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In Section 2 of the present paper we study a sequence of potentials interpo-
lating between U(5) and E(5), while in Section 3 a new exactly soluble model,
to be called X(5)-β2, is introduced. A sequence of potentials interpolating be-
tween U(5) and X(5) is considered in Section 4, while the conclusions and
plans for further work are given in Section 5.

2 Potentials interpolating between U(5) and E(5)

The original Bohr Hamiltonian [3] is

H = − h̄
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+ V (β, γ), (1)

where β and γ are the usual collective coordinates describing the shape of the
nuclear surface, Qk (k = 1, 2, 3) are the components of angular momentum,
and B is the mass parameter.

Assuming that the potential depends only on the variable β, i.e. V (β, γ) =
U(β), one can proceed to separation of variables in the standard way [3,5],
using the wavefunction Ψ(β, γ, θi) = f(β)Φ(γ, θi), where θi (i = 1, 2, 3) are
the Euler angles describing the orientation of the deformed nucleus in space.

In the equation involving the angles, the eigenvalues of the second order
Casimir operator of SO(5) occur, having the form Λ = τ(τ + 3), where τ = 0,
1, 2, . . . is the quantum number characterizing the irreducible representations
(irreps) of SO(5), called the “seniority” [6]. This equation has been solved by
Bes [7].

The “radial” equation can be simplified by introducing [1] reduced energies
ε = 2B

h̄2
E and reduced potentials u = 2B

h̄2
U , as well as by making [1] the

transformation φ(β) = β3/2f(β), leading to the differential equation
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φ = 0. (2)

For u(β) = β2/2 one obtains the original solution of Bohr [3], which cor-
responds to a 5-dimensional (5-D) harmonic oscillator characterized by the
symmetry U(5) ⊃ SO(5) ⊃ SO(3) ⊃SO(2) [4], the eigenfunctions being pro-

portional [8] to Laguerre polynomials F τ
ν (β) =

[
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where Γ(n) stands for the Γ-function, and the spectrum having the simple form
EN = N + 5

2
, with N = 2ν + τ and ν = 0, 1, 2, 3, . . .

For u(β) being a 5-D infinite well (u(β) = 0 if β ≤ βW , while u(β) = ∞
for β > βW ), one obtains the E(5) model of Iachello [1], in which the eigen-
functions are Bessel functions Jτ+3/2(z) (with z = βk, k =

√
ε), while the

spectrum is given by Eξ,τ = h̄2

2B
k2
ξ,τ , with kξ,τ =

xξ,τ
βW

, where xξ,τ is the ξ-

th zero of the Bessel function Jτ+3/2(z). The relevant symmetry in this case
is E(5)⊃SO(5)⊃SO(3)⊃SO(2), where the Euclidean algebra in 5 dimensions,
E(5), is generated by the 5-D momenta πµ and the 5-D angular momenta Lµν ,
while SO(5) is generated by the Lµν alone [2]. τ , L, and M are the quantum
numbers characterizing the irreps of SO(5), SO(3), and SO(2) respectively.
The values of angular momentum L contained in each irrep of SO(5) (i.e. for
each value of τ) are given by the algorithm τ = 3ν∆ + λ, with ν∆ = 0, 1, . . .,
and L = λ, λ + 1, . . . , 2λ − 2, 2λ (with 2λ − 1 missing) [9], where ν∆ is the
missing quantum number in the reduction SO(5) ⊃ SO(3).

The spectra of the u(β) = β2/2 potential and of the E(5) model become
directly comparable by establishing the formal correspondence ν = ξ − 1,
which allows one to continue using for the states the notation Lξ,τ (where L is
the angular momentum), as in Ref. [1], although a notation Lν,τ would have
been equally appropriate. The ground state band corresponds to ξ = 1 (or,
equivalently, ν = 0).

The two cases mentioned above are the only ones in which Eq. (2) is exactly
soluble, giving spectra characterized by R4 = E(4)/E(2) ratios 2.00 and 2.20
respectively. However, the numerical solution of Eq. (2) for potentials other
than the ones mentioned above is a straightforward task [10], in which one
uses the chain U(5)⊃SO(5)⊃SO(3)⊃SO(2) for the classification of the states.

Not all potentials can be used in Eq. (2), though, since they have to obey
the restrictions imposed by the 24 transformations mentioned in [3] and listed
explicitly in [11]. These restrictions allow the presence of even powers of β in
the potentials, while odd powers of β should be accompanied by cos 3γ [12].

A particularly interesting sequence of potentials is given by u2n(β) = β2n

2
,

with n being an integer. For n = 1 the Bohr case (U(5)) is obtained, while for
n→∞ the infinite well of E(5) is obtained [13]. Therefore this sequence of po-
tentials provides a “bridge” between the U(5) symmetry and the E(5) model,
using their common SO(5)⊃SO(3) chain of subalgebras for the classification
of the spectra.

Numerical results for the spectra of the β4, β6, and β8 potentials have been
obtained through two different methods. In one approach, the representation
of the position and momentum operators in matrix form [14] has been used,

3



while in the other the direct integration method [15] has been applied. In the
latter, the differential equation is solved for each value of τ = 0, 1, 2, . . . sepa-
rately, the successive eigenvalues for each value of τ labeled by ξ = 1, 2, 3, . . .
(or, equivalently, by ν = 0, 1, 2, . . .). The two methods give results mutually
consistent, the second one appearing of more general applicability. Extensive
tables of excitation energies relative to the ground state, normalized to the
excitation energy of the first excited state, have been reported in Ref. [16].

For the above-mentioned potentials we introduce the labels E(5)-β4, E(5)-
β6, E(5)-β8, their meaning being that E(5)-β2n corresponds to the potential
β2n/2 plugged in the differential equation obtained in the framework of the
E(5) model. In this notation E(5)-β2 coincides with the original U(5) model
of Bohr [3], while E(5)-β2n with n→∞ is simply the original E(5) model [1].

From the tables included in Ref. [16] it is clear that in all bands and for all
values of the angular momentum, L, the potentials β4, β6, β8 (which give R4

ratios equal to 2.093, 2.135, and 2.157 respectively) gradually lead from the
U(5) case (R4 = 2.000) to the E(5) results (R4 = 2.199) in a smooth way.

In nuclear structure it is well known that electromagnetic transition rates are
quantities sensitive to the details of the underlying microscopic structure, as
well as to details of the theoretical models, much more than the correspond-
ing spectra. It is therefore a must to calculate B(E2) ratios (normalized to
B(E2:2+

1 → 0+
1 )=100) for the potentials mentioned above.

The quadrupole operator has the form [5]

T (E2)
µ = tαµ = tβ

[
D(2)
µ,0(θi) cos γ +

1√
2

(D(2)
µ,2(θi) +D(2)

µ,−2(θi)) sin γ

]
, (3)

where t is a scale factor and D(θi) denote Wigner functions of the Euler an-
gles, while the B(E2) transition rates are given by B(E2; %iLi → %fLf ) =

1
2Li+1

|〈%fLf ||T (E2)||%iLi〉|2, where by % quantum numbers other than the an-
gular momentum L are denoted.

For the states with ν∆ = 0 and L = 2τ one obtains

B(E2; (L+ 2)ξ′,τ+1 → Lξ,τ ) =
τ + 1

2τ + 5
t2 I2

ξ′,τ+1; ξ,τ , (4)

where Iξ′,τ+1; ξ,τ =
∫∞

0 βfξ′ τ+1(β) fξτ (β)β4dβ.

In the special case of the potential being a 5-D infinite well the eigenfunctions

are fξτ (β) = 1√
Cξ,τ

β−3/2Jτ+3/2

(
xξ,τ

β
βW

)
, with Cξ,τ =

β2
W

2
J2
τ+5/2(xξ,τ ), where

xξ,τ is the ξ-th zero of the Bessel function Jτ+3/2(z), while the constants Cξ,τ
are obtained from the normalization condition

∫ βW
0 f 2

ξτ (β) β4dβ = 1. In this
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case the relevant integrals take the form

Iξ′,τ+1; ξ,τ = (Cξ′,τ+1Cξ,τ )
−1/2β3

W

1∫
0

z2Jτ+5/2(xξ′,τ+1 z) Jτ+3/2(xξ,τ z) dz. (5)

Extensive results of the calculations for intraband and interband transitions
have been reported in Ref. [16]. In all cases a smooth evolution from U(5) to
E(5) is seen. The E(5) results reported in Ref. [16] are in good agreement with
the results given in Ref. [17].

It is interesting to examine if there is any experimental evidence supporting
the E(5)-β2n predictions. It is clear that the first regions to be considered are
the ones around the nuclei which have been identified as good candidates for
E(5), i.e. 134Ba [18], 104Ru [19], 102Pd [20]. A very preliminary search indicates
that 98Ru can be a candidate for E(5)-β6, while 100Pd can be a candidate for
E(5)-β4. However, much more detailed information on the spectra and B(E2)
transitions of these nuclei is required before final conclusions can be reached.

3 X(5)-β2: A new exactly soluble model

The starting point is again the original Bohr Hamiltonian [3] of Eq. (1).
One seeks solutions of the relevant Schrödinger equation having the form
Ψ(β, γ, θi) = φLK(β, γ)DLM,K(θi), where θi (i = 1, 2, 3) are the Euler angles,
D(θi) denote Wigner functions of them, L are the eigenvalues of angular mo-
mentum, while M and K are the eigenvalues of the projections of angular
momentum on the laboratory-fixed z-axis and the body-fixed z′-axis respec-
tively.

As pointed out in Ref. [2], in the case in which the potential has a minimum
around γ = 0 one can write the last term of the Bohr Hamiltonian of Eq. (1)
in the form given in Eq. (2) of Ref. [2]. Using this result in the Schrödinger
equation corresponding to the original Bohr Hamiltonian, introducing reduced
energies ε = 2BE/h̄2 and reduced potentials u = 2BV/h̄2, and assuming that
the reduced potential can be separated into two terms, one depending on β
and the other depending on γ, i.e. u(β, γ) = u(β) + u(γ), the Schrödinger
equation can be separated [2] into two equations[

− 1

β4

∂

∂β
β4 ∂

∂β
+

1

4β2

4

3
L(L+ 1) + u(β)

]
ξL(β) = εβξL(β), (6)

[
− 1

〈β2〉 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+

1

4〈β2〉
K2

(
1

sin2 γ
− 4

3

)
+ u(γ)

]
ηK(γ)
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= ε(γ)ηK(γ), (7)

where 〈β2〉 is the average of β2 over ξ(β) and ε = εβ + εγ.

In Ref. [2] Eq. (6) is solved exactly for the case in which u(β) is an infinite well
potential, as the one used in Section 2. The relevant exactly soluble model is
labeled as X(5) (which is not meant as a group label, although there is relation
to projective representations of E(5), the Euclidean group in 5 dimensions
[2]). In particular, Eq. (6) in the case of u(β) being an infinite well potential
is transformed into a Bessel equation, the relevant eigenvalues being εβ;s,L =
(ks,L)2, with ks,L =

xs,L
βW

, where xs,L is the s-th zero of the Bessel function

Jν(ks,Lβ), with ν =
(
L(L+1)

3
+ 9

4

)1/2
, while the relevant eigenfunctions are

ξs,L(β) = cs,Lβ
−3/2Jν(ks,Lβ), where cs,L are normalization constants.

Eq. (6) is exactly soluble also in the case in which u(β) = β2/2. In this case,
to which we are going to refer as the X(5)-β2 model, the eigenfunctions [8] are

FL
n (β) =

 2n!

Γ
(
n+ a+ 5

2

)
1/2

βaL
a+ 3

2
n (β2)e−β

2/2, (8)

where Γ(n) stands for the Γ-function, Lan(z) denotes the Laguerre polynomials,

and a = 1
2

(
−3 +

√
9 + 4

3
L(L+ 1)

)
, while the energy eigenvalues are En,L =

2n+ 1 +
√

9
4

+ L(L+1)
3

, with n = 0, 1, 2, . . .

In the above, n is the usual oscillator quantum number. One can see that a
formal correspondence between the energy levels of the X(5) model and the
present X(5)-β2 model, can be established through the relation n = s− 1. In
the present notation, the ground state band corresponds to s = 1 (n = 0). For
the energy states the notation Es,L = En+1,L of Ref. [2] will be kept.

In the original version of the X(5) model [2] the potential u(γ) is considered
as a harmonic oscillator potential. The energy eigenvalues turn out to be
E(s, L, nγ, K,M) = E0 +B(xs,L)2 +Anγ +CK2, where nγ and K obtain the
values nγ = 0, K = 0; nγ = 1, K = ±2; nγ = 2, K = 0,±4; . . . For K = 0 one
has L = 0, 2, 4, . . . , while for K 6= 0 one obtains L = K, K + 1, K + 2, . . . .

In the present X(5)-β2 model, one also uses for u(γ) a harmonic oscillator
potential, as in the X(5) model. As a consequence, the full spectrum is given
by E(n, L, nγ, K,M) = E ′0 + B′En,l + A′nγ + C ′K2, which is an analogue of
the equation given above in the case of X(5). The sets of values obtained by
nγ, K, and L remain unchanged.

Extensive numerical results for the β-parts of the energy spectra (which cor-
respond to no excitations in the γ-variable, i.e. to nγ = 0) of the X(5)-β2

and X(5) models have been reported in Ref. [21]. All levels are normalized
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to the energy of the first excited state, E1,2 − E1,0 = 1.0, where the notation
Es,L = En+1,L is used. The model predictions for these bands are parameter
independent, up to an overall scale. This is not the case for bands with nγ 6= 0,
since in this case, as seen above, the extra parameters A, C and A′, C ′ enter
respectively. Therefore, in the case of the (nγ = 1, K = 2)-band, the energies
are listed in Ref. [21] after subtracting from them the relevant L = 2 band-
head, using the same normalization as above. The R4 ratio turns out to be
2.646 .

The quadrupole operator has the form of Eq. (3) [5], while the B(E2) transi-
tion rates are again given by the equation following it. The matrix elements
of the quadrupole operator involve an integral over the Euler angles, which
is the same as in Ref. [2] and is performed by using the properties of the

Wigner D functions, of which only D(2)
µ,0 participates, since γ ' 0 in Eq. (3)

(as mentioned in the beginning of the present section), as well as an inte-
gral over β. After performing the integrations over the angles one is left with
B(E2;Ls → L′s′) = (Ls2L

′
s′ |000)2I2

s,L;s′,L′ , where the Clebsch–Gordan coeffi-
cient (Ls2L

′
s′|000) appears, which determines the relevant selection rules. In

the case of X(5) the integral over β is Is,L;s′,L′ =
∫
βξs,L(β)ξs′,L′(β)β4dβ, which

involves Bessel functions, while in the case of X(5)-β2 the integral has the form
Is,L;s′,L′ =

∫
βFL

n (β)FL′
n′ β4dβ, with n = s − 1 and n′ = s′ − 1, which involves

Laguerre polynomials.

Extensive results for intraband and interband transitions have been reported
in Ref. [21]. All transitions are normalized to B(E2 : 2+

1 → 0+
1 ) = 100.

4 A sequence of potentials lying between U(5) and X(5)

The two cases mentioned in the previous section are the only ones in which Eq.
(6) is exactly soluble, giving spectra characterized by R4 ratios 2.646 and 2.904
for X(5)-β2 and X(5) respectively. However, the numerical solution of Eq. (6)
for other potentials is a straightforward task. The potentials to be used in Eq.
(6) have to obey the restrictions imposed by the 24 transformations mentioned
in [3] and listed explicitly in [11].

A particularly interesting sequence of potentials is given by u2n(β) = β2n

2
, with

n being an integer. For n = 1 the X(5)-β2 case is obtained, while for n→∞
the infinite well of X(5) is obtained [13]. Therefore this sequence of potentials
interpolates between the X(5)-β2 model and the X(5) model, in the region
lying between U(5) and X(5).

Numerical results for the spectra of the β4, β6, and β8 potentials have been
obtained through the two different methods described in Section 2. Extensive
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results have been reported in Ref. [21], where excitation energies relative to
the ground state, normalized to the excitation energy of the first excited state,
are exhibited.

For the above-mentioned potentials the model labels X(5)-β4, X(5)-β6, X(5)-
β8 are introduced, their meaning being that the X(5)-β2n model corresponds
to the potential β2n/2 plugged in the differential equation of Eq. (6) obtained
in the framework of the X(5) model. In this notation X(5)-β2n with n → ∞
is simply the original X(5) model [2].

From the results reported in Ref. [21] it is clear that in all bands and for all
values of the angular momentum, L, the potentials β4, β6, β8 (which give R4

ratios equal to 2.769, 2.824, and 2.852 respectively) gradually lead from the
X(5)-β2 case (R4 = 2.646) to the X(5) results (R4 = 2.904) in a smooth way.

The calculation of the B(E2)s follows the steps described in the end of Section
3. The same general equation is still valid, the only difference being that in
the integral over β the wave functions in the present cases are known only in
numerical form and not in analytic form as in the X(5) and X(5)-β2 cases.

Extensive results of the calculations for intraband and interband transitions
have also been reported in Ref. [21]. In all cases a smooth evolution from
X(5)-β2 to X(5) is seen.

It is clear that the first place to look for nuclei exhibiting X(5)-β2n behaviour is
the region close to nuclei showing X(5) structure. The best examples of nuclei
corresponding to the X(5) structure are so far the N = 90 isotones 152Sm [22],
150Nd [23], 156Dy [24]. A preliminary search in the rare earths with N < 90
shows that 148Nd can be a candidate for X(5)-β2, 158Er can be a candidate
for X(5)-β6, while 160Yb can be a candidate for X(5)-β4. However, much more
detailed information on spectra and B(E2) transitions is needed before final
conclusions can be reached.

5 Conclusion

It has been proved that the potentials β2n (with n being integer) provide a
complete “bridge” between the U(5) symmetry of the Bohr Hamiltonian with
a harmonic oscillator potential (occuring for n = 1) and the E(5) model of
Iachello, which is obtained from the Bohr Hamiltonian when an infinite well
potential is plugged in it (materialized for n → ∞). Parameter-free (up to
overall scale factors) predictions for spectra and B(E2) transition rates have
been given for the potentials β4, β6, β8, called the E(5)-β4, E(5)-β6, and E(5)-
β8 models, respectively. Hints about nuclei showing this behaviour have been
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briefly discussed.

In addition, an exactly soluble model, labeled as X(5)-β2, has been constructed
starting from the original Bohr collective Hamiltonian, separating the β and
γ variables as in the X(5) model of Iachello, and using a harmonic oscillator
potential for the β-variable. Furthermore it has been proved that the poten-
tials β2n (with n being integer) provide a “bridge” between this new X(5)-β2

model (occuring for n = 1) and the X(5) model of Iachello (which is ob-
tained by putting in the Bohr Hamiltonian an infinite well potential in the
β-variable, materialized for n → ∞). Parameter-free (up to overall scale fac-
tors) predictions for spectra and B(E2) transition rates have been given for the
potentials β2, β4, β6, β8, called the X(5)-β2, X(5)-β4, X(5)-β6, and X(5)-β8

models, respectively, lying between the U(5) symmetry of the original Bohr
Hamiltonian and the X(5) model. Hints about nuclei showing this behaviour
have been given.

Concerning future theoretical work, one should try to find a sequence of po-
tentials interpolating between O(6) and E(5), as well as between SU(3) and
X(5). In other words, one should try to approach E(5) and X(5) “from the
other side”. From the classical limit of the O(6) and SU(3) symmetries of the
Interacting Boson Model [9] it is clear that for this purpose potentials with a

minimum at β 6= 0 should be considered, the potentials uD2n(β) = β2n +
β4n
0

β2n

being strong candidates. The Davidson potential, corresponding to n = 1, is
known to be exactly soluble [25,26].

Work in these directions is in progress.
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