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Spin distribution of the nuclear level density
in a shell model approach
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! Grand Valley State University, Allendale, MI, 49401-9403, USA
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Abstract Nuclear level densities (NLDs) are key ingredients in calculations of neutron capture rates
for neutron rich isotopes in nuclear astrophysics applications. Available experimental NLDs are limited
mainly to nuclei near stability. Therefore, theoretical models are employed to predict the NLDs of
neutron rich nuclei. Here we present a methodology for calculating spin- and parity- dependent NLDs
using methods of statistical spectroscopy, based on the Shell Model. The spin distribution of the NLDs is
predicted for nuclei in the sd and pf shells.
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INTRODUCTION

The nuclear level density (NLD) is defined as the number of levels per energy bin at a certain
excitation energy. The knowledge of the NLD is important for the theoretical prediction of
the neutron capture rates for neutron rich isotopes, where the experimental determination of
these rates is challenging. The uncertainties in NLD lead to significantly different predictions
of neutron capture rates, even for nuclei with a few neutrons away from the stable isotope [1],
which in turn leads to significantly different predictions of the isotopic abundance pattern [2].

Experimental nuclear level densities can be obtained either at low excitation energies by
counting the experimentally available energy levels of complete nuclear energy spectra or at
excitation energies equal to the particle separation energies. The latter, however, are available
for limited spin values. Recently, an experimental technique which uses charged-particle
reactions has been developed, that produces level densities in the intermediate statistical
energy region, the Oslo method [3] and the beta-Oslo technique [4]. An alternate technique
used for the deduction of level densities is the particle evaporation technique [5]. Despite
these experimental efforts to derive NLDs, their availability is still scarce, and their
knowledge relies heavily on theoretical models.

NLDs have been historically predicted using phenomenological models, such as the
Fermi gas formula and the constant temperature formula [6]. These formulas have parameters
which are determined by performing fits to the available experimental data. These models
determine the total level density of a particular nuclear species and the spin dependent
nuclear level density has to be derived by the formula

pE.]) = f(Dp(E), €y
where f(J) is the spin distribution and p(E) is the total level density. Also available are
Hartree-Fock-Bogolyubov NLDs which are spin and parity dependent [7]. The calculation of
the NLDs starts from single-particle level calculations and then pairing and other collective
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effects, such as rotational and vibrational enhancements are added. These have been
incorporated in reaction codes, such as TALYS [8], and are therefore widely used for the
calculation of reaction rates. A shell model approach used for NLD calculations is the Shell
Model Monte Carlo method [9] which also provides spin and parity dependent NLDs. One
drawback of this method is that the calculations are time consuming and cannot be performed
for a large number of nuclei. Another approach that was recently developed is the Lanczos
method [10], which also produces spin and parity dependent level densities. This approach
produces NLDs which are very close to the NLDs derived with the configuration interaction
shell model using a conventional diagonalization of the Hamiltonian. It requires a few
iterations in the full shell model basis to give results, so it is not appropriate for shell model
spaces with many valence nucleons. In this paper, for the calculation of level densities we
will use the moments method [11], a method which is based on statistical spectroscopy [12].
The moments method uses the shell model spaces and interaction Hamiltonians of the
configuration interaction shell model, but it does not require the diagonalization of the shell
model Hamiltonian. It also produces spin and parity dependent nuclear level densities.

THE MOMENTS METHOD

Instead of calculating the eigenvalues, the moments method aims to the calculation of the
distribution of the eigenvalues. The form of the distribution of the eigenvalues can be fully
known if the moments of the Hamiltonian are known. To calculate the moments of the
Hamiltonian and eventually the level density, the moments method implements partitions of
particles. The partitions, p, are all the possible ways of distributing the valence particles in
single particle orbitals. It is assumed that the level density of any given partition, for states
with the same quantum numbers, i.e. spin J, isospin T, and parity m, is given by a Gaussian
distribution. This is supported by results obtained from the configuration interaction shell
model using the conventional diagonalization of the Hamiltonian and by studies of statistical
spectroscopy [13].

Finite range Gaussians are used, G,,, where p is the partition and a is a set of quantum

ap»
numbers common for the states belonging to the partition. The total level density for a

specific set of quantum numbers a, p(E; a), is calculated as
p(E;a) = Z Dy Gap(E)
P

where Dy, is the total number of states (dimension) having this specific set of quantum
numbers a in partition p. The knowledge of the ground state energy is required. The centroid
and the dispersion of the Gaussian are given by the first and second moments, respectively
[14]. The centroid is the mean energy value of the set of states with the same quantum
numbers in this partition and can be found as

Eqp = (Hgp) = DiapTrapH
The dispersion is the standard deviation of the Gaussian and can be found as
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1
0dp = (H?)ap = Edp = 5—TTPH? — Egy.
ap

The moments method level density has been extensively compared with the level density
obtained by the exact diagonalization of the shell model Hamiltonian and with the level
density from the available experimental levels [14-18].

THE SPIN DISTRIBUTION, RESULTS AND DISCUSSION

When the total (spin-independent) level density of a particular nuclear species is known,
the spin dependent nuclear level density is derived by Eq. (1). The spin distribution used in
the literature is given by the spin cut-off model [19]

J? U+D* 2] 41 _JU+D
f(,0) =e 202 —e 202 = ]2 e 202 (2)
o

where the individual nucleon spins are assumed to couple at random, therefore the spin

distribution is a Gaussian-like curve which depends on a single parameter o, the spin cut-off
parameter. The spin distribution of the level densities has been studied both experimentally
[20- 22] and theoretically [23,24].

In this work we are systematically deriving the spin cut-off parameter o for nuclei in the
sd and pf shells by fitting Eq. (2) on the spin dependent level density derived by the moments
method at different excitation energy intervals, as seen in Fig. 1.

0'25'_ *P,2-3MeV = ggv[( i ]
0.2_— E
§0.15_— E
o1t ]
0.05; a

Fig. 1. The spin distribution, f(J) = p;/p, of energy levels of *’P between 2 — 3 MeV, calculated with the
moments method (black curve) along with the fitted line provided by Eq. (2) (red dashed curve).

For the moments method calculation, we used the sd valence space, comprising of the 1si.,
0ds», 0ds,» orbitals, assuming an inert 'O core and the pf valence space, comprising of the
1pis2, 1p3n, Ofsp, 0f72 orbitals, with “°Ca as the inert core. We used the USDB [25] and GX1A
[26] shell model interactions for the sd and pf model spaces, respectively. The spin
distribution, f(J), was derived for all sd and pf nuclei with at least 2 valence particles/holes in
each model space. The spin distribution was derived in energy intervals of 1 MeV, starting
from 2 — 3 MeV and going up 10 MeV for sd nuclei and 12 MeV for pf nuclei. We divided
the nuclei in two groups; even-even nuclei and odd-odd, odd-even nuclei, and we studied
separately the evolution of the spin cut-off parameter as a function of excitation energy for
odd-odd and odd-even nuclei.



L. Newman et al. HNPS Advances in Nuclear Physics vol. 28, pp.123-128 (2022) doi: 10.12681/hnps.3614
HNPS2021 page 126

Contrary to odd-odd and odd-even nuclei whose calculated spin distribution follows the
smooth Gaussian-like spin distribution of Eq. (2), the calculated spin distribution of even-
even nuclei shows a characteristic odd-even staggering pattern. This staggering pattern was
also observed in experimental data of even-even nuclei [21] and in Shell Model Monte Carlo
calculations [23]. In [21] the authors used the following formula to describe the odd-even
staggering pattern, f..(J) = f(J,0)(1 + x), where x takes either positive or negative values.
They found that independent of mass, the x parameter takes a single value for all even spin
values, and a single value for all odd spin values. Zero spin levels must also be treated
separately from even spin values, as they have significantly enhanced spin distribution
compared to the rest of the even spin values. We used the same formula to derive the values
for x for even-even nuclei and the resulting spin distribution of the even-even nucleus *°Fe
derived from the moments method is compared to the spin distribution from experimental
data [21] and Shell Model Monte Carlo (SMMC) calculations [23] in Fig. 2. Also in Fig. 2,
left panel, the spin distribution of the odd-even isotope *Fe is seen, which follows the
Gaussian shape of the spin cut-off model both for experimental data and theoretical
calculations
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Fig. 2. The spin distribution, f(]) = p;/p, of ’Fe (left panel), *°Fe (right panel) at excitation energy 4.39 MeV
and 5.6 MeV, respectively. The green dot-dash line is the spin distribution derived from moments method
calculations, the red solid line is the spin distribution from experimental data and the blue dashed line is the
spin distribution from Shell Model Monte Carlo calculations.

The evolution of the spin cut-off parameter as a function of excitation energy and mass
number for odd-odd, odd-even nuclei of the sd (left panel) and pf (right panel) model spaces
is seen in Fig. 3. The lowest curve represents the 2 — 3 MeV energy interval and as the
excitation energy increases, the spin cut-off parameter curve is also raised. The higher spin
cut-off parameter curve represents the 9 — 10 MeV energy interval for sd nuclei and 11 — 12
MeV energy interval for pfnuclei.
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Fig. 3. The spin cut-off parameter as a function of excitation energy and mass number for odd-odd, odd-even
nuclei of the sd (left panel) and pf (right panel) model spaces. The lowest curve represents the spin cut-off
parameter at the 2 — 3 MeV energy interval and the highest curve the spin cut-off parameter at the 9 — 10 MeV
energy interval or 11 — 12 MeV energy interval for sd and pf nuclei, respectively.

CONCLUSIONS

The spin distribution has been calculated using the moments method and the values of
the spin cut-off parameter have been derived by fitting Eq. (2) to the calculated spin
distribution. The fitting of Eq. (2) on the spin distributions of odd-odd and odd-even nuclei is
excellent. We found that Eq. (2) cannot describe all spin values of even-even nuclei and an
additional parameter has to be introduced to derive the spin cut-off parameter for even and
odd values of spin. The moments method spin distribution in Fig. 2 is in excellent agreement
with the spin distribution derived from experimental data. The spin distribution derived from
SMMC calculations gives a higher spin cut-off parameter compared to the other two curves.
The SMMC calculations are performed in the pfgs» model space, which could explain the
discrepancy with the moments method calculations. Additional calculations with the
moments method, in the same model space should be performed to study the discrepancy. In
[21], the authors attributed the discrepancy between the derived experimental and SMMC
spin cut-off parameters to the higher excitation energy considered for the SMMC calculations
(4.39 MeV for *Fe, 5.6 MeV for *Fe), compared to the experimental excitation energy (in
[21] the excitation energies considered are usually below 3 MeV). Indeed, as seen in Fig. 3
the spin cut-off parameter increases with excitation energy. However, the authors of [21] do
not mention what was the maximum experimental excitation energy considered specifically
for 3°Fe, *Fe. Our calculations consider excitation energies up to 4 MeV and 5 MeV for *°Fe,
>Fe, respectively. If the experimental excitation energies indeed do not exceed the 3 MeV,
then the moments method cut-off parameter should have been around 10% and 20% larger
compared to the experimental cut-off parameter for *°Fe, °Fe, respectively, in order to have
agreement with the experimental results. The moments method results also indicate
dependence of the spin cut-off parameter on mass number (Fig. 3), besides the dependence on
excitation energy. Any theoretical expression derived for the spin cut-off parameter must
therefore include both dependencies.
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