuclei **2°Cm in the (B3, f3)-plane. The contours join points on the surface with the same energy and the
separation between neighboring contours is 0.5 MeV.

As shown in Fig. 2, the excitation energies of the © = + even-spin states in the ground state band
decrease with neutron number. The energy levels of isotopes with N=186-190 that are close to the
neutron shell closure at N=184 are equidistant, indicating a quadrupole vibrational structure with
E(4"1)/E(2"1) ~ 2, whereas for heavier nuclei with N>194, it is of rotational type L(L+1) with
E(4"1)/E(2"1) ~ 3.33. For all isotopes, the calculated excitation energies exhibit a pronounced decrease
from N=190 to N=192, indicating the onset of increased quadrupole deformation. In the case of
28Cmyog,, the E(4%1)/E(2")) ratio is equal to 2.7 which is close to the value 2.71 predicted by the X(4)
model introduced in Ref. [40], indicating a critical point of a quadrupole phase transition between
spherical and quadrupole-deformed prolate shapes. The discrepancy could be due to missing triaxial
correlations in the QOCH.

The calculated spectra of the m = - odd-spin states as functions of N are shown in Fig. 3. Similarly
to the positive-parity ground state energies [cf. Fig. 2] the calculated energy levels in the negative-parity
band exhibit a sudden drop from N=190 to N=192, whereas for N=192-196 a weak dependence on
neutron number is observed. A local minimum in the excitation spectra is observed in all isotopic chains
that in Cm, Cf and Fm occurs at N ~ 196, while in No at N~ 192, Starting from N=198 (N=194 in No),
the energies of the 7 = - odd-spin states systematically increase and the band becomes more compressed.
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The results signify shape phase transitions from non-octupole to stable octupole deformations and to
octupole vibrations as a function of the control parameter - the neutron number.

The relevant calculations using the quadrupole-octupole collective Hamiltonian based on the
constrained self-consistent RMF+BCS solutions with the functional PC-PK1 and a 6-force pairing
predict the minimum at neutron number N ~ 198 [25]. The discrepancies between the two theoretical
results could be attributed to differences in the underlying shell structure and/or the different pairing
strength in the two models.
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Figure 2. (Color online) Isotopic dependence of the excitation energies of levels of the positive-parity ground-
state band K™ = 07 for (a) 9sCm, (b) 9sCf. (c) 100Fm, and (d) 102No.
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Figure 3. (Color online) Isotopic dependence of the excitation energies of levels of the negative-parity ground-
state band K* = 0| for (a) ¢sCm, (b) 95Cf, (c) 100Fm, and (d) 102No.

Further evidence of the phase transitions from non-octupole to octupole deformation and octupole
vibrations for shallow 3 potentials is provided by the odd-even staggering in the energy ratio
E(J™/E(2*)) with T = + for even-spin and n = - for odd-spin yrast states. In the case of an alternating-
parity rotational band, the energy ratio would depend quadratically on J. If the even-spin and odd-spin
yrast states form a separate rotational band built on the octupole vibration, the ratio is expected to show
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a pronounced odd-even-spin staggering. Figure 4 displays the ratios E(J*)/E(2"1) for both positive- and
negative-parity yrast states of 282°6Cm, 2842%8Cf, 28¢3%Fm and 2*%3%2No as functions of the angular
momentum J. One can see that in all isotopic chains the odd-even staggering is negligible for N < 190,
with the =+ and n=- states lying close in energy meaning they merge into a single band. The staggering
only becomes more pronounced starting at N = 192, indicating the onset of octupole vibrations that is
the negative-parity band is a seperate rotational band built on the octupole bandhead. The energy ratio
E(J®)/E(2")) for n=- (odd-spin) states could be considered as an order parameter for the octupole shape
transition.

A raise of the B(E3; 371 = 0")) transition rates is connected with increased octupole collectivity
and is expected to be larger in octupole deformed nuclei. The isotopic dependence B(E3; 371 = 07))
reduced transition probabilities (in units W.u.) are shown in Fig. 5 for the isotopes of Cm, Cf, Fm and
No. The theoretical values are obtained using the collective wave functions of K*= 0" and K™= 0" states
from the QOCH calculation. The large B(E3) values, shown in Fig.5, in all four isotopes with N >192
indicate an enhanced octupole collectivity that is consistent with the emergence of octupole deformation
at these neutron numbers in .- B3 energy surfaces [cf. Fig. 1]. In Cm, Cf and Fm isotopes, the higher
B(E3) values occur between N=194 and N=198 and in No at N=192 in consistency with the systematics
of the calculated energy levels in the negative-parity band.
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Figure 4. (Color online) Theoretical energy ratios E(JY)/E(2"1) of the yrast states of (a) ssCm, (b) 9sCf, (c)
100Fm, and (d) 192No, including both positive (J even) and negative (J odd) parity, as functions of J.
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Figure 5. (Color online) Evolution of B(E3; 31 2 07;) values (in W.u. units) as functions of the neutron

number in Cm, Cf, Fm and No isotopes.
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CONCLUSIONS

Octupole collectivity and critical points of four isotopic chains of: Cm, Cf, Fm and No with neutron
numbers 186<N<200 have been investigated within the microscopic framework of nuclear DFT.
Deformation constrained SCMF calculations have been performed with the relativistic Hartree-
Bogoliubov method based on the universal energy density functional DD-PC1 and a separable pairing
interaction. At the mean field level, the constrained B,- B3 energy surfaces suggest phase transitions
from non-octupole to octupole deformed shapes and to octupole vibrations with the critical points at
neutron numbers at N=192 and N=196, respectively.

A collective quadrupole-octupole Hamiltonian with parameters determined by self-consistent
mean-field calculations has been used to calculate the low-energy spectra of even-even isotopes. The
energy levels of the positive-parity ground-state band of the isotopes under consideration exhibit a
decrease with neutron number, manifesting a strunctural change from spherical vibrators to quadrupole
deformed rotors. The states in the lowest negative-parity band display a parabolic dependence with
increasing neutron number with the deepest minima at N~ 196 in Cm, Cf, and Fm and N=192 in No
that correspond to stable octupole deformations. The odd-even staggering, the probability density
distributions for the ground states 0", and the 17 states and the calculated B(E3) reduced transition
probabilities confirm the structural change from spherical vibrators to deformed rotors and from
octupole deformated configurations to octupole vibrators with increasing neutron number.

In the isotopic chain of Cm, the calculations signify the onset of a double phase transition from
spherical to quadrupole-deformed and from non-octupole to octupole-deformed shapes, with 2Cm
being closest to the critical point. The neutron-rich actinides considered here appear to have a complex
structure with octupole and triaxially deformed shapes. A more complete description of their properties
would require extensions of the model in such a way that it simultaneously handles the reflection
asymmetric degree of freedom and the triaxial deformation. Experimental studies in this region would
help identify any deficiencies of the model, i.e. missing degrees of freedom, description of the
underlying shell structure and/or pairing correlations.
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