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Nuclear Symmetry Energy Effects on the Bulk Properties
of Neutron-rich Finite Nuclei

M. Divaris and Ch.C. Moustakidis

Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract We systematically study the effect of the nuclear symmetry energy in the basic properties of
finite, neutron—rich, heavy nuclei where symmetry energy plays a dominant role. We employ a variational
method, in the framework of the Thomas—Fermi approximation, to study the effect of the symmetry energy
on the neutron skin thickness and symmetry energy coefficients of various nuclei. The isospin asymmetry
function a(r) is directly related to the symmetry energy as a consequence of the variational principle. In
addition to this, the Coulomb interaction is included in a self-consistent way. The energy density of the
asymmetric nuclear matter that is used, has its origins in a momentum-dependent interaction.
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Nuclear symmetry energy is the basic regulator of the isospin properties of neutron-rich nuclei. It is
expected to affect the neutron skin thickness, the coefficient of the asymmetry energy in the Bethe—
von Weizsdcker formula, etc. In addition, the density dependence of the symmetry energy is the main
ingredient of the equation of state of neutron-rich nuclear matter. Actually, there are a variety of
neutron star properties that are sensitive to this energy.

The empirical Bethe—von Weizsédcker formula provides the binding energy of a finite nucleus
with A nucleons and atomic number Z and is given by
72(Z-1) (N = 7)?

Az Ty

B(A,Z) = —ayA + agA?3? + a, + AE ;.

The energy density functional is an extension to the above formula, where the total energy of
finite nuclei is a functional of the total density p(r) and the isospin asymmetry function a(r) [1],

Elp(),a()] = [, e(p(r), a@)d*r Elp,al = [, [eanu (0, a@)) + FolVpI* +3p(1 = a)Ve ()| dr

In the above expression, the first term is the asymmetric nuclear matter contribution, the second
term corresponds to the contribution from the finite size character of the density distribution, while
the third term is the Coulomb energy density term. The symmetry energy function is defined as

NAGET NG

p(r)
with p(r) the total density function and pu(r), pp(r) the corresponding neutron and proton density
distributions.

We apply the Euler- Lagrange formalism in this situation, by using the langrangian density
which is given by [1]

dp\*

1
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The corresponding Euler- Lagrange equations are
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where the first one gives a differential equation of the density function p(r)

" 2p’ 1 [9esnm(p) (p)
P +T—E[T (S()+ T)*‘ 1 -aV.(r) - /11_/120(]—0

Instead of solving this differential equation, we are using a trial function given by the Fermi-type

formula [1]
L)

1+ exp[(r —d)/w]

p(r) =
The second Euler—Lagrange equation provides the asymmetry function

a(r) =—=—W.(r) +41,)

8s ( )
Since the asymmetry function obeys the constraint

0<a(r)<1
and as the above expression of the asymmetry function does not comply with this constraint, we use

the assumption

a(,r) — 85( )(V (T) + 4/‘12) r < TC
1, r>r,

where 1. is the cutoff radius. If we integrate this expression according to the normalization condition

fa(r)p(r)dSr =N-Z
%

where we integrate over the entire volume V that the nucleus occupies, we obtain the Lagrange-

multiplier
_ e? [ V.(r)p(r) o)\
Ay = Z(LCP(T)CPT—EL —S(p) d3T—ZZ> (J;/CTP)CPT)

c

(V. is the volume that corresponds to the cutoff radius r.). The Coulomb potential that appears in the
energy density functional expression

- )__fpm 1—a(r)]d y

can be decomposed into two parts [1] as follows

VA(r) = 2me? [lfr[l —a()]p@Hr'?dr' + frc[l —a()]p@Hr'dr'|, r<r.
r 0 T

2
VE() = 2= [ - a@)lpGr?dr, T

We consider the following expansion of the symmetry energy [1]

K,
S(p) = S(py) + L6 + %52 +0(5%)

where L is the slope parameter
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and the coefficient Ky is given by

Ksym = 3p, d_pz

P=Po
In order to use an expression for the symmetry energy, we consider the expansion of the energy
per particle of asymmetric nuclear matter [3]

Ep (p,a) = Ej (p,a=0)+ Esym,z (p)az + Esym,4 (p)a4+. . +Esym,2k(p)a2k+- -

and the symmetry energy can be obtained from the following relation
_ 1 9°E,(p, )
S(P) = Esyma(P) = 5y—— 7 .

For the energy per particle of nuclear matter E,, we employ the expression from the momentum-
dependent interaction model (MDI), as given by [3].

The proton and neutron radii are given by the following expressions

Ry = (20, 0r)” Ry = (2 12pa)dr)’
and they are used together to define the neutron-skin thickness
Rgkin = Ry — Rp
The asymmetry coefficient as that appears in the Bethe-Weizsacker formula, is given by the
expression

/2

A
@ =g | PSP

In the present study, we are making calculations for the ***Pb nucleus. The asymmetry function
a(r) is also known as the asymmetry parameter I, and J is the symmetry energy at the saturation
density po=0.16144 fm™, J=S(po). From computational analysis, we have extracted the following
figures, which show the relations between the neutron skin R, and the slope parameter L (Fig. 1),
between Ruin and the asymmetry parameter 1 (Fig. 2) and the relation between the asymmetry
coefficient aa and I (Fig. 3).
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Figure 1. Neutron skin thickness Rskin — slope parameter L diagram
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Figure 2. Neutron-skin thickness Rskin — asymmetry parameter |
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Figure 3. Asymmetry coefficient a+ — asymmetry parameter |

There appears to be a linear correlation between the neutron skin Rgin and the slope parameter L,
as seen from Fig.1 above. Also, from Fig. 2, Ryin seems to be linearly dependent on the asymmetry
parameter I, which means that, as the difference between the neutron and proton distributions
increases, the neutron skin of the nucleus also increases. Furthermore, from Fig. 3, the asymmetry
coefficient aa also appears to increase as the asymmetry increases.

From the present work we can see that symmetry energy is indeed a key regulator, affecting
various nuclear properties, such as the nuclear skin thickness Rgin, the asymmetry coefficient aa, the
total energy of the nucleus E. One future goal is to introduce temperature in our study.
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