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___________________________________________________________________________ 

Abstract Since 2001, the neutron time-of-flight facility n_TOF at CERN has carried out a large 

number of cross section measurements of interest for several research fields, including Nuclear 

Astrophysics. The results of these measurements have improved our knowledge on the nucleosynthesis 

of chemical elements. Particularly relevant for the s-process, reported cross sections were used to 

constrain the Big Bang nucleosynthesis, to benchmark stellar models against nucleosynthesis in quiet and 

explosive scenarios, to interpret meteoritic abundances, as well as to study the neutron source reactions 

in Red Giant stars. After a brief description of the n_TOF facility and the related astrophysical program, 

the research activities about the 13C(,n)16O and 22Ne(,n)25Mg neutron source reactions are discussed. 

Keywords s-process, n_TOF, cross section 

___________________________________________________________________________ 

INTRODUCTION 

Neutron-induced reactions play a relevant role in understanding Big Bang and stellar nucleosynthesis. 

While BBN accounts for the formation of light elements up to 7Li, stellar nucleosynthesis is 

responsible for the formation of heavier elements. It is well-established [1, 2] that the production of 

elements heavier than iron (A>60) is based on (n,) reactions, and subsequent  decays. 

Approximately half of the elemental abundances beyond iron are produced by the s-process during 

quiet burning phases in Red Giants stars, the rest being produced by the r-process in stellar explosion 

events. 

 The s-process reaction flow proceeds via a sequence of radiative neutron captures and -decays 

from a distribution of seed nuclei around iron, thus building up elements from Fe to Bi. In particular, 

in the s-process nucleosynthesis (characterized by a low neutron density) -decay rates are faster than 

radiative neutron capture rates, and therefore the s-process path follows the valley of  stability on the 

chart of nuclei. 

In some cases, (n,p) and (n,) reactions are also important. In fact, these reactions on a few light 

elements (for instance, 14N, 25Mg, 26Al) can sizably modify the neutron distribution in the stellar 

interiors, thus affecting the efficiency of the s-process in synthesizing heavy elements. On the other 

hand, (n,p) and (n,) reactions are of some relevance in the modelling of Big Bang nucleosynthesis or 
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for the study of particular topics, as in the case of the stellar production of the 26Al gamma ray emitter 

observed in our galaxy. 

The experimental observable of interest to Big Bang and stellar nucleosynthesis is the neutron-

induced cross section averaged over the stellar neutron-energy distribution, typically referred to as 

Maxwellian averaged cross section (MACS). So far at n_TOF, MACS were determined via time-of-

flight (TOF). This technique is based on the measurement of energy-dependent cross sections over a 

wide energy region, and subsequent calculation of the MCAS at different temperatures, namely 

between kT=5 and 100 keV. In the last 20 years, the n_TOF collaboration has provided accurate 

nuclear data on a large number of intriguing physics cases (see for instance ref. [3] and references 

therein). In the near future, the effort will be on activation measurements as well. 

THE N_TOF FACILITY AT CERN 

The neutron time-of-flight facility n_TOF at CERN features two beam lines and corresponding 

experimental areas and an irradiation station, named EAR1, EAR2 and NEAR, respectively. EAR1 

and EAR2 are located at 185 m and 19 m from the neutron-producing target, respectively, and are 

equipped with detection systems for TOF measurements. The NEAR station, conceived for activation 

measurements, has been recently constructed in the proximity of the neutron-producing target. The 

n_TOF facility is a white spallation source driven by the CERN proton synchrotron (PS). More in 

particular, 20 GeV/c protons from the PS impinge onto a massive 80×80×60 cm3 Pb block [4], 

producing neutrons by spallation. Fast neutrons originating from the interaction of the proton beam 

with the lead target are then moderated by a water layer 5 cm thick, thus resulting in a wide neutron 

energy spectrum. As a result, neutron energies span over 11 energy orders of magnitude, from meV to 

GeV. The so-called instantaneous neutron flux, i.e. the number of neutrons per bunch, reaching EAR1 

and EAR2 is quite high, as the result of the combination of the PS features and the ones of the 

neutron-producing target. 

THE NUCLEAR ASTROPHYSICAL PROGRAM AT N_TOF 

Since 2001, n_TOF has produced cross section data of interest for the s-process, as well as data 

for BBN and other astrophysical studies. More in detail, (n,γ) cross sections were deduced as a 

function of energy, using the time-of-flight method at EAR1 and EAR2. Moreover, improved 

detection systems, innovative ideas and collaborations with other neutron facilities have led to a 

sizable contribution of the n_TOF collaboration to the research field. Particularly important was the 

close collaboration with GELINA [5] at the European Commission Joint Research Center in Belgium, 

SARAF [6] in Israel, ISOLDE at CERN and the Paul Sherrer Institute (PSI) in Switzerland. Several 

cooperative projects were carried out in order to improve the quality of the cross-section data (see for 

example, the case of 197Au [7–10], 171Tm [11] or 7Be [12,13]).  

In summary, results of (n,) measurements have been reported for stable and radioactive samples 

of interest to the s-process: 24,25,26Mg [14,15], 54,57Fe [16], 58,59,62,63Ni [17-20], 70,72,73Ge [21-23], 
90,91,92,93,94,96Zr [24,25], 139La [26], 140Ce [27], 147Pm, 151Sm [28], 154,155,157Gd [29,30], 171Tm [31], 
186,187,188Os [32,33], 197Au [7-10], 203,204Tl [34], 204,206,207Pb [35-37] and 209Bi [38] isotopes. In addition, 

results on 7Be(n,) and 7Be(n,p) for the cosmological lithium problem related to BBN, as well as 
26Al(n,) and 26Al(n,p) [39,40] relevant for the puzzle of the 26Al -ray emitter in the Milky way, were 

reported. 
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NEUTRON SOURCE REACTIONS IN RED GIANT STARS 

The main neutron source in low-mass asymptotic giant branch stars is the 13C(,n)16O reaction 

[41], which produces neutrons in radiative conditions (see, e.g., [42]). The formation of the so-called 
13C-pocket, which is needed to reproduce spectroscopic observations and pre-solar grain 

measurements, is highly debated. Consequently, the uncertainty of the reaction rate of 13C(,n)16O is 

surely one source of uncertainty in the modelling of the evolution of AGB stars that must be reduced. 

On the other hand, another relevant reaction for the production of neutrons – especially in massive 

stars – is the 22Ne(,n)25Mg reaction [43]. For both reactions, the uncertainty on the reaction rate at 

stellar temperature does not allow stellar models to be constrained conclusively. Direct measurements 

of the 13C(,n)16O and 22Ne(,n)25Mg cross sections in the energy region of interest to the s-process 

are difficult. In fact, the extremely small experimental count rate makes the experimental signature 

largely dominated by background events induced by cosmic rays. To tackle this situation, one could 

exploit the principle of time-reversal invariance applied to strong interaction, thus determining the 

cross section of the (,n) reactions by measuring the (n,) reaction cross sections. Unfortunately, 

these experiments are also challenging, and so far only feasibility studies have been conducted at 

n_TOF.  

On the other hand, 13C(,n)16O and 22Ne(,n)25Mg cross sections feature structures and 

resonances, which are linked to the excited levels of the compound system (namely 17O and 26Mg, 

respectively) formed in the nuclear reactions. The energy and spin/parity of these states can be 

determined from neutron-spectroscopy. For instance, excited levels of 26Mg above the -threshold, 

were deduced in a joint measurement campaign between n_TOF and GELINA [19,20]. This study 

represented an important step forward in the knowledge of low-energy resonances in the 
22Ne(,n)25Mg reaction cross section. In fact, five resonances were firmly identified below the lowest 

directly observed resonance in the 22Ne(,n)25Mg cross section. 

CONCLUSIONS 

The quest for accurate and new nuclear data on stable and radioactive isotopes for Nuclear 

Astrophysics has been partially addressed by the n_TOF initiatives carried in the past 20 years. 

Current research activities will bring to publications related to several neutron-induced reactions 

studies. The corresponding experimental data will be deposited in the publicly available experimental 

nuclear reaction database EXFOR, as happened in the past. In the next future, the n_TOF 

collaboration aims at performing challenging measurements exploiting the improved characteristics of 

the renovated experimental areas EAR1 and EAR2, and the new irradiation station NEAR. 
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