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___________________________________________________________________________ 

Abstract The Shell Model SU(3) symmetry was discovered by Elliott in 1958 and since then has 

been the algebraic realization of the Nuclear Shell Model. It is considered to be a fermionic nuclear 

model, since it tackles the occupancies of the orbitals by nucleons. Elliott proved that the SU(3) 

symmetry appears in the LS (spin-orbit) coupling scheme of the nucleons. On the other side the 

Interacting Boson Model was proposed by Arima and Iachello in 1975 and it is a boson model. The 

bosons in the Interacting Boson Model are being derived by nucleon pairs. But the mapping (Otsuka-

Arima-Iachello mapping) of the nucleon pairs into bosons is functional only in the jj coupling scheme 

and so it is applicable only in the U(5) and O(6) limits of the Interacting Boson Model. But what is the 

origin of the s and d bosons in the SU(3) limit of the Interacting Boson Model? Hereby I demonstrate 

that the s and d bosons are present into the spatial Shell Model SU(3) wave functions and that they derive 

from pairs of harmonic oscillator quanta. 

Keywords Elliott SU(3), Shell Model, Interacting Boson Model 

___________________________________________________________________________ 

 

INTRODUCTION 

The Shell Model SU(3) symmetry [1-4] is the algebraic realization of the Nuclear Shell Model and 

describes adequately the deformed nuclei. Elliott proved that if one uses the Shell Model single-

particle orbitals in the cartesian coordinate system [3,5], s/he shall result to have the familiar 

rotational spectrum, i.e., the nuclear states are organized in bands labeled by the K quantum number 

and possess the angular momentum L as a good quantum number. 

The “Shell Model SU(3) symmetry” nowadays is called “Elliott SU(3) symmetry”, but I shall 

avoid this name, because a) Elliott never called his model “Elliott SU(3)” in his articles, b) some 

people today are misguided by the name and believe that the “Elliott SU(3) symmetry” is something 

different from the “Nuclear Shell Model” [6]. The Shell Model SU(3) symmetry is originally applied 

in valence nuclear shells, which exceed among the three dimensional harmonic oscillator nucleon 

magic numbers 2, 8, 20, 40, 70, 112,... Such magic numbers are usually present in light nuclei or in 

nuclei with shape coexistence [7]. Thus an extension of the model had to be discovered for the 

medium mass and heavy nuclei, which possess the spin-orbit like magic numbers 6, 14, 28, 50, 82, 

126...[5]. Our theory group in Demokritos (along with collaborators) has developed the proxy-SU(3) 

symmetry [5,8,9], which treats all the orbitals of the spin-orbit like shells except one. In the proxy-

SU(3) scheme both the normal and the intruder parity orbitals of the spin-orbit like shell are treated 

together. The excluded orbital is the last to be occupied (by two protons or neutrons) and so its 

exclusion from the shell is not affecting the nuclear properties.  

The Shell Model SU(3) symmetry is valid in the LS coupling scheme. This means that the many-

nucleon Slater determinant, which is the nuclear wave function, is separated into two parts: a) the 

spatial part and b) the spin-isospin part. The one part is the conjugate of the other and thus the product 

of them (the Slater determinant) is totally antisymmetric in the permutation of two nucleons. The 

spatial part results in having the SU(3) symmetry of Elliott and it is a many-quanta wave function 
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[10]. It has been proven that the short-range character of the nucleon-nucleon interaction demands 

that the spatial part is as symmetric as possible in the interchange of the quanta [10]. 

The Interacting Boson Model [11] treats the s and d bosons for the construction of the nuclear 

spectrum. The s, d bosons are spherical tensor operators of degree 0, 2 respectively. In the Otsuka-

Arima-Iachello mapping [12] the nucleons are coupled into pairs with total angular momentum 0 and 

2. Such pairs are mapped into the s and d bosons. But this kind of mapping is valid only in the 𝑗𝑗 

coupling scheme, in which the angular momentum 𝒍 is coupled with the spin 𝒔 of the nucleon to create 

the total angular momentum 𝒋 = 𝒍 + 𝒔. Afterwards the total angular momenta of all the nucleons are 

coupled to deliver the nuclear angular momentum J. This kind of coupling is suitable for the O(5) 

symmetry and so it is applicable only in the O(6) and U(5) limits of the Interacting Boson Model, 

which possess the O(5) as a sub-algebra [13]. The question is, what is the origin of the s and d bosons 

of the Interacting Boson Model in the majority of nuclei, which is deformed and thus described by the 

SU(3) symmetry and the LS coupling scheme? 

 

THE SHELL MODEL SU(3) WAVE FUNCTIONS 

Harvey gave an example of the many quanta SU(3) wave functions [11]. It is crucial to 

understand that the SU(3) wave functions contain only the spatial part of the full nuclear wave 

function and so the vacuum is the state of no quanta |0⟩. The many quanta SU(3) wave functions are 

represented by irreducible representations (irreps) of the type (𝜆, 𝜇), in which the 𝜆 + 𝜇 quanta are 

symmetric upon their interchange [10]. Thus a (2,0) irrep represents two quanta in the z axis, which 

are symmetric upon their interchange. Similarly, an irrep (4,0) has 4 symmetric quanta in the z axis 

etc. 

The harmonic oscillator quanta are being created by the creation operators of the harmonic 

oscillator: 

𝑎𝑘
† = √

𝑚𝜔

2 ℏ
𝑘 −

𝑖

√2𝑚𝜔ℏ
𝑝𝑘 ,   (1) 

where m is the mass of the nucleon, ω is the frequency of the harmonic oscillator, 𝑘 = 𝑥, 𝑦, 𝑧 is the 

position of the particle in the cartesian coordinate system and 𝑝𝑘 is the relevant momentum. These 

operators act on the spatial vacuum |0⟩ to create the cartesian quanta. We may use the above operators 

to create a spherical tensor of degree 1: 

𝑢−1
† =

𝑎𝑥
† − 𝑖𝑎𝑦

†

√2
, 𝑢0

† = 𝑎𝑧
†, 𝑢1

† = −
𝑎𝑥

† + 𝑖𝑎𝑦
†

√2
.   (2) 

These operators when acting on the vacuum create a harmonic oscillator quantum with angular 

momentum 1 and projection 𝓂 = −1, 0, 1  respectively. 

The harmonic oscillator quanta can be coupled into symmetric pairs. For instance the spatial 

wave function of the SU(3) irrep (2,0) is the: 

𝜑𝑧𝑧 = 𝜑𝑧(𝑖1)𝜑𝑧(𝑖2)   (3) 

or 

𝜑𝑧𝑧 = 𝑎𝑧
†(𝑖1)𝑎𝑧

†(𝑖2)|0⟩,   (4) 

where the 𝑖1, 𝑖2 ennumerate the valence particles and obtain the values 1, 2, 3,..., 𝐴𝑣𝑎𝑙, with 𝐴𝑣𝑎𝑙 =

𝑍𝑣𝑎𝑙 + 𝑁𝑣𝑎𝑙 being the number of the valence protons and neutrons. As Harvey wrote the 𝑖1, 𝑖2 may 

obtain the same value, if the quanta derive from the same nucleon [11]. 

The spherical harmonic oscillator quanta can be coupled into symmetric pairs too. This is 

achieved by the coupling of the spherical tensors: 
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(𝐹𝑀
𝐿 )†(𝑖1, 𝑖2) = ∑ (1𝓂1𝓂′|𝐿𝑀)𝑢𝓂

†(𝑖1)

𝓂,𝓂′

𝑢𝓂′
†(𝑖2),   (5) 

where the (1𝓂1𝓂′|𝐿𝑀) stands for the Clebsch-Gordan coefficient. The symmetric pairs of the 

spherical harmonic oscillator quanta result to spherical tensors of degree 𝐿 = 0, 2. These spherical 

tensor operators can be labeled as:  

(𝐹0
0)†(𝑖1, 𝑖2) = 𝓈†(𝑖1, 𝑖2), (𝐹𝑀

2 )†(𝑖1, 𝑖2) = 𝒹𝑀
† (𝑖1, 𝑖2).   (6) 

Using a Clebsch-Gordan calculator and the relations (2) we get for instance that: 

𝓈†(𝑖1, 𝑖2) = −
1

√3
(𝑎𝑥

†(𝑖1)𝑎𝑥
†(𝑖2) + 𝑎𝑦

†(𝑖1)𝑎𝑦
†(𝑖2) + 𝑎𝑧

†(𝑖1)𝑎𝑧
†(𝑖2)),   (7) 

and  

𝒹0
†(𝑖1, 𝑖2) =  −

1

√6
(𝑎𝑥

†(𝑖1)𝑎𝑥
†(𝑖2) + 𝑎𝑦

†(𝑖1)𝑎𝑦
†(𝑖2)) + √

2

3
𝑎𝑧

†(𝑖1)𝑎𝑧
†(𝑖2).   (8) 

This means that the symmetric state of Eq. (4) can be written as: 

𝜑𝑧𝑧 = 𝑎𝑧
†(𝑖1)𝑎𝑧

†(𝑖2)|0⟩ =
1

√3
(−𝓈†(𝑖1, 𝑖2) + √2𝒹0

†(𝑖1, 𝑖2)) |0⟩.   (9) 

The 𝓈†(𝑖1, 𝑖2) operator creates the ground state 0+ with L=K=M=0, while the 𝒹0
†(𝑖1, 𝑖2) operator 

creates the first excited state 2+ with L=2, M=K=0. The probability for the ground state is 
1

3
, while the 

probability for the excited state is 
2

3
. The same probabilities are derived if one uses the L-projection 

technique (see Table 2A of Ref. [14]) for the SU(3) irrep (2,0).   

The −𝓈†(𝑖1, 𝑖2) operator in Eq. (9) is positive due to the negative sign in Eq. (7). If the  

𝓈†, 𝒹𝑀
†

 operators in Eq. (9) created the s and d bosons of the Interacting Boson Model, then the state 

of Eq. (9) coincides with the coherent states of Ginocchio and Kirson [15]: 

1

√1 + 𝛽2
(𝓈† + 𝛽 cos 𝛾 𝒹0

† +
𝛽 sin 𝛾

√2
(𝒹2

† + 𝒹−2
† )) |0⟩,   (10) 

for 𝛽 = √2, 𝛾 = 0°, where 𝛽, 𝛾 are the deformation variables of the Bohr-Mottelson Model. In this 

scenario the wave function of Eq. (9) is a state of the SU(3) limit of the Interacting Boson Model 

(since 𝛽 = √2) and represents a prolate nuclear shape (since 𝛾 = 0°). 

The important point is that in the spatial Shell Model SU(3) wave functions the 3 states 

|𝑛𝑧 = 1⟩, |𝑛𝑥 = 1⟩, |𝑛𝑦 = 1⟩ (where 𝑛𝑧, 𝑛𝑥 , 𝑛𝑦 are the numbers of the harmonic oscillator quanta in 

the three cartesian directions) are being occupied by harmonic oscillator quanta, which are bosons. 

Thus an infinite number of quanta may occupy a single state and so an infinite number of symmetric 

pairs of quanta may occur in a Shell Model SU(3) state.  

 

CONCLUSIONS 

 
The Shell Model SU(3) symmetry is valid in the LS coupling scheme. In this scheme the many-

particle wave function is separated into a spatial many-quanta part, which possesses the SU(3) 

symmetry and into a spin-isospin part. The many-quanta wave function of the SU(3) symmetry may 

possess an infinite number of quanta in a cartesian direction, since the quanta are bosons. The quanta 

are coupled into symmetric pairs. These pairs can be expressed into spherical tensor operators of 

degree 0 or 2, thus they are very similar with the s and d bosons of the Interacting Boson Model. 

Furthermore, the transformation of the cartesian pairs of quanta into the spherical pairs of quanta 

gives the correct probabilities for the nuclear states with good L and K (the ones which are being 
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derived by the L-projection technique [14]). In addition the Shell Model states with symmetric pairs 

of quanta coincide with the coherent states of Ginocchio and Kirson for the SU(3) limit of the 

Interacting Boson Model. Do all these facts support that the 𝓈†, 𝒹𝑀
†

 operators of Eq. (6) are the s, d 

bosons of the Interacting Boson Model? Can we interpret the s, d bosons of the Interacting Boson 

Model as symmetric pairs of quanta? 
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