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An application of the information entropy to
nuclei.

S.E. Massen

Department of Theoretical Physics , Aristotle University of Thessaloniki,
GR 54124 Thessaloniki, Greece

Abstract

Shannon’s information entropies in position- and momentum- space and their
sum S are calculated for various s-p and s-d shell nuclei using a correlated one-
body density matrix depending on the harmonic oscillator size by and the short
range correlation parameter y which originates from a Jastrow correlation function.
It is found that the information entropy sum for a nucleus depends only on the

Asa | where

correlation parameter y through the simple relation S = sga + s14y~
S04, 514 and Ag4 depend on the mass number A. Finally, we propose a method to
determine the correlation parameter from the above property of S as well as the

linear dependence of S on the logarithm of the number of nucleons.

1 INTRODUCTION

The uncertainty in position space (Ax) and in momentum space (Ap,) are
usually associated with the standard deviation of a set of measurement of the
position and the momentum. That definition of the uncertainty is the most
appropriate when the distribution is nearly a Gaussian. If the distribution
deviates significantly from the Gaussian, i.e. having more than one peak, the
standard deviation is not a good measure of the uncertainty [1). As uncertainty
is the missing information of a distribution it should not surprise us that
Information Theory provides a way to measure uncertainty. A measure of
the uncertainty is Shannon’s information entropy. For a continues probability
distribution p(x) it is defined as

S=- [p(if) Inp(x)da, ]p(ii)dlf =1

This quantity is useful for the study of quantum systems [2-14]. Tt is closely
related to the entropy and disorder in thermodynamics. Shannon regarded
that entropy attached to the system as the amount of information carried



by the system. It has already been connected with experimental and/or fun-
damental quantities (e.g., the kinetic energy and magnetic susceptibility in
atomic physics [4] and the kinetic energy and mean square radius in nuclear
and cluster physics [11,13]. An important step was the discovery in Ref. [2] of
an entropic uncertainty relation [2] which for a three-dimensional system has
the form

S=5+S5>31+Inn)~6434 (1)

where
Sy = —/p(r) Inp(r)dr and Sy = —/n(k) Inn(k)dk (2)

are the Shannon’s information entropies in position and momentum space
and p(r), n(k) are the density distribution (DD) and momentum distribu-
tion (MD), respectively, normalized to unity. Inequality (1) is an information-
theoretical uncertainty relation stronger than Heisenberg’s [2] and does not de-
pend on the unit of length in measuring p(r) and n(k), i.e. the sum S = S, +5j
is invariant to uniform scaling of coordinates, while the individual entropies
S, and S; are not.

Information entropies were employed in the past to study quantum mechani-
cal systems [2-7]. Recently [8,10,12] we studied the position- and momentum-
space information entropies S, and Sg, respectively, for the densities of various
systems: the nucleon DD of nuclei, the valence electron DD of atomic clusters
and the DD of trapped Bose alkali atoms. We found that the same functional
form S = a + bIln N for the entropy sum as function of the number of par-
ticles N holds approximately for the above systems in agreement with Refs.
[3,4] for atomic systems. In Ref. [9] we used another definition of informa-
tion entropy according to phase-space considerations [15] and we derived an
information-theoretic criterion for the quality of a nuclear DD, i.e. the larger
S the better the quality of nuclear model. In Ref. [16] the DD, the MD and the
Shannon’s information entropies have been calculated for nuclei using three
different cluster expansions. The parameters of the various expressions have
been determined by least-squares fit of the theoretical charge form factor to
the experimental one. It was found that the larger the entropy sum the smaller
the value of ¥?, indicating that the maximal S is a criterion of the quality of
a given nuclear model according to the maximum entropy principle. Only two
exceptions to that rule were found out of many cases examined.

In the present work we focus on the entropy sum S of a nucleus using the
analytical expressions of the DD and MD of Refs. [17,18]. The expressions
of those distributions have been found for s-p and s-d shell nuclei using the
factor cluster expansion of Clark and co-workers [19] and Jastrow correlation
function which introduces short range correlations (SRC). Those expressions
depend on the harmonic oscillator (HO) parameter and the correlation pa-



rameter. Finally, we propose a way to determine the correlation parameter of
the model using the dependence of S on that parameter as well as the linear
dependence on the logarithm of the number of nucleons. The HO parameter
is determined equating the theoretical charge RMS radius of the nucleus with
the experimental one.

The paper is organized as follows. In Sec. II, the general definitions related
to the correlated DD, MD as well as the dependence of the entropy sum on
the correlation parameter are given. In Sec. III, we present a method for the
determination of the correlation parameter from the information entropy sum.
Finally, in Sec. IV, the summary of the present work is given.

2 CORRELATED ONE-BODY DENSITY OF s-p AND s-d SHELL
NUCLEI AND THEIR ENTROPY

A general expression for the one-body density matrix of N = Z, s-p and s-d
shell nuclei was derived in Refs. [17,18] using the factor cluster expansion of
Ristig, Ter Low and Clark [19]. That expression depends on the HO parameter
bo (bo = (h/(mw))'/?), the occupation probabilities of the various states and
the correlation parameter y that comes from the Jastrow type correlation
function

f(r)y=1—exp[—yry], ro=r1/bo, (3)

which introduces short range correlations. It is obvious that the effect of cor-
relations introduced by the function f(r) becomes large when the correlation
parameter y becomes small and vice versa.

The diagonal part of the one-body density matrix is the DD p(r). The Fourier
transform of the DD is the form factor F(q), while the MD n(k) is given by the
Fourier transform of the one-body density matrix . The expressions of p(r),
n(k) and F'(¢) (in the two body approximation for the cluster expansion) have
the forms

plr) = =573 (01 + O )l 1=/ 0
k) = 8 (6 (1y)+ Oathn )] . ks = 5)
F(q) = No {51(%) + 52(%73/)] . @ =qbo (6)



The terms Oy, O; and O; come from the one-body term of the cluster ex-

pansion of the one-body density matrix and the terms Oy, Oy and O, come
from the two-body term. Their expressions as well as the expression of the
normalization factor Ny are given in Refs. [17,18].

From the expressions of p(r) and n(k) the Shannon’s information entropies in
position and momentum space and their sum S = S, + Si can be calculated
through Eqgs. (2) for p(r) and n(k) normalized to 1.

For various values of the parameters by and y and for the N = Z, s-p and s-d
shell nuclei: “*He, 12C, 160, Mg, 28Si, 328, 36Ar and *°Ca we calculated S,., S},
and S = Sy, treating 2*Mg, 28Si, 328, 36Ar as 1d shell nuclei. It is found that,
for the above nuclei, S, and S, depend on both parameters, by and y, while
their sum S, depends only on the correlation parameter y. The calculated
values of S, for the above mentioned nuclei versus 1/y are displayed by points
in Fig. 1.

Table 1

The values of the parameters sg4, S14
and A4 of the information entropy sum
Sa of the relation (10) for various s-p

and s-d shell nuclei. o z:g\r
Nucleus S0A S14 AsA o g

v 24Mg

“He 6.4342 1.0410 1.0064 * 2
7.04 A ‘He

120 7.5086 2.1885 1.1548 ..»»v"’""“//
160 7.6069 2.6464 1.1529 651

00 01 02 03 04

Mg 8.0933 3.7445 1.2390 ' ' T

285 8.2096 4.1641 1.2548 Fig. 1. The information entropy sum

329 89901 4.5837 1.2659 S versus the correlation parameter
' ' . 1/y for various nuclei. The points

36Ar 8.3490 4.9578 1.2681 correspond to the numerical values

40(1y 84347 A727T5  1.2208 of S4(y) and the lines come from the

fitting expression (10).

It is seen that Sy4 is an increasing function both of 1/y and of the number of
nucleons A of the nucleus, while S, depends almost linearly on 1/y. For that
reason we fitted the numerical values of S4 with the form

S = Sa(y) = s0a+ S14 Yy 4, (7)

separately for each nucleus, that is the parameters sg4, s14 and Ag4 depend on
the mass number A of the nucleus. The parameter sg4 is determined from the
values of the information entropy sum in the HO case, i.e sp4 = Sa(0c0). The



other two parameters are determined by least-squares fit of the values of S
calculated from Eq. (7) to the corresponding ones calculated from Egs. (2).
The values of the parameter sg4 and the best fit values of the parameters s;4
and Ag4 are displayed in Table 1, while the values of S4(y) found from Eq.
(7) using the above values of the parameters are displayed by lines in Fig. 1.

It is seen that the simple form of S4, given by Eq. (7), reproduces very well
the numerical values of S, for all nuclei considered. Also, there is a systematic
trend of the values of the parameters sg4, si4 and A\;4. The parameter sgu
depends linearly on the logarithm of A. That is expected, as sg4 is equal to
the information entropy sum in the HO case which depends linearly on the
logarithm of the number of the nucleons [8]. The parameter ;4 has smaller
values in the closed shell nuclei *He, O and *°Ca than in the corresponding
neighboring open shell ones. Finally, the parameter s; 4 is almost a monotonic
increasing function of A with an exception for the nucleus *°Ca.

3 DETERMINATION OF THE CORRELATION PARAMETER
FROM THE INFORMATION ENTROPY

In recent works, it has been shown that the information entropy sum of a quan-
tum system (electrons in atoms [3,4], nucleons in nuclei and valence electrons
in atomic clusters [10] and correlated Bose atoms in a harmonic trap [12])
depends approximately linearly on the logarithm of the number of particles,
given by the form

S=S(A)=a+blnA, (8)

The question that arises is how that property can be used in practice. A
possible way is to determine S(A) for two nuclei (such that “He and “°Ca) for
which there are enough experimental data and then to find a and b of Eq. (8)
from the relations

_ S(4)In40 - S(40) In4 S(40) — 5(4)

In40 — Ind b0 T (9)

S(4) and S(40) can be found calculating first the charge form factors Fi;(q)
of *He and °Ca. The parameters by and y for *He and “°Ca are determined
by least-squares fit of the theoretical Fi;(q) to the experimental, with the
constraint that the experimental charge RMS radius is to be reproduced. The
values of the parameters by and y as well as the values of x? are displayed in
Table 2. In the same table the values of by and x? in the HO case (y = oo) are
also shown. In that case by is determined from the above mentioned constraint.
The experimental and the theoretical F,,(q), calculated with and without
SRC, for the two nuclei are shown in Fig. 2.
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Fig. 2. The charge form factors of nuclei “He (a) and °Ca (b). The solid lines
correspond to the case when SRC are included and the parameters y and by are
determined by least squares fit of the theoretical charge form to the experimental
with the constraint the calculated RMS charge radius is to be the experimental
one. The dot lines correspond to the HO case when by is determined from the
experimental RMS charge radius. The experimental points for He are from Ref.
[21] and for 4°Ca from Ref. [22].

With the values of by and y determined in the above described way, for the
two nuclei He and 1°Ca, we calculated the point p(r) and n(k) from Eqs. (4)
and (5) and the Shannon’s information entropies S, and Sy from Egs. (2) and
their sum, S(4) and S(40). Substituting the values of S(4) and S(40) into Egs.
(9), the parameters a and b are determined. The calculated values a = 5.4029
and b = 0.9360, are quite close to the values a = 5.325 and b = 0.858 which
have been found in Ref. [17] with SKIII interaction.

Rearranging Eq. (7) and replacing Sa(y) by S(A) from Eq. (8), we may write

y = [s1a/(S(A) = s0a)]"/ 2. (10)

Using the values of the parameters sg4, s14 and Ag4 given in Table I and
the values of S(A) calculated from Eq. (8), the correlation parameter y is
determined for the other nuclei without any fit to experimental data. The HO
parameter by, can be determined now for each nucleus equating the theoretical
RMS-charge radius with the experimental one.

The values of by and y for the various s-p and s-d shell nuclei determined in
the way above described, as well as the values of the least-squares errors, in
the comparison of the theoretical Fi;(q) to the experimental and the entropy
sum S are displayed in Table 2. In the same table the values of by, x? and S
when SRC are not included (HO case) are also shown. From Table 2 we can
see that there is a systematic behavior of the parameter y. The values of y are
always smaller (that is large correlations) in the closed shell nuclei, *He, 160,



Table 2

The values of the parameters by (in fm) and y, the x2, the RMS charge radius
<r2h)1/ 2 (in fm) and the information entropy sum S for various s-p and s-d shell
nuclei. The theoretical RMS charge radii are equal to the experimental of Ref. [20].

Nucleus Case bo y X2 (r2,)1/2 S
‘He SRC 1.2497 3.7857 940  1.676  6.7068
HO 13335 oo 53.46  1.676  6.4342
2¢ SRC 1.5617 7.1294 153.46 2471  7.7351
HO 1.6108 oo  181.31 2471  7.5086
160 SRC 1.6451 5.1782 417.05 2.730  8.0044

HO  1.7554 00 202.09 2730  7.6069
Mg SRC 1.7609 7.8711 221.07 3.075 8.3839
HO  1.8222 00 226.41  3.075  8.0933

BSi SRC 1.7226 7.8711 322.63 3.086  8.5282
HO 1.7860 oo  472.93 3.086  8.2096
329 SRC 1.7781 7.4140 669.72 3.248  8.6531
HO 18559 oo  850.03 3.248  8.2901
36 Ar SRC 1.7885 7.0790 3.327  8.7634
HO 1.8801 oo 3.327  8.3490

40Ca SRC 1.8397 7.1632 168.44  3.479  8.8620
HO  1.9526 00 230.60  3.479  8.4347

36Ar and °Ca, than in the neighboring open shell ones. It is mentioned that
36Ar is treated as 1d closed shell nucleus. The above behavior indicates that
there should be a shell effect in the case of closed shell nuclei for the values
of the correlation parameter y. Similar behavior was found in Ref. [17] where
the determination of the parameters by and y were made by individual fit of
the theoretical F,,(q) to the experimental one. From the same table we can
see that y is a monotonically increasing function of the number of nucleons of
the closed shell nuclei.

The theoretical F.,(q) with and without SRC, as well as the experimental ones
for various nuclei have been plotted versus the momentum transfer ¢ in Figs.
3 and 4. It is remarkable that without fit to the experimental charge form fac-
tors, the present method gives good form factors, reproducing the diffraction
minima and maxima in the correct place. In nearly all cases, the x? values
found with SRC are better than the corresponding values in the HO case.
However, the assessment of the quality of the calculated form factors should
not be based solely on the values of the least-squares errors but also on the



fulfillment of the requirement that all the diffraction minima are reproduced in
the correct place. Thus, comparing the quality of the form factors calculated
in the present method with the ones calculated with the harmonic oscillator
model, we can say that the quality of the form factors are considerably bet-
ter in the former case. All the diffraction minima (even the third one which
seems to exist in the experimental data of Mg, 28Si and 32S) are reproduced
in the present method while in the harmonic oscillator model they are not.
We note also that, in the case of the nucleus *°Ar there are not experimen-
tal data for the form factor. The exception which appears in O, where the
value of x? with SRC is worse compared with the value of x? without SRC,
should not be taken as a drawback of the present method. The reason is that
there exist many experimental points at low momentum transfer where the
HO model gives good form factor, while there are a few experimental points at
high momentum transfers where the present method reproduces these points
very well, as well as all the diffraction minima and maxima. That can be seen
in Fig. 3b. If the experimental points were distributed uniformly, then the
values of x? calculated within the present method would be smaller than the
ones calculated within the HO model. Thus, we should conclude that even in
160 the theoretical F,;(q) calculated within the present method is better than
that calculated within the HO model. Finally, comparing the values of the
information entropy sum, which were calculated with and without SRC and
are displayed in Table 2, it is seen that the introduction of SRC increases the
information entropy sum by 3% to 5% in agreement with the simple model of
SRC used in Ref. [8].

IF (@)l
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Fig. 3. The charge form factors of nuclei 2C (a), 10 (b) and ?*Mg (c). The solid
lines correspond to the case when SRC are included and the parameters y and by are
determined from Eq. (18) and the experimental RMS charge radius, respectively.
The dot lines correspond to the HO case when the parameter by is determined from

the experimental RMS charge radius. The experimental points for '2C and 00 are
from Ref. [23] and for 2*Mg from Ref. [24].
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Fig. 4. The charge form factors of nuclei 2%Si (a), 32S (b) and 3¢Ar (c). The various
cases are as in Fig. 4. The experimental points for 22Si and 328 are from Ref. [24].

4 SUMMARY

In the present work a systematic study of Shannon’s information entropy sum
S has been made for various N = Z, s-p and s-d shell nuclei using correlated
one-body density matrix which depends on the HO size by and the correlation
parameter y. It is found that, for all the nuclei we have examined, S depends
only on y through a simple two-parameter relation.

From the dependence of S on y and its linear dependence on the logarithm
of the number of nucleons of the nucleus, the correlation parameter y for a
nucleus can be determined, provided that there are enough experimental data
for two neighboring nuclei. It is mentioned that, usually, the two parameters
of the correlated one-body density matrix are determined for each nucleus
by least-squares fit of the theoretical F.,(q) to the experimental. Within the
present method, those parameters are determined even in those cases where
there are not any experimental data for the charge form factor as this has been
made for the nucleus *Ar. The only experimental data which are used are the
experimental charge RMS radius of the nucleus, as well as the experimental
charge form factors and RMS radii of only two nuclei, those of *He and “°Ca.
It is noted also that, using the sum of the information entropies S, and S,
the short range correlation parameter has been determined indirectly, from the
density distribution, as well as from the momentum distribution. This appears
to be an interesting feature of the present method, since that parameter is
usually determined only from the density distribution.
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