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Nuclear Symmetry Energy Effects on the Bulk Properties 
of Neutron–rich Finite Nuclei 

 
M. Divaris and Ch.C. Moustakidis 

 
 Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece 

__________________________________________________________________________________________ 
 
Abstract We systematically study the effect of the nuclear symmetry energy in the basic properties of 
finite, neutron–rich, heavy nuclei where symmetry energy plays a dominant role. We employ a variational 
method, in the framework of the Thomas–Fermi approximation, to study the effect of the symmetry energy 
on the neutron skin thickness and symmetry energy coefficients of various nuclei. The isospin asymmetry 
function a(r) is directly related to the symmetry energy as a consequence of the variational principle. In 
addition to this, the Coulomb interaction is included in a self–consistent way. The energy density of the 
asymmetric nuclear matter that is used, has its origins in a momentum-dependent interaction. 
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Nuclear symmetry energy is the basic regulator of the isospin properties of neutron-rich nuclei. It is 
expected to affect the neutron skin thickness, the coefficient of the asymmetry energy in the Bethe–
von Weizsäcker formula, etc. In addition, the density dependence of the symmetry energy is the main 
ingredient of the equation of state of neutron-rich nuclear matter. Actually, there are a variety of 
neutron star properties that are sensitive to this energy. 

The empirical Bethe–von Weizsäcker formula provides the binding energy of a finite nucleus 
with A nucleons and atomic number Z and is given by 

𝐵(𝐴, 𝑍) = −𝑎*𝐴 + 𝑎,𝐴- .⁄ + 𝑎0
𝑍(𝑍 − 1)
𝐴2 .⁄ + 𝑎3

(𝑁 − 𝑍)-

𝐴 + 𝛥𝛦789 

 
The energy density functional is an extension to the above formula, where the total energy of 

finite nuclei is a functional of the total density ρ(r) and the isospin asymmetry function α(r) [1], 
 
𝐸[𝜌(𝑟), 𝛼(𝑟)] = ∫ 𝜀B𝜌(𝑟), 𝛼(𝑟)C𝑑.𝑟*   𝛦[𝜌, 𝛼] = ∫ E𝜀FGHB𝜌(𝑟), 𝑎(𝑟)C + 𝐹J|𝛻𝜌(𝑟)|- +

2
M
𝜌(1 − 𝛼)𝑉0(𝑟)O* 𝑑.𝑟 

 
In the above expression, the first term is the asymmetric nuclear matter contribution, the second 

term corresponds to the contribution from the finite size character of the density distribution, while 
the third term is the Coulomb energy density term. The symmetry energy function is defined as  

𝛼(𝑟) =
𝜌P(𝑟) − 𝜌Q(𝑟)

𝜌(𝑟)  

with ρ(r) the total density function and ρn(r), ρp(r) the corresponding neutron and proton density 
distributions. 

We apply the Euler- Lagrange formalism in this situation, by using the langrangian density 
which is given by [1] 

𝐿 = 4𝜋𝑟- U𝜀3VW(𝜌, 𝛼) + 𝐹J X
𝑑𝜌
𝑑𝑟
Y
-

+
1
4𝜌
(1 − 𝛼)𝑉9(𝑟)Z − 𝜆24𝜋𝑟-𝜌 − 𝜆-4𝜋𝑟-𝛼𝜌 

 
The corresponding Euler- Lagrange equations are 
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\]
\^
− _

_`
a \]
\^b
c = 0            \]

\e
− _

_`
a \]
\eb
c = 0 

 
where the first one gives a differential equation of the density function ρ(r) 
 

𝜌′′ +
2𝜌′
𝑟 −

1
2𝐹J

h
𝜕𝜀,VW(𝜌)

𝜕𝜌 + 𝛼- j𝑆(𝜌) + 𝜌
𝜕𝑆(𝜌)
𝜕𝜌 l +

1
4
(1 − 𝛼)𝑉9(𝑟) − 𝜆2 − 𝜆-𝛼m = 0 

 
Instead of solving this differential equation, we are using a trial function given by the Fermi-type 

formula [1] 
𝜌(𝑟) =

𝑛J
1 + 𝑒𝑥𝑝[(𝑟 − 𝑑) 𝑤⁄ ] 

 
The second Euler–Lagrange equation provides the asymmetry function 

 
𝛼(𝑟) = 2

s,(^)
(𝑉9(𝑟) + 4𝜆-)  

 
Since the asymmetry function obeys the constraint 

 
0 ≤ 𝑎(𝑟) ≤ 1 

and as the above expression of the asymmetry function does not comply with this constraint, we use 
the assumption 

𝛼(𝑟) = u
1

8𝑆(𝜌)
(𝑉9(𝑟) + 4𝜆-),				𝑟 ⩽ 𝑟9
1,				𝑟 ⩾ 𝑟9

 

where rc is the cutoff radius. If we integrate this expression according to the normalization condition  

z𝛼(𝑟)𝜌(𝑟)𝑑.𝑟
*

= 𝑁 − 𝑍 

where we integrate over the entire volume V that the nucleus occupies, we obtain the Lagrange- 
multiplier 

𝜆- = 2jz 𝜌(𝑟)𝑑.𝑟
*{

−
𝑒-

8
z
𝑉9(𝑟)𝜌(𝑟)
𝑆(𝜌) 𝑑.𝑟

*{
− 2𝑍ljz

𝜌(𝑟)
𝑆(𝜌)𝑑

.𝑟
*{

l
(|2)

 

 
(Vc is the volume that corresponds to the cutoff radius rc). The Coulomb potential that appears in the 
energy density functional expression 

𝑉9(𝑟) =
𝑒-

2
z
𝜌(𝑟′)[1 − 𝛼(𝑟′)]

|𝑟 − 𝑟′| 𝑑.𝑟′ 

 
can be decomposed into two parts [1] as follows  

𝑉93(𝑟) = 2𝜋𝑒- h
1
𝑟
z [1 − 𝛼(𝑟′)]𝜌(𝑟′)𝑟′-𝑑𝑟′
`

J
+z [1 − 𝛼(𝑟′)]𝜌(𝑟′)𝑟′𝑑𝑟′

{̀

`
m ,				𝑟 ⩽ 𝑟9  

 
 𝑉9}(𝑟) =

-~��

` ∫ [1 − 𝛼(𝑟′)]𝜌(𝑟′)𝑟′-𝑑𝑟′{̀
J ,			𝑟 ⩾ 𝑟9 

We consider the following expansion of the symmetry energy [1] 

𝑆(𝜌) = 𝑆(𝜌J) + 𝐿𝛿 +
𝛫��7
2! 𝛿- + 𝑂(𝛿.) 

where L is the slope parameter 
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𝐿 = 3𝜌J
𝑑𝑆(𝜌)
𝑑𝜌

�
^�^�

 

and the coefficient Ksym is given by 

𝐾��7 = 3𝜌J
𝑑-𝑆(𝜌)
𝑑𝜌-

�
^�^�

 

In order to use an expression for the symmetry energy, we consider the expansion of the energy 
per particle of asymmetric nuclear matter [3] 
 

𝐸�(𝜌, 𝛼) = 𝛦�(𝜌, 𝛼 = 0) + 𝐸��7,-(𝜌)𝛼- + 𝛦��7,M(𝜌)𝛼M+. . . +𝛦��7,-�(𝜌)𝛼-�+. .. 
 
and the symmetry energy can be obtained from the following relation  

𝑆(𝜌) ≡ 𝐸��7,-(𝜌) =
1
2!
𝜕-𝐸�(𝜌, 𝛼)

𝜕𝛼-
�
e�J

 

For the energy per particle of nuclear matter Eb, we employ the expression from the  momentum-
dependent interaction model (MDI), as given by [3]. 

The proton and neutron radii are given by the following expressions 

𝑅Q = a2
� ∫ 𝑟

-𝜌Q(𝑟)𝑑.𝑟c
2 -⁄

   𝑅P = a2
V ∫𝑟

-𝜌P(𝑟)𝑑.𝑟c
2 -⁄

 

and they are used together to define the neutron-skin thickness 
𝑅��8P = 𝑅P − 𝑅Q 

The asymmetry coefficient aA that appears in the Bethe-Weizsacker formula, is given by the 
expression  

𝛼3 =
𝐴

(𝑁 − 𝑍)-
z𝜌(𝑟)𝑆(𝜌)𝛼-(𝑟)𝑑.𝑟 

In the present study, we are making calculations for the 208Pb nucleus. The asymmetry function 
a(r) is also known as the asymmetry parameter I, and J is the symmetry energy at the saturation 
density ρ0=0.16144 fm−3, J=S(ρ0). From computational analysis, we have extracted  the following 
figures, which show the relations between the neutron skin Rskin and the slope parameter L (Fig. 1), 
between Rskin and the asymmetry parameter I (Fig. 2) and the relation between the asymmetry 
coefficient aA and I (Fig. 3).    

 

Figure 1. Neutron skin thickness Rskin – slope parameter L diagram 
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Figure 2. Neutron-skin thickness Rskin – asymmetry parameter I 

 Figure 3. Asymmetry coefficient aA – asymmetry parameter I 
 

There appears to be a linear correlation between the neutron skin Rskin and the slope parameter L, 
as seen from Fig.1 above. Also, from Fig. 2, Rskin seems to be linearly dependent on the asymmetry 
parameter I, which means that, as the difference between the neutron and proton distributions 
increases, the neutron skin of the nucleus also increases. Furthermore, from Fig. 3, the asymmetry 
coefficient aA also appears to increase as the asymmetry increases. 

From the present work we can see that symmetry energy is indeed a key regulator, affecting 
various nuclear properties, such as the nuclear skin thickness Rskin, the asymmetry coefficient aA, the 
total energy of the nucleus E. One future goal is to introduce temperature in our study. 
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