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THE HVT TECHNIQUE AND THE "UNCERTAINTY” RELATION FOR
CENTRAL POTENTIALS

M.E. Grypeos, C.G. Koutroulos, K.J. Ovewumi™, Th. Petridon
Department of Theoretical Physics, Aristotle University of Thessaloniki,

(,: reece
+t Permanent address: Physics Department, University of Ilorin. Nigeria.

The quantum mechanical hypervirial theorems (HVT) technique is used
to treat the so-called "uncertainty” relation for quite a wide class of central
potential wells, including the (reduced) Poeschl-Teller and the Gaussian one.
[t is shown that this technique is quite suitable in deriving an approximate
analytic expression in the form of a truncated power series expansion for the
dimensionless product Py =< v? > < p* >, ,/fiz, for every (deeply) bound
state of a particle moving non-relativistically in the well, provided that a
(dimensionless) parameter s is sufficiently small. Numerical results are also
given and discussed.

PACS numbers:02,60-x.03.63.-w.21.80.+a

1. Introduction

The quantum mechanical hypervirial theorems (HVT) technique [1.2] is a
very useful technique in dealing with various problems encountered in Physics
and Chemistry. [ts main advantage is that one can calculate expectation
alues of interesting quantities, avoiding the use of the wave function and
thus achieving considerable simplification. Particular attention was paid in
obtaining energy eigenvalues for a particle moving in a potential and a lot of
work has been done in this direction for various types of potentials [3].

The case of a general class of even-power series central potentials and
in particular those of the form V(r) = —'r"bf('_ﬁ) was studied in refs. [4.,5].
[n that procedure, one obtains in a unified way the general expressions of
the (lower) hound state encrgy cigenvalues and of the expectation values of
certain other physical quantities with respect to the eigenstates of the gingle

particle Hamiltonian. Application of these expressions to specific potentials



of the class leads immediately to the corresponding expressions for the par-
ticular potential considered. Those expressions are of the form of expansions
in powers of a small parameter and the first terms of the expansions are
expected to provide a reasonable approximation of the calculated quantities,
as long as the parameter is sufficiently small. For potentials of the form
V(r) = =Vof(%), the expressions are power-series of the dimensionless pa-

rameter s = ( )12 and the structure of the first terms of the expansions

2
is fairly simplzg.VORThe successive terms of each expansion are obtained by
means of suitable recurrence relations on the basis of Swenson and Danforth
hypervirial relations [6] and the Hellmann-Feynman theorem [7]. See also
Killingbeck [2].

In a recent publication [8] another useful application of the HVT tech-
nique was considered, namely the study of inequalities of physical interest.
Two basic inequalities were studied, relating the lowest energy level spacing
AFE of a particle in its ground state, moving non-relativistically in a central
well, with the mean-square radius of its orbit and the expectation value of
its kinetic energy, respectively, with the aim of investigating their (approx-
imate) "saturation”, that is whether they become equalities approximately
(e.g. within a few per cent) [9].

The aim of the present work is to discuss another inequality which is
important to Physics. It has been pointed out (see ref. [10] and section 2 of
ref.[11]) that for a particle moving non-relativistically in a central potential
V(r), the following "uncertainty” relation holds

9
<r2><p2>/h221 (1)

It was pointed out that the inequality becomes equality for the ground
state of the harmonic oscillator potential (HO). In all other cases the above
relation is an inequality and it would be of interest to provide analytic ways
in calculating the dimensionless product P, =< r? >< p* > /h* > %,
where the expectation values are calculated with respect to the hamiltonian
single particle eigenstates. That would provide the means to investigate
to what extent the inequality is saturated, depending on the potential shape
considered and on the specific state. We may recall that the usual uncertainty
relation for the position and its conjugate momentum: AzAp > h/2 and

its generalizations has been the subject of detailed investigations since the



publication of Heisenberg’s original paper [12] until recently (see e.g. ref.[13]
and references therein). We refer in this respect to the very informative
review article [14a]. Among the topics of interest has been the analytic
calculations of the uncertainty product (Az)(Ap) for various types of one-
dimensional potentials (see e.g. ref.[14b]).

The formalism and the expression for P,; are given in the next section,
while in the final one numerical results are given and discussed.

2. The formalism and the expression for the dimensionless
product P,

In this section the s-power series expansions, mentioned in the introduc-
tion and which had been derived [4,5] by means of the HVT technique are
used.

The wide class of two-parameter potential wells of the general form:

V(r)=-=V,f(r/R), 0<r<owo (2)

is considered and a particle of mass p is assumed to move (non-relativisti-
cally) in a well of this form. In the above expression, V, > 0 is the potential
depth, R > 0 its "radius” and f (f(0) = 1) the "potential form factor”
which determines its shape. The function f is assumed to be an appropriate
analytic function of even powers of z = r/R with d*f/dx*|,—o < 0. Such
potentials behave like an harmonic oscillator potential near the origin and
therefore the terminology "oscillator-like” potentials has been used. The
results of this work corroborate the suitability in using such a terminology
(see section 3). Apart from the above mentioned resemblence, their shape is
quite different from that of the harmonic oscillator.
Typical potentials of the class are:
a) The Gaussian potential

Va(r) = —V,e /7

b) The (reduced) Poeschl-Teller (PT) potential
Vpr(r) = —V,cosh™(r/R)



but there are many other belonging to the same class.

In order to obtain the dimensionless product P,; it is convenient to use for
the energy eigenvalues and the expectation values of the kinetic energies and
the mean square radii of the particle orbits the dimensionless expressions
of their s-expansions of ref.[5] which are denoted by a tilde on the top of
the corresponding symbols. In the pertinent formulae, displayed below, it
was found appropriate to rearrange somehow the terms in the coefficients of
powers greater than 2, so that there is a more convenient way in factorizing
the two sorts of contributions, that is those originating from the quantum
numbers nl of the state and those from the numbers dj., determined by the
potential shape, which are related to the derivatives of the potential form
factor f:

1 d2k
dy = ——
(2k)! dz?*

The above rearrangement of terms in the coefficients of the s-powers will

@)oo » k=0,1,2,.., d1 <0 (3)

facilitate their use in the following.

We also note that it would be desirable to consider in addition a renor-
malized hypervirial perturbation theory [2,15] which is a very efficient one
and has been used in treating various problems [16,17]. This matter is under
investigation and requires further work in order that the method is adjusted
to our purposes.

The expression of the expansion for the energy eigenvalues is as follows:

N E, &
Enl = —l = Z eksk (4)
‘/0 k=0
where
€y = —1 (5)
1/2 3
€1 =2an(—di)"’", am=02n+1+ 5) (6)
ds 5
ea = —(12a2, — 4l + 1)+ 3) (7)
Rd;

4



€3 = — anl!_d1)1/2

32d5
(8)
{4dyds[20a?, — 121(1 + 1) + 25] + d3[—68a2, + 36((L + 1) — 67]}

1
~1024d}

€4

{12d, dyd5[880a’;, — 8a?,[841(1 4 1) — 295] + 3[4l(l + 1) — 3]

[41(1 + 1) — 35]] + d3 [—6000a2, + 24a2,[1721(1 + 1) — 569]—
[41(1+ 1) — 3)[440(1 + 1) — 513]] + 8d}dy [—560ak, + 40a2,[120(] + 1) — 49]
3[4l + 1) — 3][4l(l + 1) — 35]]} (9)

For the mean-square radii of the particle orbits we have

~ <r?i>, >
< >uE g = Yot (10)
k=0
where
ro =0 (11)
Unl
SR -
_ d2 2
ry = w5 (12a;;, —41(l + 1) + 3) (13)
8
anl(_d1)1/2
rg = ——
64d]

{12d1d5(20a2, — 121(1 + 1) + 25) + 542 [—68a2, + 36/(1 + 1) — 67]}  (14)

{9d,dyds[—880a?, 4 8a?,[841(1 + 1) — 295] — 3[4l(l + 1) — 3]

g = —

25645
[41(1+ 1) — 35]] + d3 [6000a, — 2402 [1721(1 + 1) — 569]+



[41(1+ 1) — 3)[441(1 + 1) — 513]] + 4d?d, [560a, — 40a2,[121(1 + 1) — 49]+
S[40(1 + 1) — 3][41( + 1) — 35]]} (15)

Finally, for the expectation value of the kinetic energy operator in the
various energy eigenstates we have:

~ Tn >
<T >u= b ZtkSk (16)
‘/0 k=0
where
k
tk = §€k7 k= 0, 1,2 ..... (17)

For the product < r? >,;< p? >,; we may write

<rr>u<p? g = 2uVoRE <P > < T >y
/ 5
b <P ey < T >y

2 18
= %(Ziozo Tksk)(ziozo tksk) (18)
= (o wesb)
where
k
Tk = (ertk—p) (19)
p=0

The expressions of v,k = 0,1, 2... follow easily from the expressions of

7, and ;. We find

Yo=m=0, 7 =rt =d,

3 = rity + 1oty =0,

Ya = ritz + oty + 13ty =

e {dhds[12a (a0 — 1)(20a% + 25 — 120(1 +1))]

+d3[(12a2, — 41+ 1) + 3)* + au(bay — 3)(—68a2, + 361(1 + 1) — 67)]}
and

Vs = Tits + otz + raly + raly =
—dp)1/2
~C— {6dvdads o) + a0 + 07| + 4 |0} + 4]}




where

fjl) = —8a%,[110a2, — 84[(I + 1) + 295]

B = _3a[4l(1+ 1) = 3][41(l + 1) — 35]

) = 2(1 + an)[12a2, — 4I(1 + 1) + 3][20a2, — 120(1 + 1) + 25]
>_ 24a3,[250a2, — 172((1 + 1) + 569]

¢ = a[Al(l + 1) = 3)[441(1 + 1) — 513]+

(3 + Ban)[12a2, — 41(1 + 1) + 3][—68a2, + 361( + 1) — 67]

Therefore, the result for the dimensionless product P, is:

<r?P>u<p? >

Pnl = h2

3
(2n + 1 + 5)2 + 748° + y58° +I(s?) = Pé?) + Pﬁ) + Pﬁ) + (s (23)

It is seen that the structure of the dimensionless product is fairly simple,
but the coefficients v, become progressively more complicated as the power
of s increases. It is further seen that there is no contribution of terms pro-
portional to the small dimensionless quantity s but of terms of s and higher.

3. Numerical values of the dimensionless product P,

and discussion

In this section we report the numerical results obtained with the derived
expression (23) of the dimensionless product P,; for the first bound states and
the various values of the small quantity s. Each contribution to P,; : Pél), P( )
and Pﬁ) is also given in each case. The detailed results obtained with the
PT potential are given in tables 1-4, while those with the Gaussian potential
are displayed in ref.[20], where it is seen that the corresponding P,; values

are a little larger.



Numerical values of the dimensionless product P,; and the partial contri-
butions Péf) to it for the states nl=00,10,01,02, (tables 1,2,3 and 4, respec-
tively) for various values of s. The (reduced) PT potential was used.

Table 1.

s | Y ] P | P | Pw
0.00 | 2.250 0 0 2.2500
0.02 | 2.250 | 0.00014 | 0.00001 | 2.2501
0.04 | 2.250 | 0.00055 | 0.00004 | 2.2506
0.06 | 2.250 | 0.00124 | 0.00014 | 2.2514
0.08 | 2.250 | 0.00220 | 0.00033 | 2.2525
0.10 | 2.250 | 0.00344 | 0.00064 | 2.2541
0.12 | 2.250 | 0.00495 | 0.00110 | 2.2561

Table 2.

s | Y | PR Py Pro
0.00 | 12.250 0 0 12.2500
0.02 | 12.250 | -0.00256 | -0.00021 | 12.2472
0.04 | 12.250 | -0.01025 | -0.00167 | 12.2381
0.06 | 12.250 | -0.02306 | -0.00565 | 12.2213
0.08 | 12.250 | -0.04100 | -0.01339 | 12.1956
0.10 | 12.250 | -0.06462 | -0.02616 | 12.1598
0.12 | 12.250 | -0.09225 | -0.04520 | 12.1126

Table 3.

s | Y] PP | P | P
0.00 | 6.250 0 0 6.2500
0.02 | 6.250 | 0.00071 | 0.00005 | 6.2508
0.04 | 6.250 | 0.00284 | 0.00037 | 6.2532
0.06 | 6.250 | 0.00639 | 0.00126 | 6.2577
0.08 | 6.250 | 0.01136 | 0.00299 | 6.2644
0.10 | 6.250 | 0.01774 | 0.00584 | 6.2736
0.12 | 6.250 | 0.02555 | 0.01009 | 6.2856




Table 4.

s | PY | AY | RS Py
0.00 | 12.250 0 0 12.2500
0.02 | 12.250 | 0.00324 | 0.00026 | 12.2535
0.04 | 12.250 | 0.01295 | 0.00206 | 12.2650
0.06 | 12.250 | 0.02914 | 0.00697 | 12.2861
0.08 | 12.250 | 0.05180 | 0.01651 | 12.3183
0.10 | 12.250 | 0.08094 | 0.03224 | 12.3632
0.12 | 12.250 | 0.11655 | 0.05572 | 12.4223

It is clear from the results obtained in all tables that the main contribution
to P, for each bound state, comes from the corresponding zeroth order term

po

nl) (see expression (23)). This is more pronounced for the ground state

(n=0,1=0) and the smaller values of s, as is expected. It is also noted that
the (absolute) values of Pﬁ) are smaller than the corresponding ones of Pﬁ)
and often the difference between the two values is quite substantial.

On the basis of the above observations, it is therefore seen that the values
of the dimensionless product P,; are quite close to the corresponding values
of the harmonic oscillator potential Pglo) = Pi?). This fact corroborates the
suitability of the terminology of the potentials of this class as "oscillator-like”
potentials. Pertaining to other types of potentials, such as the Coulomb and
the spherically symmetric rectangular infinite well for which exact analytic
results exist:

PS = %[57@2 +1 =30 +1)] (24)

nl —

and | |

P = x4 S s )
(X, being the roots of the I-th order spherical Bessel function), the corre-
sponding values of P, are quite different [20].
2#@0]%2
V,) and wide (large R) potential wells. An interesting physical system cor-

It is clear, since s = ( )'/2, that small values of s imply deep (large

responding to the situation of a wide well, (for which are known experimen-
tally certain energy eigenvalues) is a rather heavy A-hypernucleus. The self-
consistent field felt by the A-particle in the hypernucleus is very complicated,
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but suitable single-particle potentials can be used often very satisfactorily.
Two-parameter central potentials of the type used here may be considered
as possible candidates for a rough representation of a more realistic single-
particle potential. These potentials are in their turn, more realistic than the
well-known harmonic oscillator potential, which because of its considerable
analytic advantages has been very popular in Nuclear Physics problems for
purposes of rough estimates. The use of the HVT technique has shown that
potentials of the class considered can be useful in a number of cases for these
purposes [18,19]. To guarantee rather small values of s one should consider,
however, hypernuclei with fairly large mass numbers.

In conclusion, the present work shows that the HVT technique provides
for sufficiently small values of s, a rather simple and handy way to estimate
the dimensionless product P, for any (deeply) bound eigenstate of a wide
class of central single particle hamiltonians, treating them in a unified way.
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