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Abstract We present a study of nucleosynthesis for conditions of high Ye outflows from Neutron 
Star Mergers (BNSs). We investigate the effect of new beta–decay rates measurements and uncertainties 
in nuclear masses of the newly measured 84,85Ga to the r–process nucleosynthesis calculations. The 
impact of these quantities to the production of the elements of the r–process abundance pattern for 
A<100 is quantified and presented. This proceedings paper is based on [1]. 
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INTRODUCTION 
 
The rapid neutron capture process (r–process) is responsible for the production of about half of the 
heavy elements observed in the solar abundances. It is characterized by three peaks, each 
corresponding to the closed neutron shells at N = 50, 82, 126. The peaks are the result of matter 
accumulating at the neutron closed shells. The drop in binding energy that characterizes the region 
after the shell closure leads to a bending of the path towards stability, reaching nuclei with longer β–
decay half-lives and producing an accumulation of material, compared to nuclei before or beyond the 
shell closures. 

A site of the r–process was unknown until recent observations. The gravitational wave event 
GW170817 [2,3] which was identified as a Binary Neutron Star merger (BNS) is considered as a site 
for the r–process nucleosynthesis [4–9]. The detection of gravitational waves from the binary neutron 
star was followed by the detection of fast fading optical/infrared counterpart (AT2017gfo) [10], 
consistent with the predictions for a kilonova, associated with r–process nucleosynthesis [11–15], 
establishing the production of heavy elements in the aftermath of BNS [15–19]. The complicated 
atomic structure of lanthanides implies high opacity ejecta; therefore, lanthanides emit light in the red 
wavelengths, thus, the blue color of the emission spectra at early times indicates that part of the ejecta 
is characterized by relatively high electron fraction (Ye) (0.25–0.4) and consequently low lanthanide 
production [20–26]. 

Assuming that BNSs are partially responsible for the production of first r–process peak elements, 
we present a study of nucleosynthesis under moderate Ye (0.35–0.38) and low entropy (S=10 
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kB/baryon) conditions. The conditions are consistent with the blue part of the kilonova observation 
(no lanthanides are created) and provide the strongest contribution to the mass region around the 
A=80 and A=84. Under these conditions, we investigate the effects of Ga isotopes mass uncertainties 
and the influence of recently published β–delayed neutron probabilities on the final r–process 
abundance pattern. We note that the range of Ye is justified because as shown in [1] lower Ye (<0.35) 
leads to overproduction of A=90–120 region whereas Ye above 0.39 leads to underproduction of the 
first r–process peak elements. 

 
METHODS 
 

We use the Hauser Feshbach statistical code TALYS [27] to calculate neutron capture reaction 
rates based on the mass values of the recently measured 84,85Ga. To systematically study the impact of 
84,85Ga masses, on the formation of A ≈ 84 nuclei we use a Monte–Carlo approach. We assume the 
"true" mass value is distributed following a normal distribution with 3σ according to the uncertainty, 
of their extrapolated mass values given in the atomic mass evaluation data (AME_16) [35] (200, 300 
KeV respectively). Table 1 summarizes the new mass measurements and AME_16 corresponding 
values. 

Table 1. Mass measurements of  84,85Ga isotopes reported in [1] in comparison to AME_16 [35]. The symbol # 
indicates systematics. 

 Mass excess TITAN 
(keV/c2) 

Mass excess AME_16 
(keV/c2) 

Difference 
(keV/c2) 

84Ga −44 094 (30) −44 090 (200)# 4 
85Ga −39 744 (37) −39 850 (300)# −106 

 
Nuclear reaction rates not affected by the new Ga masses measurements were taken from JINA 

REACLIB [29]. Experimental masses from AME_16 were used when available; otherwise, we use the 
FRDM mass model [30]. We then use each set of the resulting neutron capture rates in GSINet [28] to 
calculate the r–process abundances. 

β–decay rates and β–delayed neutron emission branches were taken from experimentally known 
nuclear properties database (NUBASE16) [31] when available. When experimental values were not 
available, values from theoretical predictions [32] were used. Here we included recent β–delayed 
neutron emission (P1n) of 82,83,84,85Ga [33,34] to study the effect β–delayed–neutron emission branches 
to the final r–process abundance pattern. The new P1n measurements compared to NUBASE16 are 
summarized in Table 2.  

Table 2. P1n of  82,83,84,85Ga isotopes reported in [33,34], in comparison to NUBASE16 [35]. The symbol # 
indicates systematics. 

 Reported at [33,34] P1n (%) NUBASE16 [31] P1n (%) Difference (%) 
82Ga 22 (2) 21.3 (13) 0.7 
83Ga 85 (4) 62.8 (25) 22.2 
84Ga 53 (20) 40 (7) 13 
85Ga 70 (5) >35 # 35 

 
The thermodynamic evolution of the systems was parametrized assuming homologous expansion 

following [36]. The initial temperature was set at T = 6 GK, expansion timescale at 7 ms and entropy 
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at 10 kB/baryon. We perform calculations for Ye = 0.35–0.38. Different electron fraction results were 
considered with equal weight.  
 
RESULTS 
 
We compare our results with the solar r–process abundances (Fig. 1) in the region A≈80–90. The pink 
uncertainty bands show the variation of the abundances that arise from the uncertainties of the masses 
of 84,85Ga from AME_16. The new Ga mass values affect the abundances of elements with mass 
number A=82–87, with the biggest impact on A=83 accounting to ≈10% despite the small change in 
mass value. The uncertainty band also shows that under some combinations of 84Ga and 85Ga masses 
within their corresponding error bars the peak at A=84 is severally under–produced. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Similarly, in Fig. 2 we compare our results with the solar r–process for two separate cases; in the 
first case, we use data for β–delayed neutron emission branches from NUBASE16. In the second case, 
we use the updated data for 82,83,84,85Ga as presented in Table 2 from [33,34]. The differences are more 
pronounced at A=85 where the 2 instances of our calculations differ by ~18%. This difference can be 
traced back to the changed by ~35 % value of P1n, where NUBASE16 value was given as ~35%, and 
[34] measurement at ~70 (5) %. 

 
CONCLUSIONS 
 

We explored the impact of a series of newly measured Ga isotopes. We demonstrate that at 
moderate neutron–rich conditions, realized in BNSs, r–process calculations can produce the local 
peaks at A = 80 and A = 84 of the solar system r–process residual. We show that changes of only a 
few keV in the mass of a single nucleus can lead to differences in abundances of more than 10%. In 
addition, we demonstrate the impact of β–delayed neutron emissions, finding changes of ~18% in 

 

Figure 1. (Upper plot) Final abundances averaged over calculations with Ye =0.35–0.38 compared to 
the solar r–process abundance, with uncertainty shown as a gray band. The pink band shows the 3σ 
change in calculated production, a result of the variation of the masses of 84,85Ga. The red line shows 
the resulted abundances using the central experimental value whereas the blue line the abundances 
when the AME_16 extrapolated mass values were used. (Lower plot) Change, in percentage, of the 
abundance pattern as a result of using the mass values from [1] compared to the extrapolations given 
in the AME_16. Figure adapted from [1] 
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abundances of A=85 calculations using the NUBASE16 data, compared to NUBASE16 updated with 
the 82,83,84,85Ga P1n values according to [33,34]. 
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