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___________________________________________________________________________ 

Abstract The Constrained Molecular Dynamics (CoMD) model is used to describe the collective 

motion of various nuclear systems. A CoMD-inspired phenomenology for the GDR is developed. In 

addition, the dependence of the GDR upon the effective interaction parameters is studied. Furthermore, 

both the monopole and dipole main and soft modes of 68Ni are reliably reproduced. We conclude that a 

hard EoS with K=308 MeV increases the GDR energy, without altering the GMR energy. Thus, this EoS 

gives rather consistent results in both the monopole and dipole giant resonances. 

Keywords giant resonances, nuclear equation of state, compressibility, constrained molecular 

dynamics 

___________________________________________________________________________ 

INTRODUCTION 

The atomic nuclei are some of the most complicated many-body quantum systems in nature. Their 

nucleon components are tightly packed and strongly correlated by the nuclear interaction and the Pauli 

principle. Albeit their complexity, the nuclei present a significant level of organization. The nucleonic 

degrees of freedom can be excited under external perturbations in a collective manner.  These collective 

motions are the well-known Giant Resonances (GRs). The GRs have a prominent role in the study of 

near-ground state dynamics. The characteristics of their spectra can constrain the various parameters of 

the nuclear interaction. Consequently, one can use the GR spectra to investigate the properties and 

Equation of State (EoS) of nuclear matter (NM) [1,2]. 

The aforementioned resonances contain a wide variety of collective motions. First and foremost, 

they can be categorized by the variation of the nuclear isospin as isoscalar (Δτ=0) or isovector (Δτ=1). 

Furthermore, the multipolar expansion of the total nuclear radius, characterizes the possible collective 

excitations as monopole, dipole, quadruple etc [2]. Additionally, the neutron rich systems present a soft 

mode for each GR. These soft modes correspond to oscillations of the neutron skin with respect to the 

symmetric nuclear core. 

The purpose of this article is the study of the isovector Giant Dipole Resonance (IVGDR or GDR) 

and the isoscalar Giant Monopole Resonance (ISGMR or GMR), as well as their corresponding soft 

modes with the Constrained Molecular Dynamics (CoMD) model. The CoMD model is a semi-classical 

approach to the nuclear N-body problem, that is applied to a broad range of nuclear dynamics 

applications. Simulations of peripheral reactions at the Fermi level, near ground state properties, 

positron-electron pair production and fission [3-6] are just a few examples of the model applications to 

date. 

The structure of this paper is as follows. Firstly, we describe the theoretical framework of our 

study, the CoMD model, the EoS and the GDR phenomenology. Afterwards, we present the details of 

our computations. Finally, we discuss the basic results and their implications to the EoS and effective 

interaction’s parameters. Our efforts to include a spin-orbit coupling (SO) term are also discussed.  

 
* Corresponding author: soulioti@chem.uoa.gr 
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THEORETICAL FRAMEWORK 

Basic Principles of Constrained Fermionic Dynamics 

The effective interaction functional forms the basis of every model and CoMD is no exception. As is 

described in [7,8], the potential component of the CoMD Hamiltonian is of the Skyrme type and is 

given by 𝑉̂ = ∑ 𝑉̂𝑖𝑗𝑖<𝑗   , with 𝑉̂𝑖𝑗 = 𝑉̂𝑣𝑜𝑙 + 𝑉̂𝑠𝑢𝑟𝑓 + 𝑉̂𝑐𝑜𝑢𝑙 + 𝑉̂𝑠𝑦𝑚 + 𝑉̂(3). The volume, surface, 

coulomb, symmetry and three body terms are respectively given by 

 

𝑉̂𝑣𝑜𝑙 =
𝛵0

𝜌0
𝛿(𝑟𝑖 − 𝑟𝑗), 

(1) 

𝑉̂𝑠𝑢𝑟𝑓 =
𝐶𝑠

𝜌0
𝛻⃗⃗〈𝑟𝑖〉

2 𝛿(𝑟𝑖 − 𝑟𝑗), 

(2) 

𝑉̂𝑐𝑜𝑢𝑙 =
𝑒2

‖𝑟𝑖 − 𝑟𝑗‖
, 

(3) 

𝑉̂𝑠𝑦𝑚 =
𝑎𝑠𝑦𝑚

𝜌0
(2𝛿𝜏𝑖,𝜏𝑗

− 1) 𝛿(𝑟𝑖 − 𝑟𝑗), 

(4) 

𝑉̂(3) =
2𝛵3𝜌𝑖𝑗

𝜎−1

𝜌0
𝜎(𝜎 + 1)

𝛿(𝑟𝑖 − 𝑟𝑗). 

(5) 

The 𝜌0 is the saturation density of nuclear matter (NM), 𝑎𝑠𝑦𝑚 is the symmetry parameter, 𝛵0 is the 

volume coefficient, 𝐶𝑠 is the surface parameter, while 𝛵3 and 𝜎 are the three body parameters. 

Nucleons are represented by gaussian wave packets, parametrized by their phase-space 

centroids. The corresponding Wigner transformed one-body distributions are given by the formula 

 

𝑓𝑖(𝑟, 𝑝) =
1

(2𝜋𝜎𝑟𝜎𝑝)
3 𝑒

−
(𝑟−〈𝑟𝑖〉)2

2𝜎𝑟
2

𝑒
−

(𝑝⃗−〈𝑝⃗𝑖〉)2

2𝜎𝑝
2

 

(6) 

where 𝜎𝑟, 𝜎𝑝 are the widths and 〈𝑟𝑖〉, 〈𝑝𝑖〉 are centroids in the phase-space. By assuming that the entire 

time dependence of the nucleons is included in within the centroids, the Time Dependent Variational 

Principle gives the Hamilton’s equations of motion for the system. 

The Pauli principle is enforced implicitly on the nucleons. The occupation probability of a phase-

space hyper-cube with volume ℎ3 is constrained by the Pauli-Blocking of nucleon-nucleon (NN) 

scattering. The constraint is given by the formula  

 

𝑓𝑖̅ ≡ ∑ 𝛿𝜏𝑖,𝜏𝑗
𝛿𝑠𝑖,𝑠𝑗

∫ 𝑓𝑗(𝑟, 𝑝)𝑑3𝑟𝑑3𝑝⃗
ℎ3

𝑗∈𝐿

≤
𝑝𝑎𝑢𝑙𝑚

128
 

(7) 
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where 𝐿 is the ensemble of j nucleons in in the proximity of i. The free parameter 𝑝𝑎𝑢𝑙𝑚 is inverse of 

the strength of the Pauli correlations. Its higher values correspond to a less strict enforcement of the 

Pauli constraint and thus weaker correlations. 

The parameters of the effective interaction are determined by the saturation property of NM in 

the equilibrium density. Their values depend on the compressibility of NM, that is given by [9] 

 

𝐾 = 9𝜌0
2

𝜕2𝛦/𝛢

𝜕𝜌2
|

𝜌0

= 9𝛵3

𝜎(𝜎 − 1)

𝜎 + 1
− 2𝜀𝐹̅ 

(8) 

where 𝜀𝐹̅ is the mean Fermi energy. An additional characteristic of the NM is the effective mass. It is 

well-known [10] that the finite range of the nuclear interaction can be modeled via a momentum 

dependent potential. In the CoMD model, we are using a gaussian momentum dependent term in the 

low energy limit. That term corresponds to an effective nucleon mass smaller than the bound mass i.e., 

𝑚∗ ≤ 𝑚. In the present version of the code, the effective mass ratio 𝑚∗/𝑚 is decoupled from the 

compressibility and thus is a free parameter. 

As a final point, we note that so far, the CoMD model does not contain an inherent SO term. 

Recently, we instigated the inclusion of a possible microscopic 2-body SO term that is consistent with 

fermionic dynamics. Following the guidelines of Vaidya [11], we propose a term of the following form 

𝑉̂𝑠𝑜 = 𝑊0 {𝛻⃗⃗〈𝑟𝑖〉𝜌𝑖𝑗 ×
1

ħ
[〈𝑝𝑖〉 − 〈𝑝𝑗〉]} ∙ [〈𝜎⃗𝑖〉 + 〈𝜎⃗𝑗〉] 

(9) 

where 𝑊0 is the SO coefficient, 〈𝜎⃗𝑖〉 is the expectation value of the spin vector for the i nucleon and 𝜌𝑖𝑗 

is the interaction density of the pair of i and j nucleons. 

 

Phenomenology of the GDR 

The GDR corresponds to an off-phase oscillation of the proton against the neutron quantum fluid, 

while its soft mode, the Pygmy resonance (PGR), corresponds to an off-phase oscillation of the neutron 

skin against the inner symmetric core. The spectrum of the resonance is strongly dependent on the 

effective interaction’s parameters. In order to understand these dependencies, we have derived a 

simplified oscillatory model for the collective motion, based on the CoMD formalism. The GDR can 

be induced by a position space perturbation. This perturbation corresponds to an off-phase 

transformation of the initial z-axis centroids of protons and neutrons. This transformation is given by 

〈𝑧𝑖〉 → 〈𝑧𝑖〉 ± 𝑑𝑛/𝑝 

(10) 

where 𝑑𝑛/𝑝 is the time-dependent perturbation for neutrons, with a positive sign and for protons with a 

negative sign. The sum of these perturbations is the GDR oscillation amplitude 𝐷 = 𝑑𝑝 + 𝑑𝑛, the 

corresponding computational parameter of our simulation. This is connected to the neutron/proton 

perturbations in order for the total nuclear center of mass to remain stationary, 𝑑𝑝 =  
𝑁

𝐴
𝐷 and 𝑑𝑛 =

 
𝑍

𝐴
𝐷. 

To quantify the effect of the GDR perturbation to the system, we have to consider its effect on the 

Hamiltonian. We assume, up to a first approximation, that the external disturbance affects mostly the 

symmetry term, whose expectation value is  
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𝑈𝑠𝑦𝑚 =
𝑎𝑠𝑦𝑚

2𝜌0
(𝜌𝑝𝑝 + 𝜌𝑛𝑛 − 2𝜌𝑛𝑝) 

(11) 

where 𝜌𝑝𝑝, 𝜌𝑛𝑛 and 𝜌𝑛𝑝 are the total interaction densities of all proton-proton, neutron-neutron and 

neutron-proton pairs respectively. By introducing the aforementioned transformation to the z-axis 

centroids, the neutron-proton interaction density is altered and thus the symmetry energy near the 

ground state minimum is transformed as 

𝑈𝑠𝑦𝑚 → 𝑈𝑠𝑦𝑚
′ =

𝑎𝑠𝑦𝑚

2𝜌0
(𝜌𝑝𝑝 + 𝜌𝑛𝑛 − 2𝜌𝑛𝑝

′ ) = 𝑈𝑠𝑦𝑚 +
1

2
(

𝜌𝑛𝑝𝑎𝑠𝑦𝑚

2𝜌0𝜎𝑟
2 𝐷2) + 𝑂(𝐷3) 

(12) 

Consequently, the potential component of the GDR perturbation energy can be recognized to be 

𝛥𝑈𝑠𝑦𝑚 =
1

2
(

𝜌𝑛𝑝𝑎𝑠𝑦𝑚

2𝜌0𝜎𝑟
2 ) 𝐷2 

(13) 

The time evolution of the neutron and proton perturbations are connected to the kinetic component of 

the GDR perturbation Hamiltonian 

𝑇 = ∑
1

2
𝑚∗𝑑̇𝑝

2

𝑖∈𝑝

+ ∑
1

2
𝑚∗𝑑̇𝑛

2

𝑖∈𝑛

=
1

2
𝑚∗

𝑁𝑍

𝐴
𝐷̇2 

(14) 

With the use of the aforementioned results, the perturbation Lagrangian can be written as follows 

𝐿 = 𝑇 − 𝛥𝑈𝑠𝑦𝑚 =
1

2
𝑚∗

𝑁𝑍

𝐴
𝐷̇2 −

1

2
(

𝜌𝑛𝑝𝑎𝑠𝑦𝑚

2𝜌0𝜎𝑟
2 ) 𝐷2 

(15) 

The Lagrangian has the form of a Harmonic oscillator with “mass” 𝑀 = 𝑚∗ 𝑁𝑍

𝐴
 and “spring constant” 

𝑘 =
𝜌𝑛𝑝𝑎𝑠𝑦𝑚

2𝜌0𝜎𝑟
2 . The collective equations of motion are then given by the application of the Euler-Lagrange 

equations to the Lagrangian of eq. (15). To simulate the damping effect of the nucleon-nucleon (NN) 

scatterings, we can introduce a damping first order term of the form 𝑀𝑏𝐷̇, where 𝑏 = 𝛤/ħ is connected 

to the width of the resonance. The equations of motion can thus be rewritten as 

𝐷̈ + 𝑏𝐷̇ + 𝜔0
2𝐷 = 0 

(16) 

where 𝜔0 is the principal frequency of the GDR motion. This is described by the formula  

𝜔0 = √
𝑘

𝑀
= √

𝜌𝑛𝑝𝑎𝑠𝑦𝑚

2𝑚∗𝜌0𝜎𝑟
2

𝐴

𝑁𝑍
 

(17) 

 The solution of the equations of motion yields a damped oscillatory waveform and a Lorentzian Fourier 

transform. These functional forms are the functional forms that we use to fit the CoMD data.  

 

COMPUTATIONAL DETAILS 

The computational procedure via the CoMD model consists of three steps: initialization, evolution 
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and data processing. First, the collection of the initial values of the centroids for each nucleon is 

calculated. These collections are termed as ‘initial configurations and a whole set of these is produced 

by a Simulated Annealing algorithm. Afterwards a globally optimized configuration from the whole set 

is chosen with a dedicated algorithm. This procedure is the initialization step [8].  

After an initial configuration is chosen, the nuclear system is perturbed in either the position or 

momentum space. The momentum space perturbations correspond to a temperature and are used for the 

simulation of the GMR and PGR, while r-space perturbation induces the GDR. Afterwards, the nucleus 

evolves according to the Hamiltonian equations. To account for the approximate character of the 

interaction, the centroids are randomly rotated in the phase space before the evolution. This rotation 

conserves the total energy, linear and angular momentum of the system. The time evolution of each 

rotated system corresponds to a different ‘event’.  

The final step of processing the resulting data depends on the nuclear phenomenon that is studied. 

Firstly, the trajectories the nucleons are properly averaged for each event and the various characteristics 

are calculated.  For the study of the GRs, a Fourier transform is applied to the evolution of either the 

radius (GMR) or the relative distance of the neutron-proton fluids (GDR/PDR). This process is 

performed by a Fast Fourier Transform (FFT) code and produces the corresponding spectrum.  

The results of a CoMD study depend heavily upon the characteristics of the effective interaction. 

Here, we use two different EoS, the ‘Standard’ and the ‘Hard’. The ‘Standard’ EoS is characterized by 

K = 254 MeV, 𝑚∗/𝑚 = 1 and 𝑎𝑠𝑦𝑚 = 32 MeV, while the ‘Hard’ EoS has  K = 308 MeV, 𝑚∗/𝑚 =

0.9 and 𝑎𝑠𝑦𝑚 = 38 MeV. Unless stated otherwise, it is assumed that our calculations were performed 

with the Standard EoS and 𝜌0 = 0.165 fm-3, 𝐶𝑠/𝜌0 = −1 and 𝜎𝑟 = ħ/𝜎𝑝 = 1.30 fm.  

 

RESULTS AND DISCUSSION 

The Effective Interaction and the GDR 

The value of the GDR energy can constrain the parameters of the effective interaction. First of all, 

the resonance energy increases with increased compressibility. This can be seen in fig. 1 (a), for 40Ar, 
64Ni and 86Kr. This can be explained by accounting the neutron-proton interaction densities 𝜌𝑛𝑝. A more 

compressed system has higher densities and thus the interaction between proton-neutron pairs is more 

prominent [4] and the nuclear response appears in higher frequencies. This tendency correlates the 3-

body interactions with the dipole frequency. Interestingly, higher 3-body correlations result in a more 

bound system and higher GDR energies. 

 

 
Fig. 1. Effect of the compressibility (a) and effective mass (b) to the GDR energies. The calculations were 

performed with the standard EoS, for different isotopes according to the key. 

 

Another interesting characteristic is the effect of the momentum dependence. In fig. 1 (b), the 

energy of the main GDR peaks is plotted against the corresponding values of their effective mass ratios, 
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for 40Ar, 58Ni and 86Kr. We confirm the increment of the GDR energy with decreased effective masses, 

that is also discussed in [10]. This can be reasoned by the presence of the effective mass in the 

denominator of the dipole frequency in eq. (17). The effective mass is decoupled from the 

compressibility in the current version of the model and is treated as a free parameter. This is reason that 

our study favors a hard EoS, while other studies [12] prefer a softer EoS with 𝐾 = 250 MeV. This 

feature is under investigation and we plan to construct an EoS with effective mass coupled with K. 

We also state our preliminary results in the study of the spin-orbit coupling interaction. In fig. 2, 

the GDR spectra of 64Ni for 𝑊0 = 0 MeV fm-5 (a) and 𝑊0 = 30 MeV fm-5 are shown. We note that the 

inclusion of a SO potential term decreases the total cross section and increases the centroid energy by 

~1 MeV. The effect of SO coupling is presently under systematic investigation. 

 

 
Fig. 2. Effect of spin-orbit interaction to the GDR. The GDR spectra of 64Ni with 𝑊0 = 0 MeV fm-5 (a) and 𝑊0 =

30 MeV (b), were calculated with the standard EoS. 

 

The dipole response of neutron rich systems usually exhibits the soft PDR mode. Such a system is 

the interesting 68Ni nuclide. We present both its GDR (a) and the PDR (b) spectra in fig. 3. The main 

peak at ~15 MeV corresponds to the GDR and has a discrepancy of 2 MeV from the experimental value, 

of 17.84 MeV [13]. On the contrary, the secondary peak of panel (b) is identified as the PDR at ~12 

MeV, which is closely reproduces the experimental value of 11 MeV [13]. 

 

 
Fig. 3. The GDR (a) and PDR (b) spectra of 68Ni, calculated with the ‘hard’ EoS. We identify the soft Pygmy mode 

at ~12 MeV and the main GDR at ~15 MeV of the spectrum (b). 

 

Mass and Isospin dependence of the IVDGR 

As discussed in [10] the GDR energy is independent of the total isospin of the nucleus. To study 

this effect, we introduce the asymmetry parameter 𝑚𝜒 = (𝑁 − 𝑍)/𝐴. The energies of the main GDR 

peak are plotted against mχ in fig. 4 (left), for the isobaric chains with A = 40, 68 and 100. We confirm 

the aforementioned invariance, up to ±1 MeV. On the contrary, we have shown in an earlier work [4] 

that the other important isovector parameter of neutron skin has a linear dependence on mχ. The 

invariance of the GDR can be understood in the terms of the principal contribution of the symmetric 
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core’s interaction 𝜌𝑛𝑝 density to the collective frequency, eq. (17). 

In Fig. 4 (right), we also show the variation of EGDR with respect to the nuclear mass. The red 

dashed curve corresponds to an experimental parametrization [10], while the green and cyan curves 

correspond to CoMD results with the ‘standard’ and ‘hard’ EoS respectively. 

 

 
Fig. 4. Dependence of the GDR energy on the asymmetry parameter (left) and mass number (right). The left plot 

presents calculations with the standard EoS for different isobaric chains, according to the key. In the right plot, 

the dashed line corresponds to an experimental parametrization from [10], the green curve to the standard EoS 

and the cyan curve to the ‘hard’ EoS. 

 

As it is known [10], effective interactions without momentum dependence underestimate the 

GDR energies. This is reflected in fig. 4, as the standard EoS results show a 3-4 MeV discrepancy. 

The use of a decoupled lower effective mass with the hard EoS, partially remedies the situation, 

giving results with 1-2 MeV discrepancies. 

 

Simulation of the Monopole Modes 

The monopole resonances are, in their own right, some of the most important studied phenomena 

in nuclear dynamics. They comprise the most prominent experimental constrain on the compressibility 

of NM. Here, we present our study of the monopole response of the xNi, x = 58, 64 and 68 nuclides. In 

fig. 5, the GMR spectra of 58Ni (a) and 64Ni (b) isotopes are presented, while in fig. 6 (a) the 68Ni 

spectrum is shown. All these calculations were performed with the standard K=254 MeV EoS. 

We identify the main GMR peak at ~21.5 MeV, which is close to the experimental value, of 21.9 

MeV [14]. Furthermore, the neutron rich 68Ni shows a minor peak at 14.5 MeV. We may identify this 

as the soft monopole mode, that corresponds to the breathing mode of the neutron skin against the 

symmetric core. Our result is in close proximity to the corresponding experimental value of 12.9 ± 1 

MeV [14]. 

 
Fig. 5. The GMR spectra of 58Ni (a) and 64Ni (b). The calculations were performed with the standard K=254 EoS, 

with a p-space perturbation. The main peaks are identified at ~21.5 MeV. 

 

Finally, in fig. 6 (b), we show the GMR spectrum of 68Ni with the hard K=308 MeV EoS. 

Interestingly, the centroid of the main peak is increased only by ~1 MeV and its total cross section, as 
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well as its width are also increased. On the contrary, the secondary soft monopole peak appears to retain 

its strength and centroid energy 

 

 
Fig. 6. The GMR spectra of 68Ni calculated with the standard EoS (a) and the ‘hard’ EoS (b). The soft monopole 

modes (indicated by arrows) appear at ~14.5 MeV. 

 

CONCLUSIONS 

In this work, we extensively used the microscopic CoMD model to study the Giant Monopole and 

Dipole Resonances. First, we developed a simplified GDR phenomenology based on the usual CoMD 

formalism. Afterwards, we studied the effect of some important parameters of the effective nuclear 

interaction to the GDR spectrum. 

We found that the increased compressibilities and decreased effective masses result in increased 

GDR energies. In addition, we started investigating the inclusion of a 2-body spin orbit potential to the 

model. Our results so far, suggest that the spin-orbit coupling slightly increases the GDR energy, while 

it significantly reduces its cross section. Additionally, we observed that a ‘hard’ EoS with K = 308 

MeV, 𝑚∗/𝑚 = 0.9 and 𝑎𝑠𝑦𝑚 = 38 MeV reproduces more reliably the experimental dipolar data, up to 

1-2 MeV. Furthermore, we confirmed that, in contrast to the isovector neutron skin parameter, GDR is 

invariant with respect to the asymmetry ratio mχ, in isobaric conditions. We also reproduced in a 

satisfactory manner the main and soft dipole peaks of 68Ni. 

Finally, our study concluded with the monopole GMR resonance and the corresponding soft mode. 

We calculated the monopole spectra of the xNi, x = 58, 64, 68 isotopes. Our results were in the proximity 

of the experimental values. The calculation of the 68Ni spectrum was also performed with the K=308 

EoS and yielded consistent results with the experimental data. Our work points to the construction of a 

new EoS with effective mass compatible with the compressibility and a more thorough investigation of 

the spin-orbit coupling effect. We plan to focus our future studies on these directions. 
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