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Universal relations and finite temperature neutron stars

P. Laskos-Patkos”, P.S. Koliogiannis, A. Kanakis-Pegios, Ch. C. Moustakidis

Department of Theoretical Physics, Aristotle University of Thessaloniki, Greece

Abstract In the past few years, a lot of studies have been devoted to the discovery of universal
relations (equation of state independent relations). The significance of such expressions can be understood
if we consider that they offer the opportunity for testing general relativity in a way that is independent of
the nuclear equation of state and they also allow us to impose constraints on the structure of neutron stars.
The aim of this work is twofold. Firstly, we wish to clarify if hot equations of state are able to reproduce
established universal relations. Secondly, we investigate a possible universal connection between the
binding energy and the dimensionless tidal deformability of a neutron star. These two bulk properties are
associated with two very important candidates for multimessenger signals, binary neutron star mergers and
supernova explosions. We find that the predictions of hot equations of state do not agree with the
predictions of accepted universal relations. Subsequently, the use of universal relations, when thermal
effects are present, may be erroneous. Additionally, we find that, for moderate neutron star masses, the
binding energy and the dimensionless tidal deformability of a neutron star satisfy a universal relation. The
latter allows us to impose constraints on the binding energy of 1.4 Mg, neutron star, using information
from the analysis of the GW170817 event. Finally, we are able to present a universal relation between the
compactness, the binding energy and the dimensionless tidal deformability, which is independent of the
employed equation of state for zero and finite temperature.

Keywords hot nuclear matter, neutron stars, universal relations

INTRODUCTION

Old isolated neutron stars are considered to be cold. That means that the thermal energy of the system
is very small compared to the Fermi energy due to degeneracy. However, there are many astrophysical
phenomena, concerning neutron stars, where thermal effects may play an important role. For example,
protoneutron stars (remnants of supernova explosions) or binary neutron star (BNS) merger remnants
may be very hot, reaching temperatures of 30-100 MeV [1]. Additionally, the exact temperature range
for neutron stars during the inspiral phase of a BNS merger is not well-constrained [2-4]. In any case,
the new era of multimessenger astronomy demands precise computations concerning dense nuclear
matter at finite temperature.

In the past years, several studies investigated the existence of universal relations regarding properly
scaled neutron star properties [5-8]. Such empirical expressions are of most importance as they allow
us to impose constraints on neutron star structure and they provide the opportunity for testing general
theory of relativity in an EOS independent way [5, 9-10]. It is therefore crucial to establish whether
finite temperature EOSs are compatible with established and widely used universal relations (which
were derived using cold EOSs). Previous studies that have employed finite temperature EOSs in order
to investigate the origin of empirical relations, suggest that universality is about insensitivity to the EOS
and not to the thermodynamic conditions [11-14].

In a recent study, the authors reported a linear correlation between the dimensionless tidal
deformability of a 1.4 M, neutron star (A;4) and the binding energy E; of a specific mass
configuration [15]. We estimate that this connection rises from the fact that tidal deformalibity and
binding energy are associated via a universal relation. It is important to comment that the tidal
deformability and the binding energy can be well-measured in the cases of BNS mergers and supernova
explosions, respectively. Therefore, these two bulk neutron star properties are connected to two very
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promising candidates for future multimessenger detection.

In this work, we examine the agreement of hot EOSs with known universal relations and we also
investigate the possibility of a universal connection between the binding energy and the dimensionless
tidal deformability of a neutron star.

BINDING ENERGY

Binding energy is defined as the energy gain from the assembly of N nucleons in order to form a
stable star. This bulk neutron star property can be extracted from the observation of supernova neutrinos
[16]. The mathematical expression for the binding energy is given by [15-16]

E, = Nm,c? — Mc?, (1)
where m;, stands for the average mass of nucleons, c is the speed of light and M is the gravitational
mass of a star. There is a debate about which value of m,, is more appropriate. Several authors assume
that it corresponds to the mass of free nucleons. In the present work, the average baryon mass is
considered to be the mass of *°Fe/56 = 930.412 MeV/c? [15-16].

TIDAL DEFORMABILITY

Gravitational waves emitted during the inspiral phase of a BNS merger are an important source for
Earth based detectors [17-18]. Such observations may provide crucial information concering a bulk
neutron star property known as tidal deformability A [17-18]. This quanity is strongly dependent on the
structure of a neutron star and thus can be used in order to constrain the nuclear equation of state.

Tidal deformability is defined as the proportionality coefficient between the induced quadrapole
moment Q;; of a star and the tidal gravitational field of its companion E;; in a BNS system

Qij = —AEy;. (2)
The calculation of the tidal deformability requires the evaluation of the second tidal love number
k, and the radius R of the star. In particular,
2 R®
A=zke (3)
where G is the gravitational constant. For the determination of the second tidal love number one has to
solve a non-linear differential equation and TOV equations in a self-consistent way [17-18].
At this point, it is convenient to define the dimensionless tidal deformability A as
2 R°c* 2

— — -5

where C is the compactness of a star. It has to be noted that A follows a set of universal relations known

as [-Love-Q and Love-C relations [5-6]. The Love-C relation connects A and C and it can be used in
order to impose constraints on the radius of a neutron star by measuring its tidal deformability [9-10].
In the present work, Love-C relation is employed in order to test the behavior of hot EOSs concerning
universal relations.

RESCALED ENTROPY

One of the universal relations employed in this work was found in Ref. [8]. Alexander et al. showed
that if one scales the total entropy of a neutron star appropriately (rescaled entropy RE) there is universal
relation with the compactness [8]. The rescaled entropy can be evaluated from the right hand side of
the following equation
T'S 4w (R 1 2 c
eE = gt | (COugme i, ®)

where 7 is the radial distance from the center of the star, p and € are the pressure and the energy density
distributions and g;;, g+ correspond to the time and radial (diagonal) components of the metric tensor.

RE =
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S is the total entropy and T' is a scaled form of temperature which remains a constant inside a cold star
(for more details see Ref. [8]). Rescaled entropy exhibits an empirical relation with the compactness
for both isotropic and anisotropic neutron stars. In the later case the universal trend tends approximately
to the corresponding rescaled entropy value for a black hole [8].

RESULTS AND DISCUSSION

In order to compare established universal relations with the results from hot EOSs, we employed
a set of cold and hot EOSs. For information regarding the cold EOSs the reader is reffered to Refs. [19-
21] and references therein. For the construction of finite temperature EOSs, we employed the
MDI+APR1 model [1, 19]. The crust of cold and hot neutron stars was described via BPS [20] and
Lattimer-Swesty [21] EOSs, respectively. In Figures 1(a), (b) one can find the mass-radius dependence
for the EOSs employed in this work. As one can observe, the inclusion of temperature does not
signifficanly affect the maximum mass of a neutron star. In contrast, the radius appears to be very
sensitive to thermal effects [1, 24].
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Figure 1. Mass-Radius relations for (a) cold neutron stars, (b) hot neutron stars (MDI+APRI1 EOS).
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Figure 2. (a) Relation between the rescaled entropy and the compactness [8] for several cold and hot EOSs. The
solid line corresponds to the results for the Tolman VII analytical solution. (b) Relation between the dimensionless
tidal deformability and the compactness. The solid line corresponds to Love-C universal relation found in Ref.
[6]. In both panels the results denoted by circular, diamond and triangular points correspond to cold, isentropic
and isothermal EOSs, respectively.

Figure 2(a) depicts the dependence between the rescaled entropy and the compactness. The cold
EOSs in fact follow an accurate universal relation. As one can observe, in the case of adiabatic
(isentropic) EOSs, increasing the entropy per nucleon (Sj) leads to disagreement with the universal
trend. Aditionally, the predictions from hot EOSs gradually diverge from the empirical relation as the
lepton fraction (Y;) increases. In the scenario of isothermal EOSs, the results exhibit large differences
with the predictions of the universal relation.
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In the case of isentropic EOSs, we can theoretically prove (using the generalized condition for
thermal equilibrium in general relativity [24-25]) that the rescaled entropy is tighly connected to the
binding energy of a neutron star. Specifically, for constant entropy per nucleon, we can show that

E
RE = (1 + M_(I,jZ) e®®), (6)

where e®(®) = /1 — 2( is the star’s redshift [24]. Therefore, we expect that the evaluation of the right
hand side of Equation (6), for cold and hot isentropic EOSs, will produce the same results as in Figure
2(a). The latter leads to the conclusion that there is an approximate universal relation between the
binding energy (divided by the mass) and the compactness of a neutron star. A similar expression has
been suggested by Lattimer and Prakash [16]. We conclude that the relations found in Refs [8, 16] are
essentially the same. It is notable, that the right hand side of Equation (6), provides a properly scaled
version of the binding energy (rescaled binding energy) which is expected to satisfy a set of universal
relations (at least for cold EOSs) [24].

In Figure 2(b) one sees the universal relation between the dimensionless tidal deformability and
the compactness (Love-C relation) found by Masselli et al. [6] and its comparison with the results
derived using hot EOSs. As we have mentioned, this relation has been previously employed in order to
produce contraints on the radius of a neutron star [9-10]. The empirical relation is satisfied only in the
case where S, = 1 and Y; = 0.2. This reveals the need for narrowing down the range of possible
temperatures for a neutron star during the inspiral phase of BNS merger [4, 24].

Moving on to the second part of this study, we are going to investigate the existence of an
approximate universal relation that involves the binding energy and the dimensionless tidal
deformability. Figure 3(a) shows the results for the dependence between Ej, /M and A for cold and hot
EOSs. As one can observe, cold EOSs follow a specific trend which is quite accurate, at least for
moderate compact star masses (error less than 10%). Once again, the inclusion of temperature in our
calculations leads to large differences from the empirical relation. For the data from cold EOSs we

provide a fit of the following form
3

b _ > @ n HF, )

Mc?
k=0

where g = —0.08399,a; = 1.52078 a, = —2.91006 and a3 = 1.85495.

We need to comment that the observed neutron star masses usually lie in the range [1 Msun, Mmax].
Specifically, the lightest neutron star observed (up to the time that this reserach was conducted) had a
mass of 1.174 £ 0.004 Msu, [26]. In the afforementioned range, we can fit a simple linear expression to
the data from cold EOSs

Ep
MeZ - by + byIn A, (8)
where by = 0.22350 and b; = —0.02017. Figure 3(b) depicts the relation between the binding energy
and the dimensionless tidal deformability in the range [1 Mgun, Mmax]. The shaded area corresponds to
constraints on the tidal deformability of a 1.4 Mg from the GW170817 merger event [9]. These
constraints allow us to impose bounds on the binding energy of 1.4 Mg, neutron star (which can be
found in Table 1) [24].

Table 1. Constraints on the binding energy of a 1.4 M., neutron star using Equation (8) and the analysis of the
GW170817 event. The 1o error for the fit is included.
A E,/Mc? E, (10 erg)
70 0.1378 +3.1 x 1073 3.4489 + 0.0793
580 0.0952 +3.9x 1073 2.3814 + 0.0977
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At this point, we are going to examine the dependence between the rescaled binding energy and
the dimensionless tidal deformability. In Figure 4(a) one can observe this relation for cold and hot
EOSs. Wave found that cold EOSs satisfy a very accurate universal relation (max error for stable
configurations is less than 0.6%). Surprisingly, hot isentropic equations of state respect the
aforementioned universality (with the same accuracy). It is noteworthy that isothermal EOSs exhibit
large differences from the empirical trend but this is due to the fact that Equation (6) does not hold for
constant temperature neutron stars [24]. For the data from cold and hot isentropic EOSs, we provide a
fit of the following form

)

where ¢y = 0.66656,c; = 0.05855 ¢, = —0.00402 and c3 = 0.00010. Figure 4(b) depicts the same

dependence but only for 1.4 Mg, neutron stars and shows possible constraints on the rescaled binding
energy (using the GW170817 event [9]).
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Figure 3. (a) Relation between the binding energy and the dimensionless tidal deformability for cold and hot
EOSs. The solid line corresponds to the fit of Equation (7). The results denoted by circular and diamond points
correspond to cold and isentropic EOSs, respectively. In the bottom panel one can find the relative error for the
fit of Equation (7). (b) Relation between the binding energy and the dimensionless tidal deformability for cold
EOSs and neutron star masses in the range [1 Mgun,Muax]. The solid line corresponds to the fit of Equation (8).
The cross points correspond to 1.4 M, neutron star configurations. The shaded area corresponds to the

constraints on Ay 4 from the GW170817 event [9]. In the bottom panel one can find the relative error for the fit of
Equation (8).
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Figure 4. (a) Relation between the rescaled binding energy and the dimensionless tidal deformability for cold and
hot EOSs. The solid line corresponds to the fit of Equation (9). The results denoted by circular and diamond points
correspond to cold and isentropic EOSs, respectively. In the bottom panel one can find the relative error for the
fit of Equation (9). (b) Relation between the rescaled binding energy and the dimensionless tidal deformability for

cold and isentropic EOSs and 1.4 M., neutron stars. The shaded area corresponds to the constraints on A; 4 from
the GW170817 event [9].
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CONCLUSION

Considering the importance of universal relations, we investigated their agreement with the predictions
derived using finite temperature EOSs. We have found that hot EOSs do not always reproduce
established empirical formulas (by employing the rescaled entropy-compactness and the Love-C
relations). In addition, we examined the existence of a possible universal connection between the
binding energy and the dimensionless tidal deformability. We have found that the dependence between
Ep/M and A exhibits an approximate universal trend. The latter, provided the opportunity for
constraining the binding energy of a 1.4 Mg, neutron star using data from the analysis of the GW 170817
event. Additionaly, we discovered a new universal relation that involves the binding energy, the
dimensionless tidal deformability and the compactness of a neutron star. This new empirical relation
also holds for hot isentropic EOSs and its accuracy is remarkable as the maximum relative error is less
than 0.6% for stable configurations.
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