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Abstract Scope of the work is the validation of the methodology applied for the prediction of
induced activity and transmutation products in Tungsten due to neutron irradiation. Three types of
tungsten products were irradiated at the BR2 material test reactor, SCK-CEN, Belgium, at doses of 0.12
and 0.18 displacements per atom (dpa) at the irradiation temperatures of 600, 800, 900 and 1200 °C.
Gamma spectroscopy enabled the determination of the concentration of activities of the isotopes W,
181y, 18y, 185Re and '%’Ta in the irradiated samples. The results were compared with FISPACT-II
calculations and in the case of 'W a satisfactory agreement between the calculated and experimental
data was observed.
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INTRODUCTION

Tungsten is a candidate Plasma Facing Material in future fusion power plants presenting high melting
point, high thermal conductivity, low coefficient of thermal expansion, high sputtering threshold
energy, low tritium retention and low neutron activation properties. However, the properties of
tungsten can be detrimentally altered under the high neutron fluence irradiation encountered in a
fusion plant due to the accumulation of neutron induced transmutation products [1, 2].

Scope of the present work is the validation of the methodology applied for the advanced
prediction of transmutation products and their activity in Tungsten due to neutron irradiation.

EXPERIMENTAL DETAILS

Three types of tungsten products were irradiated at the BR2 research reactor, SCK-CEN,
Belgium, at doses of 0.12 and 0.18 displacements per atom (dpa) at the irradiation temperatures of
600, 800, 900 and 1200 °C. The samples were fabricated from: (a) high purity (99.999%) single
crystal tungsten (SC) supplied in a form of rod, (b) swaged tungsten bar (BAR) of 36x36 mm? cross
section, forged/hammered from the two orthogonal directions (>99.97% purity), and (c) rolled
tungsten sheet (PL) of 1 mm thickness (>99.97% purity). The activation products were determined
using a calibrated spectrometry system based on a Germanium detector of 40% relative efficiency.
Since sample activities were quite high, samples were positioned at a distance of 100 cm from the
detector. At this distance the detector’s dead time during the measurements was less than 5-6% and,
moreover, the samples could be considered to be point sources.

@ @@@ Licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
EY NC ND



HNPS Advances in Nuclear Physics vol. 27, pp. 195—198 (2020)
V. Chatzikos et al. HNPS2019 doi:10.12681/hnps.3010
Page 196

Figure 1. (a) BR2 Reactor Core, (b) Tungsten Sample.

The radioactive isotopes to be detected were produced by (n, y) reactions on the isotopes of
tungsten. The activity was determined by egs. (1) and (2) [3]:

Zi(Ri/SiZ)
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where fseif—ate = % is the self-attenuation correction factor, u(E) is the energy dependent

attenuation coefficient, L is the thickness of the sample, N; are the counts of the peak at energy E;, I;
is the emission probability of the photon with energy E;, t;;, is the measurement time of the detector
in s, ef f(E;) is the full energy peak efficiency for the energy E; and s; is the uncertainty of R;.

SIMULATIONS

Theoretical calculation of the transmutation product activities, as well as their evolution in time,
was performed using the nuclide inventory code FISPACT-II [4] with cross section data from both
TENDL-2017 and EAF-2010 library [5,6]. The neutron spectrum and fluence were evaluated by
SCK-CEN using a detailed MCNP model of the BR-2 reactor core and irradiation elements. The
neutron energy spectrum used by the FISPACT-II code is given in Fig. 2.
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Figure 2. Neutron spectrum at position G180 channel of BR2 (where the samples were irradiated), used for
FISPACT-II calculations.
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RESULTS AND DISCUSSION

The gamma spectrum of a rolled sheet tungsten sample irradiated at T=600"C, up to 0.12 dpa, is
shown in Fig. 3. In agreement with the theoretical calculations, the dominant spectrum peaks were
attributed to "W, 181w, 188w 185Re and '%Ta.
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Figure 3. Gamma spectrum of rolled sheet tungsten sample irradiated at T=600", up to 0.12 dpa.

A comparison of the FISPACT-II specific activity calculations for "W and ''W against
experimental data from measurements for the three types of W and four irradiation temperatures
tested is given in Fig. 4. For both isotopes, the measured specific activities are almost the same,
within error bar, for all W material types and irradiation conditions, as expected. The nuclear data
libraries used for the calculations are TENDL-2017 and EAF-2010. A satisfactory agreement between
calculated and experimental specific activities is observed in the case of "W, especially in the case of
TENDL-2017 nuclear data base. However, in the case of '*'W, only the calculated data using EAF-
2010 agree with the experimental ones while the use of TENDL-2017 data base results in an
overestimation of the specific activities by a factor of about three. This difference is due to the
difference between the two libraries in the neutron absorption cross-section of "W in the thermal part
of the energy spectrum. TENDL-2017 presents three times higher absorption cross section for "W
than EAF-2010 in the energy range 10°-10 eV.
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Figure 4. Specific activity of 'SW (left) and ''W (right) for 0.18 dpa samples normalized to 0.2 dpa, at 475
days after the end of irradiation, versus axial position in the irradiation channel.

A future work will be expanded to include gamma spectroscopy measurements on tungsten
samples irradiated at 0.5 and 0.75 dpa and detailed calculation of the transmutation products.
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