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enter the analysis of ele
tron- or hadron-s
attering experiments aiming at

identifying giant resonan
es. Ma
ros
opi
 des
riptions may be inadequate

in 
ertain 
ases.

� The question arises as to whether the giant resonan
es, and in general the

multipole response, of drip-line nu
lei di�er signi�
antly from the ones of

stable nu
lei. Interesting theoreti
al predi
tions, whi
h are worth examining

further in terms of the transition density, in
lude the in
reased fragmenta-

tion of giant resonan
es in the 
ase of drip-line nu
lei and the o

uran
e

of the so-
alled threshold strength, namely a signi�
ant amount of strength

just above the neutron threshold and below the energy region of the giant

resonan
e, in the 
ase of neutron-ri
h nu
lei.

� It is possible to study the momentum dependen
e of nu
lear response ex-

perimentally using inelasti
 ele
tron s
attering.

The RPA method des
ribes satisfa
torily the transition densities of 
olle
tive

states in stable nu
lei. The RPA has also been used in the past to study

transition densities of individual ex
itations in the 
ase of unstable nu
lei

and to 
ompare with the behaviour of stable nu
lei [5,6,7,8,9,10,11℄. In this

work we follow an alternative -and , in prin
iple, equivalent- approa
h whi
h

allows a more systemati
 study. We will examine how the transition strength

distribution varies with the momentum q transferred to the system. For this

we 
onsider an external �eld of the form j

L

(qr).

2 De�nitions and method of 
al
ulation

We 
onsider the response of spheri
al, 
losed-(sub)shell nu
lei to an external

�eld of the type V

L0

=

P

A

i=1

V

L

(r

i

; t

i

)Y

L0

(�

i

; �

i

), where the variable t

i

= p or n

labels the isospin 
hara
ter -proton or neutron- of the i � th parti
le. For an

isos
alar (IS) �eld, V

L

(r; p) = V

L

(r; n) � V

L

(r) and for an isove
tor (IV) one

V

L

(r; p) = �V

L

(r; n) � V

L

(r). For L = 1 we use an e�e
tive 
harge equal to

�

2N

A

for protons and

2Z

A

for neutrons. In the following, the isospin label will

be suppressed for the sake of simpli
ity.

We set V

L

(r) = [4�(2L+ 1)℄

1=2

j

L

(qr), where j

L

is a spheri
al Bessel fun
tion.

In the long-wavelength limit qR! 0 (R is the nu
lear radius), we obtain the

usual multipole operator of the form r

L

for L > 0 and r

2

for L = 0. The IS

transition density Æ�

L0

(~r) 
hara
terizing the ex
ited natural-parity state jL0i

of energy E, is determined by its radial 
omponent Æ�

L

(r), where

Æ�

L0

(~r) = (2L+ 1)

�1=2

Æ�

L

(r)Y

L0

(�; �): (1)

The strength distribution S(E) =

P

f

h0jV

L0

jfi

2

Æ(E � E

f

) (where jfi are the

�nal states ex
ited by the external �eld V

L0

and E

f

their ex
itation energies)
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is related to the Fourier transform of Æ�

L

(r). In parti
ular, sin
e we are dealing

with 
ontinuous distributions, we write the strength in a small energy interval

of width �E at energy E as

S(E)=

4�(2L+ 1)

�E

j

1

Z

0

drÆ�

L

(r)j

L

(qr)r

2

j

2

=

(2L+ 1)

�E

j

Z

d

3

rÆ�

L0

(~r)

e

i~q�~r

j

2

/ jF

L

(q

2

)j

2

: (2)

The quantities introdu
ed above are 
al
ulated using a Skyrme - Hartree-Fo
k

(HF) plus Continuum - RPA (CRPA) model. For the HF ground-state, the

numeri
al 
ode of P.-G. Reinhard [12℄ is used. The 
al
ulation of the response

fun
tion (unperturbed HF, as well as RPA) is formulated in 
oordinate spa
e,

as des
ribed in [13,14,15,16,17℄. The radial part of the unperturbed ph Green

fun
tion, of multipolarity L, is given by:

G

0

L

(r; r

0

;E) =

X

ph

(

hpjjO

L

jjhi

�

r

hpjjO

0

L

jjhi

r

0

"

ph

�E

�

hhjjO

0

L

jjpi

�

r

0

hhjjO

L

jjpi

r

"

ph

+E

)

; (3)

where O

L

(or O

0

L

) is one of the operators Y

L0

, [Y

L


(r

2

+r

0

2

)℄

L0

, [Y

L�1


(

~

r�

~

r

0

)℄

L0

and [Y

L�1


(

~

r+

~

r

0

)℄

L0

. The sign of the se
ond term depends on the sym-

metry properties of the operators O

L

and O

0

L

under parity and time-reversal

transformations. Spin operators have been omitted in the present 
al
ulation.

With h (p) we denote the quantum numbers of the HF hole(parti
le) state

and "

ph

= "

p

� "

h

is the energy of the unperturbed ph ex
itation. The parti
le


ontinuum is fully taken into a

ount, as des
ribed in [13,16,18℄. A small but

�nite ImE ensures that bound transitions a
quire a �nite width [13℄. The RPA

ph Green fun
tion is given by the equation

G

RPA

L

= [1 +G

0

L

V

res

℄

�1

G

0

L

; (4)

whi
h is solved as a matrix equation in 
oordinate spa
e, isospin 
hara
ter and

operators O

L

. The ph residual intera
tion V

res

is zero-range, of the Skyrme

type, derived self-
onsistently from the Skyrme-HF energy fun
tional [16,19℄.

From the Green fun
tion G

RPA

L

for O

L

= O

0

L

= Y

L

the strength distribution

S(E) is obtained,

S(E) = 4(2L+ 1)Im

Z

j

L

(qr)G

RPA

L

(r; r

0

)j

L

(qr

0

) dr dr

0

: (5)
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Figure 1. ISM strength distribution as a fun
tion of energy and momentum transfer.
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Figure 2. ISQ strength distribution as a fun
tion of energy and momentum transfer.

3 Results

We have 
al
ulated the IS and IV monopole (ISM and IVM), IV dipole (IVD)

and IS and IV quadrupole (ISQ and IVQ) response of the nu
lei

56;78;110

Ni

and

110;120;132

Sn using the RPA method des
ribed above and the Skyrme

parametrization SkM*, for q = 0:2; 0:4; 0:6; 0:8; 1:0 fm

�1

. Sele
ted results

are presented in Figs. 1-5. Next we 
omment on these results.
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Figure 3. IVM strength distribution as a fun
tion of energy and momentum transfer.
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Figure 4. IVD strength distribution as a fun
tion of energy and momentum transfer.

Strength is shifted to higher energies In all 
ases, as q in
reases, the

strength distribution is shifted to higher energies, whi
h 
an be interpreted as

the onset of the quasielasti
 peak. Also, overtones of giant resonan
es be
ome

visible. For instan
e, in the ISM response, Fig. 1, strength is shifted from the

2�h! region to the 4�h! region. In the IVD response, Fig. 4, strength is found

in the 3�h! region as q in
reases. Ex
itations of single-parti
le 
hara
ter, with

density os
illations taking pla
e in the interior of the nu
leus, give rise to this

behaviour of the form fa
tor. In the light nu
leus

56

Ni the shift takes pla
e

more slowly as a fun
tion of q than in heavier nu
lei, su
h as

120

Sn.
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Figure 5. IVQ strength distribution as a fun
tion of energy and momentum transfer.

Threshold strength In the 
ase of neutron-ri
h nu
lei the threshold strength

(TS) vanishes rapidly as q in
reases. This is seen 
learly in the 
ase of

110

Ni.

As we observe in Fig. 1 (right panel, RP), the ISM TS behaves di�erently than

the IS GMR whi
h is lo
ated a few MeV higher in energy. The same holds

for the IVM response, Fig. 3 (RP), and similarly for the IVD, Fig. 4 (RP). A

major role in this e�e
t is played by the weakly bound neutrons outside the


ore, whi
h are distributed at large distan
es from the nu
lear 
enter, resulting

in form fa
tors F

L

(q) with maxima at lower values of q.

In Ref. [5℄ the ISM response of the neutron-ri
h nu
leus

60

Ca is examined -

where a signi�
ant amount of TS appears as well. It was found that in the

region of the GMR the transition density 
ompares rather well with the Tassie

model predi
tion, whereas in the TS region it is extended at large distan
es and

it originates mostly from neutron ex
itations. A similar e�e
t was predi
ted

also in the 
ase of the ISQ response of

28

O [6℄.

Isos
alar monopole response In Fig. 1 the ISM response of

56

Ni,

110

Ni and

120

Sn is presented. We observe that the form fa
tor of the �ne stru
ture just

above the GMR of

120

Sn is more 
at, between q = 0:4�0:8 fm

�1

, 
ompared to

the GMR. The same holds for the other Sn isotopes and for

78

Ni (not shown).

The GMR width of the light nu
leus

56

Ni is large. In Fig. 1 two distin
t

energy regions 
an be re
ognized: the region P

<

below E

0

� 23 MeV, and the

region P

>

above E

0

. A

ording to ma
ros
opi
 models, the GMR is a uniform


ompression mode whose transition density has a node at the nu
lear surfa
e.

In the 
ase of

56

Ni the node would then o

ur at radius R � 4:6 fm. Therefore,

the transition density for q = q

01

= �=R = 0:68 fm

�1

would show maximal

overlap with the fun
tion j

0

(qr) (whose 1st root equals �). It seems that the
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form fa
tor in the region P

<

follows this type of behaviour, sin
e it rea
hes a

maximum between 0.6 and 0.8 fm

�1

. The form fa
tor in P

>

is maximized at

a larger value of q and therefore it does not 
orrespond to su
h a 
olle
tive

behaviour.

Isos
alar quadrupole response The two peaks in the ISQ strength dis-

tribution of

56

Ni (see Fig. 2),

78

Ni (not shown) and

100;120

Sn (not shown),

namely the low-lying 
olle
tive transition and the IS GQR, show similar be-

haviour as a fun
tion of q up to q � 0:8 fm

�1

. This is due to the fa
t that

in these nu
lei, the transition density of both states is peaked at the surfa
e.

In the 
ase of

132

Sn, Fig. 2, the form fa
tor of the �rst peak does not follow

the behaviour of the GQR form fa
tor. In

110

Ni, Fig. 2, there is a 
lear di�er-

en
e. The low-energy peak loses its strength faster than the GQR, behaving

like the threshold strength of other multipolarities. This e�e
t is attributed

to the ex
essive loosely bound neutrons ourtside the 
ore, resulting in tran-

sition densities peaking beyond the surfa
e of the 
ore. In

110

Ni a third peak

o

urs between the low-lying state and the GQR, also showing di�erent be-

haviour. It peaks at higher q than the GQR and the low-lying state do. It is

a non-
olle
tive state with a transition density lo
alized in the interior of the

nu
leus. Su
h a peak o

urs also in the 
ase of

78

Ni (not shown).

Isove
tor strength distributions With the ex
eption of the threshold

strength in very-neutron-ri
h nu
lei, the IVM strength distributions, Fig. 3,

for q = 0:2; 0:4 and 0.6 fm

�1

are similar to ea
h other. The same seems to

hold for the IVQ distributions, Fig. 5, in the region of the IV GQR, in spite

of the ri
h stru
ture of the latter, and, to a lesser extent, in the 
ase of the

IVD distributions, Fig. 4.

4 Con
lusion

A

ording to our results, the transition density may show 
onsiderable energy

dependen
e in the region of the IS GMR. The form fa
tor of the threshold

strength in very-neutron-ri
h nu
lei, is narrower 
ompared with the form fa
tor

of the respe
tive giant resonan
e. This result is independent of L. In the region

of IV GMR and GQR resonan
es, no signi�
ant energy dependen
e is observed

for the low values of q examined here.
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