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___________________________________________________________________________ 

Abstract After CERN’s Long Shutdown 2, the n_TOF facility infrastructure was largely upgraded. 

The biggest change is the installation of a new lead spallation target, the performance of which needs to 

be carefully examined. During Summer 2021, the facility’s two flight paths were characterised in terms 

of neutron beam energy distribution, profile and resolution. In this work, the characterisation of the 

facility is described, and the first results are given.  
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INTRODUCTION 

The n_TOF facility at CERN is a neutron facility for time-of-flight measurements based on a pulsed 

proton beam impinging on a lead spallation target. It is designed to study neutron induced reactions 

important for a variety of scientific fields, from fundamental research to nuclear astrophysics [1,2] 

and nuclear technology applications [3,4]. n_TOF started out with a horizontal fight path 185 m in 

length, which was later complimented by a second, vertical 20 m flight path.  

The facility’s 185 m flight path provides an excellent energy resolution, reaching as low as ΔE/E 

~ 10-4 for the eV region [5]. The energy range it covers stretches from a few meV up to the GeV 

region, allowing for significant extension of cross section data. The newer 20 m flight path provides a 

high instantaneous flux allowing the measurement of low mass, low cross-section samples [6].  

The core of the facility, its lead spallation target, was a water-cooled single block of lead only 

optimised for the initial 185 m flight path. After CERN’s Long Shutdown 2, it was replaced with a 

new nitrogen-cooled target consisting of several slabs of lead, this time optimised also for n_TOF’s 

vertical beamline.  

After this major change, the performance of the new target needs to be closely inspected, the new 

characteristics of the now optimised 20 m flight path need to be studied while it must be ensured that 

the performance of the horizontal beam-line has not significantly changed. This as achieved during 

n_TOF’s “Commissioning” Phase in Summer 2021.  

In addition, a new experimental area, the “NEAR” Station was developed. NEAR is a 

measurement area outside the target-moderator assembly’s shielding, situated 3m from the lead target. 

During the 2021 Commissioning Phase, the neutron beam of NEAR was characterised via multifoil 

activation in various experimental setups.  
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Fig. 1. Schematic representation of the new n_TOF spallation target 

 

EXPERIMENTAL DETAILS 

The characterisation of the facility requires two different experimental set-ups, one to measure 

the neutron energy distribution and one to measure the flight path’s energy resolution. The first set-up 

contains mainly fission detectors while the second one g-ray detectors.  

To extract the neutron beam energy distribution, a variety of detectors was used to measure 

standard reactions with very well-known cross-sections. The first detector was a silicon monitor 

(SiMon), consisting of a LiF sample in beam and four silicon detectors placed symmetrically around 

it. Based on the Li(n,t)He, the SiMon can provide data up to 1 MeV neutron energies. The fission 

detectors used were the Parallel Plate Avalanche Counter (PPAC), the micromegas detectors 

(uMGAS) and the PTB fission chamber. All of them are based on the standard 235U(n,f) reaction and 

can provide high quality data up to the high energy part of the spectrum. Additionally, the uMGAS 

chamber contained a boron sample to provide data based on the 10B(n,a) reaction, which has a high 

and very smooth cross-section in the low energy part of the spectrum, being a standard up to 1MeV. 

Furthermore, the PPAC is a position sensitive detector which can provide detailed information on the 

beam profile.  

 

Fig. 2. Experimental set-up for the measurement of the neutron flux in EAR1  
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The way to estimate the effect of the energy resolution of the two n_TOF flight paths is to study 

the resonances of well-known neutron capture reactions such as neutron capture on gold. The 

detectors utilised for this are liquid scintillators housed in carbon fiber, so that the least and lightest 

possible material is present in the experimental hall.  

Fig. 3. C6D6 liquid scintillators for capture measurements 

 

To complement the experimental studies, extensive Monte Carlo simulations were carried out 

and were bench-marked by the experimental results. 

 

PRELIMINARY RESULTS AND DISCUSSION 

The analysis of the Commissioning Phase data is still ongoing but the preliminary results show 

no significant change in the neutron flux; on the contrary, the flux has slightly increased, compared to 

the previous n_TOF phase.  

The exchange of target and moderator didn’t alter characteristics of the horizontal flight path, 

which maintains its excellent energy resolution. The optimisation for the vertical flight path notably 

improved its performance, especially its energy resolution, paving the way for new challenging 

measurements.  

  

CONCLUSIONS 

After its major upgrades during CERN’s Long Shutdown 2, the n_TOF facility’s unique 

characteristics were further improved and enhanced. n_TOF can serve high precision cross-section 

measurements for a large variety of neutron induced reactions ranging from capture to fission in stable 

or highly radioactive samples in a wide energy range.  
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