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NLD Equation of State for compressed, hot and relativistic 
nuclear matter 
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1Department of Physics, Aristotle University of Thessaloniki 
__________________________________________________________________________________________ 

 
Abstract We investigate the properties of compressed and hot hadronic matter within the Non-
Linear Derivative (NLD) formalism. The novel feature of the NLD model is an explicit momentum 
dependence of the mean-fields, which is regulated by cut-off’s of natural hadronic scale. It is 
covariantly and thermodynamical–consistently formulated at the basis of a field–theoretical level. We 
show that the NLD model describes adequately all the empirical information of cold nuclear matter as 
function of density (equation of state) and, in particular, as function of particle momenta (optical 
potential). Finally, we present predictions of the NLD approach for hot and compressed hadronic 
matter in terms of the Equation of state as function of density and temperature. These studies are 
relevant for the forthcoming experiments at FAIR@GSI. They are also important for astrophysical 
purposes, e.g., static neutron stars and dynamic neutron star binary systems.  
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INTRODUCTION 

 
Describing nuclear matter in its extreme is gaining more and more attention over the last decades. 

Experimental data from Heavy Ion Collisions and data from Neutron Stars give a boost to this study, 
but the same time the theoretical work itself may give directions to the experiments. 

A simple tool for the theoretical description of nuclear matter is Relativistic Hydrodynamics 
(RHD) and a typical approximation in the RHD framework is the relativistic mean-field 
approximation (RMF), where the meson field operators are replaced by their ground state expectation 
values, which are classical fields. Taking the standard RHD Lagrangian in RMF approximation, the 
nucleon self-energies become simple functions of density only and do not depend on momentum of 
the nucleon explicitly. Therefore the Schrödinger-equivalent optical potential, which is energy 
dependent (as a consequence of relativistic description), depends linearly on energy and at high 
energies does not agree with Dirac phenomenology (Figure 1). In order to solve this issue, we 
introduce the Non-linear derivative (NLD) model, where the nucleon self-energies depend not only on 
density, but explicitly on momentum of the nucleon [1]. It modifies the behavior of optical potential, 
eq. (1). 

 𝑈"#$ =
𝐸
𝑚𝛴) − 𝛴+ +

1
2𝑚

/𝛴+0 − 𝛴)01 (1) 

     
THE NON-LINEAR DERIVATIVE (NLD) MODEL 
 

The Lagrangian is as in the conventional QHD 
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but in the interaction term we introduce the momentum dependence with the non-linear derivative 
operators 𝐷LL⃗ ,𝐷⃖LL  
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Figure 1. In-medium proton Schrödinger-equivalent Re(Uopt) 

 
which are assumed to be generic functions of partial derivative operator and supposed to act on the 
nucleon spinors 𝛹  and 𝛹5  respectively. The Taylor expansion of the operator functions (supposing 
that they are smooth functions) in terms of partial derivatives generates an infinite series of higher-
order derivative terms 

𝐷LL⃗ ≔ 𝐷/𝜉1 = Q
𝜕R

𝜕𝜉I
𝐷|TL⃗ →V

𝜉R

𝑗!

J→Y

RZV

 

𝐷	L⃖LL ≔ 𝐷/𝜉1 = Q
𝜉R

𝑗!
𝜕R

𝜕𝜉I
𝐷|T⃖L→V

J→Y
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The expansion coefficients are given by the partial derivatives of 𝐷 with respect to the operator 

arguments 𝜉 and 𝜉 around the origin. The operators are defined as 𝜉 = − )\I]LL⃗ \
^

 and 𝜉 = I]⃖LL\)\

^
 , where 

𝛬 is a cut-off parameter (its value is supposed to be of natural hadronic scale of around 1 GeV) and 
𝑣a  is an auxiliary vector [2]. 

Applying the generalized Euler-Lagrange equations to the full Lagrangian density with respect to 
the spinor field Ψ, leads to a Dirac equation with self-energies, which in the RMF approximation to 
infinite nuclear matter are 
 

𝛴)I
7 = 𝑔A𝜔7𝐷 + 𝑔F𝜏I𝜌7𝐷         and        𝛴+I = 𝑔=𝜎𝐷. 

 

The meson-field equations are taken from the standard Euler–Lagrange equations 
 

𝑚=
0𝜎 +

𝜕𝑈
𝜕𝜎 = 𝑔= Q 〈𝛹5I𝐷𝛹I〉
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𝑚A
0𝜔 = 𝑔A Q 〈𝛹5I𝛾V𝐷𝛹I〉
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= 𝑔A𝜌V 

𝑚F
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It must be noticed that the cut-off Λ regulates both the density and momentum dependence of 
self-energies, and the density dependence of meson-field sources (particularly for ω-field). 

Applying the Noether theorem for translational invariance to the NLD Lagrangian gives us the 
energy-momentum tensor, from which the energy density 𝜀 ≡ 𝛵VV and the pressure P are 

𝜀 = Q
𝜅

(2𝜋)l
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𝛱IV|#⃗|p#qr

IZ#,J
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NLD RESULTS 

Model Parameters 
On table 1 there is the form of operator D we choose (it’s a monopole form) and the values of 

parameters, which have been extracted from fit to known properties (saturation density, binding 
energy per nucleon, compressibility etc.), and on table 2 there are the values of these properties in 
comparison with values from other theoretical models. 

 
Table 1. Form of D & Parameters 

𝐷LL⃗  D in 
NM 

  𝛬+    𝛬) 
    [GeV] 

  𝑔=         𝑔A      		𝑔F        𝑏               𝑐                                         
.                                    [fm-1] 

𝑚=							𝑚A							𝑚F 
           [GeV] 

1

1 + ∑ y
𝑣Ra𝑖𝜕aLLLL⃗
𝛬 z

0

{
RZ|

 𝛬0

𝛬0 + 𝑝0 
0.95  1.125 10.08    10.13    3.50   15.341    -14.735 0.592  0.782  0.763 

 
In our fit to bulk properties of nuclear matter we use different cut-off parameters 𝛬+ and 𝛬) for 

the scalar and meson-nucleon vertices, respectively. The parameters of NLD are: the meson-nucleon 
couplings 𝑔+ , 𝑔A and 𝑔F, the parameters b and c of the self-interactions of the σ-meson, the mass 𝑚= 
of the σ-meson and the cut-offs 𝛬+ and 𝛬) (for 𝑚A and 𝑚F we take the bare masses, because in all the 
calculations concerning the fit the results for these two masses turned out to be always around their 
free values).  
 
The NLD equation of state 
 

The density dependence affects the equation of state i.e. the binding energy per nucleon as 
function of nucleon density. In Figure 2 this is demonstrated for isospin-symmetric (𝛼 = 0)1 and pure 
neutron matter (𝛼 = −1) in comparison with DBHF calculations. The momentum-dependent 

                                                
1 The isospin-asymmetry parameter 𝛼 is defined as 𝛼 = �������

�������
 ,where 𝐽𝑝,𝑛

0  denote the proton and neutron density, respectively.   
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monopole form factor D regulates the high-density dependence of the fields such that the NLD EoS 
agrees with the DBHF calculations for both symmetric nuclear and pure neutron matter. It must be 
noted that the NLD parameters are not fitted to the calculations of DBHF models, but to the empirical 
data at ground state density only. 

 
Table 2. Bulk saturation properties for NLD in comparison with other theoretical models 

Model ρsat 
[fm-3] 

Εb 
[MeV/A] 

K 
[MeV] 

αsym 
[MeV] 

L 
[MeV] 

Ksym 

[MeV] 
Kasy 

[MeV] 
NLD 0.156 -15.30 251 30 81 -28 -514 
NL3* 0.150 -16.31 258 38.68 125.7 104.08 -650.12 
DD 0.149 -16.02 240 31.60 56 -95.30 -431.30 
D3C 0.151 -15.98 232.5 31.90 59.30 -74.7 -430.50 

DBHF 
0.185 
0.181 

-15.60 
-16.15 

290 
230 

33.35 
34.20 

71.10 
71 

-27.1 
87.36 

-453.70 
-340 

empirical 0.167±0.019 -16±1 230±10 31.1±1.9 88±25 – -550±100 
 
In-medium nucleon optical potential 
 

Figure 3 shows the in-medium proton optical potential as function of the in-medium single 
particle kinetic energy for typical RMF models and NLD model in comparison with results of Dirac 
phenomenology [3]. Obviously NLD is consistent with Dirac phenomenology. 

 

Figure 2. EoS for isospin-symmetric (𝛼 = 0) and 
pure neutron matter (𝛼 = −1). NLD model (blue 
solid line) and DBHF calculations (filled squares). 

 
Figure 3. The in-medium proton optical potential 
as function of the in-medium single particle kinetic 
energy. Typical RMF models (grey straight lines), 
NLD model (blue solid curve) and results of the 
Dirac phenomenology (filled circles). 

 
Equation of state for hot matter 
 

All the previous study was for temperature equal to zero. In Figures 4 and 5 are shown 
predictions of the NLD approach for hot hadronic matter for symmetric and pure neutron matter, 



HNPS Advances in Nuclear Physics vol. 27, pp. 101–105 (2020) 
A. Chorozidou and T. Gaitanos HNPS2019 doi:10.12681/hnps.2988 
   Page 105 
 
 

Licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

respectively. The reason for this extrapolation is our willing to apply this model to dynamic systems, 
like binary Neutron Stars, where the temperatures are higher.  

Figure 4. EoS for different values of temperature. 
Symmetric matter (𝛼 = 0). Starting from T=0 (black 
curve) the second curve is for T=10 MeV (red curve), 
the third for T=20 MeV (green curve) etc. 

 
Figure 5. EoS for different values of temperature. 
Pure neutron matter (𝛼 = −1). Starting from T=0 
(black curve) the second curve is for T=10 MeV (red 
curve), the third for T=20 MeV (green curve) etc. 

CONCLUSIONS  

The advantage of NLD model is that keeping the simplicity of RMF approximation, it can 
describe complex features (non-liner density and momentum dependences), only by introducing 
appropriate regulators on a Lagrangian level covariantly, which regulate the high density and 
momentum components of mean fields. 

The equation of state we get is soft at low densities (the compressibility is around 250 MeV, 
Table 2), but becomes stiffer at high densities a remarkable agreement with microscopic DBHF 
calculations (Figure 2). The momentum dependence we introduced seems to be correct, if we compare 
with results from Dirac phenomenology (Figure 3). All these are compatible with all recent 
observations of high density relevant equations of state (Neutron Stars).  

Regarding future developments, we will apply our model to new experiments, which will be 
done at HADES collaboration for pion induced reactions. This will give us many experimental data 
not only for nucleons but for other particles as well, so we can expand this formalism to strangeness. 
Also we will do more systematic comparison with results from transport calculations. 
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