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___________________________________________________________________________ 

Abstract Nuclear level densities (NLDs) are key ingredients in calculations of neutron capture rates 
for neutron rich isotopes in nuclear astrophysics applications. Available experimental NLDs are limited 
mainly to nuclei near stability. Therefore, theoretical models are employed to predict the NLDs of 
neutron rich nuclei. Here we present a methodology for calculating spin- and parity- dependent NLDs 
using methods of statistical spectroscopy, based on the Shell Model. The spin distribution of the NLDs is 
predicted for nuclei in the sd and pf shells.   

Keywords nuclear level densities, shell model, spin distribution 
___________________________________________________________________________ 

INTRODUCTION 
The nuclear level density (NLD) is defined as the number of levels per energy bin at a certain 
excitation energy. The knowledge of the NLD is important for the theoretical prediction of 
the neutron capture rates for neutron rich isotopes, where the experimental determination of 
these rates is challenging. The uncertainties in NLD lead to significantly different predictions 
of neutron capture rates, even for nuclei with a few neutrons away from the stable isotope [1], 
which in turn leads to significantly different predictions of the isotopic abundance pattern [2]. 

Experimental nuclear level densities can be obtained either at low excitation energies by 
counting the experimentally available energy levels of complete nuclear energy spectra or at 
excitation energies equal to the particle separation energies. The latter, however, are available 
for limited spin values. Recently, an experimental technique which uses charged-particle 
reactions has been developed, that produces level densities in the intermediate statistical 
energy region, the Oslo method [3] and the beta-Oslo technique [4]. An alternate technique 
used for the deduction of level densities is the particle evaporation technique [5]. Despite 
these experimental efforts to derive NLDs, their availability is still scarce, and their 
knowledge relies heavily on theoretical models.  

NLDs have been historically predicted using phenomenological models, such as the 
Fermi gas formula and the constant temperature formula [6]. These formulas have parameters 
which are determined by performing fits to the available experimental data. These models 
determine the total level density of a particular nuclear species and the spin dependent 
nuclear level density has to be derived by the formula 

𝜌(𝐸, 𝐽) = 𝑓(𝐽)𝜌(𝐸), (1) 
where 𝑓(𝐽) is the spin distribution and 𝜌(𝐸) is the total level density. Also available are 
Hartree-Fock-Bogolyubov NLDs which are spin and parity dependent [7]. The calculation of 
the NLDs starts from single-particle level calculations and then pairing and other collective 
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effects, such as rotational and vibrational enhancements are added. These have been 
incorporated in reaction codes, such as TALYS [8], and are therefore widely used for the 
calculation of reaction rates. A shell model approach used for NLD calculations is the Shell 
Model Monte Carlo method [9] which also provides spin and parity dependent NLDs. One 
drawback of this method is that the calculations are time consuming and cannot be performed 
for a large number of nuclei. Another approach that was recently developed is the Lanczos 
method [10], which also produces spin and parity dependent level densities. This approach 
produces NLDs which are very close to the NLDs derived with the configuration interaction 
shell model using a conventional diagonalization of the Hamiltonian. It requires a few 
iterations in the full shell model basis to give results, so it is not appropriate for shell model 
spaces with many valence nucleons. In this paper, for the calculation of level densities we 
will use the moments method [11], a method which is based on statistical spectroscopy [12]. 
The moments method uses the shell model spaces and interaction Hamiltonians of the 
configuration interaction shell model, but it does not require the diagonalization of the shell 
model Hamiltonian. It also produces spin and parity dependent nuclear level densities.  
 
THE MOMENTS METHOD 

Instead of calculating the eigenvalues, the moments method aims to the calculation of the 
distribution of the eigenvalues. The form of the distribution of the eigenvalues can be fully 
known if the moments of the Hamiltonian are known. To calculate the moments of the 
Hamiltonian and eventually the level density, the moments method implements partitions of 
particles. The partitions, p, are all the possible ways of distributing the valence particles in 
single particle orbitals. It is assumed that the level density of any given partition, for states 
with the same quantum numbers, i.e. spin 𝐽, isospin 𝛵! and parity 𝜋, is given by a Gaussian 
distribution. This is supported by results obtained from the configuration interaction shell 
model using the conventional diagonalization of the Hamiltonian and by studies of statistical 
spectroscopy [13].  

Finite range Gaussians are used, 𝐺"#, where 𝑝 is the partition and 𝑎 is a set of quantum 
numbers common for the states belonging to the partition. The total level density for a 
specific set of quantum numbers 𝑎, 𝜌(𝐸; 𝑎), is calculated as  

𝜌(𝐸; 𝑎) =0𝐷"#𝐺"#(𝐸)
#

 

where 𝐷"# is the total number of states (dimension) having this specific set of quantum 
numbers 𝑎 in partition 𝑝. The knowledge of the ground state energy is required. The centroid 
and the dispersion of the Gaussian are given by the first and second moments, respectively 
[14]. The centroid is the mean energy value of the set of states with the same quantum 
numbers in this partition and can be found as 

𝐸"# = 〈𝐻"#〉 =
1
𝐷"#

𝑇𝑟"#𝐻 

The dispersion is the standard deviation of the Gaussian and can be found as 
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𝜎"#$ = 〈𝐻$〉"# − 𝐸"#$ =
1
𝐷"#

𝑇𝑟"#𝐻$ − 𝐸"#$ . 

The moments method level density has been extensively compared with the level density 
obtained by the exact diagonalization of the shell model Hamiltonian and with the level 
density from the available experimental levels [14-18]. 
 
THE SPIN DISTRIBUTION, RESULTS AND DISCUSSION 

When the total (spin-independent) level density of a particular nuclear species is known, 
the spin dependent nuclear level density is derived by Eq. (1). The spin distribution used in 
the literature is given by the spin cut-off model [19] 

𝑓(𝐽, 𝜎) = 𝑒%
&!
$'! − 𝑒%

(&)*)!
$'! =

2𝐽 + 1
2𝜎$

𝑒%
&(&)*)
$'! , (2) 

where the individual nucleon spins are assumed to couple at random, therefore the spin 
distribution is a Gaussian-like curve which depends on a single parameter 𝜎, the spin cut-off 
parameter. The spin distribution of the level densities has been studied both experimentally 
[20- 22] and theoretically [23,24].  

In this work we are systematically deriving the spin cut-off parameter 𝜎 for nuclei in the 
sd and pf shells by fitting Eq. (2) on the spin dependent level density derived by the moments 
method at different excitation energy intervals, as seen in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The spin distribution, 𝑓(𝐽) = 𝜌"/𝜌, of energy levels of 29P between 2 – 3 MeV, calculated with the 
moments method (black curve) along with the fitted line provided by Eq. (2) (red dashed curve).   

 
For the moments method calculation, we used the sd valence space, comprising of the 1s1/2, 
0d3/2, 0d5/2 orbitals, assuming an inert 16O core and the pf valence space, comprising of the 
1p1/2, 1p3/2, 0f5/2, 0f7/2 orbitals, with 40Ca as the inert core. We used the USDB [25] and GX1A 
[26] shell model interactions for the sd and pf model spaces, respectively. The spin 
distribution, 𝑓(𝐽), was derived for all sd and pf nuclei with at least 2 valence particles/holes in 
each model space. The spin distribution was derived in energy intervals of 1 MeV, starting 
from 2 – 3 MeV and going up 10 MeV for sd nuclei and 12 MeV for pf nuclei. We divided 
the nuclei in two groups; even-even nuclei and odd-odd, odd-even nuclei, and we studied 
separately the evolution of the spin cut-off parameter as a function of excitation energy for 
odd-odd and odd-even nuclei.  
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Contrary to odd-odd and odd-even nuclei whose calculated spin distribution follows the 
smooth Gaussian-like spin distribution of Eq. (2), the calculated spin distribution of even-
even nuclei shows a characteristic odd-even staggering pattern. This staggering pattern was 
also observed in experimental data of even-even nuclei [21] and in Shell Model Monte Carlo 
calculations [23]. In [21] the authors used the following formula to describe the odd-even 
staggering pattern, 𝑓,,(𝐽) = 𝑓(𝐽, 𝜎)(1 + 𝑥), where 𝑥 takes either positive or negative values. 
They found that independent of mass, the 𝑥 parameter takes a single value for all even spin 
values, and a single value for all odd spin values. Zero spin levels must also be treated 
separately from even spin values, as they have significantly enhanced spin distribution 
compared to the rest of the even spin values. We used the same formula to derive the values 
for 𝑥 for even-even nuclei and the resulting spin distribution of the even-even nucleus 56Fe 
derived from the moments method is compared to the spin distribution from experimental 
data [21] and Shell Model Monte Carlo (SMMC) calculations [23] in Fig. 2. Also in Fig. 2, 
left panel, the spin distribution of the odd-even isotope 55Fe is seen, which follows the 
Gaussian shape of the spin cut-off model both for experimental data and theoretical 
calculations 

Fig. 2. The spin distribution, 𝑓(𝐽) = 𝜌"/𝜌, of 55Fe (left panel), 56Fe (right panel) at excitation energy 4.39 MeV 
and 5.6 MeV, respectively. The green dot-dash line is the spin distribution derived from moments method 
calculations, the red solid line is the spin distribution from experimental data and the blue dashed line is the 
spin distribution from Shell Model Monte Carlo calculations.  
 

The evolution of the spin cut-off parameter as a function of excitation energy and mass 
number for odd-odd, odd-even nuclei of the sd (left panel) and pf (right panel) model spaces 
is seen in Fig. 3. The lowest curve represents the 2 – 3 MeV energy interval and as the 
excitation energy increases, the spin cut-off parameter curve is also raised. The higher spin 
cut-off parameter curve represents the 9 – 10 MeV energy interval for sd nuclei and 11 – 12 
MeV energy interval for pf nuclei. 
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Fig. 3. The spin cut-off parameter as a function of excitation energy and mass number for odd-odd, odd-even 
nuclei of the sd (left panel) and pf (right panel) model spaces. The lowest curve represents the spin cut-off 
parameter at the 2 – 3 MeV energy interval and the highest curve the spin cut-off parameter at the 9 – 10 MeV 
energy interval or 11 – 12 MeV energy interval for sd and pf nuclei, respectively. 
 
CONCLUSIONS 

The spin distribution has been calculated using the moments method and the values of 
the spin cut-off parameter have been derived by fitting Eq. (2) to the calculated spin 
distribution. The fitting of Eq. (2) on the spin distributions of odd-odd and odd-even nuclei is 
excellent. We found that Eq. (2) cannot describe all spin values of even-even nuclei and an 
additional parameter has to be introduced to derive the spin cut-off parameter for even and 
odd values of spin. The moments method spin distribution in Fig. 2 is in excellent agreement 
with the spin distribution derived from experimental data. The spin distribution derived from 
SMMC calculations gives a higher spin cut-off parameter compared to the other two curves. 
The SMMC calculations are performed in the pfg9/2 model space, which could explain the 
discrepancy with the moments method calculations. Additional calculations with the 
moments method, in the same model space should be performed to study the discrepancy. In 
[21], the authors attributed the discrepancy between the derived experimental and SMMC 
spin cut-off parameters to the higher excitation energy considered for the SMMC calculations 
(4.39 MeV for 55Fe, 5.6 MeV for 56Fe), compared to the experimental excitation energy (in 
[21] the excitation energies considered are usually below 3 MeV). Indeed, as seen in Fig. 3 
the spin cut-off parameter increases with excitation energy. However, the authors of [21] do 
not mention what was the maximum experimental excitation energy considered specifically 
for 55Fe, 56Fe. Our calculations consider excitation energies up to 4 MeV and 5 MeV for 55Fe, 
56Fe, respectively. If the experimental excitation energies indeed do not exceed the 3 MeV, 
then the moments method cut-off parameter should have been around 10% and 20% larger 
compared to the experimental cut-off parameter for 55Fe, 56Fe, respectively, in order to have 
agreement with the experimental results. The moments method results also indicate 
dependence of the spin cut-off parameter on mass number (Fig. 3), besides the dependence on 
excitation energy. Any theoretical expression derived for the spin cut-off parameter must 
therefore include both dependencies.  
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