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Abstract

We deal with the systematics of one and two proton separation energies as predicted by our latest global model for the
masses of nuclides developed with the use of neural networks. Among others, such systematics is useful as input to the
astrophysical rp-process and to the one and two proton radioactive studies. Our results are compared with the
experimental separation energies referred to in the 2003 Atomic Mass Evaluation and with those evaluated from
theoretical models for the masses of nuclides, like the FRDM of Méller et al. and the HFB2 of Pearson et al. We focus in
particular on the proton separation energies for nuclides that are involved in the rp-process (29<Z<40) but they have not
yet been studied experimentally.

Keywords: Proton separation energies ; Binding energies and masses ; Statistical modeling ; Neural networks ; Nucleosynthesis

1. Introduction

In this work we present global models for the one proton and two proton separation
energies of nuclei, defined respectively in terms of the binding energies B or mass
excesses AM as follows:

S(p)=B(A,Z)-B(A-1,Z-1)=AM(Z -1,N)+AM ,, —-AM(Z,N)
S(2p)=B(A,2)-B(A-2,Z-2)=AM(Z -2,N)+2AM , -AM(Z,N)

The problem of devising global models of the proton separation energies is mostly
connected with the problem of devising global models for the atomic masses or binding
energies of nuclides. Besides providing an understanding of the physics of the mass
(binding energy) surface they are useful for prediction of these properties for “new”
nuclides far from stability. These predictions are of current interest in connection with
the experimental studies of nuclei far from stability conducted at heavy-ion and
radioactive ion-beam facilities as well as for such astrophysical problems such as
nucleosynthesis and supernova explosions [1]. In particular, the global models of the
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proton separation energies are useful mainly in the study of proton and two proton
radioactivity [2] and the rp-process of nucleosynthesis [3]. The latter is believed to take
place on the surface of white dwarfs (novae) and of neutron stars (type I X-ray bursts),
on accretion disks around low mass black holes as well as in Thorne-Zytkow objects.
The rp-process may also be responsible for the p-process nucleosynthesis of a few
proton-rich stable nuclei in the 4=74-98 mass range.

The global models of the proton separation energies developed so far are mainly
derived from the known global models of the atomic mass. The spectrum of the latter
ranges from those with high theoretical input that take explicit account of known
physical principles in terms of a relatively small number of fitting parameters to models
that are shaped mostly by the data and very little by the theory and thus have a
correspondingly large number of adjustable parameters. Current models of the former
class that set the state of the art are the finite range droplet model (FRDM) of Mdller,
Nix and coworkers detailed in Refs [4,5] and the Hartree-Fock-Bogoliubov model
(HFB2) of Pearson, Tondeur and coworkers detailed in Ref. [6]. There are also
“restricted” global models of proton separation energies that address in detail the
evaluation of proton separation energies in certain region of nuclides like the sd shell or
the fp shell [7,8,9] and the suburanium and superheavy regions [10].

We use neural networks to develop global models for the one proton and two proton
separation energies. In this work our models are based on our best neural network
global mass model detailed in Ref. [11]. The models derived by means of neural
network methodology are situated far toward the other end of the spectrum mentioned
above, where one (in the ideal) seeks to determine the degree to which the entire mass
table of a given property is determined by the existing data and only by the data. During
the last decade artificial neural networks have been utilized to construct predictive
statistical models in a variety of scientific problems ranging from astronomy to
experimental high-energy to protein structure [12]. To date, global neural network
models have been developed for the stability/instability dichotomy, for the atomic mass
table, for neutron separation energies, for spins and parities and for decay branching
probabilities of nuclear ground states and for § decay half-lives [11,13].

In a typical example, a multilayered feed-forward neural network is trained with a
supervised training algorithm to create a "predictive" statistical model of a certain input-
output mapping. Information contained in a set of learning examples of the input-output
association is embedded in the weights of the connections between the layered units in
such a way that the network provides a means for interpolation or extrapolation.

In section 2 we outline the neural network model specifications along with the data sets
used for training, evaluation of predictive performance and prediction. In section 3 we
summarize the results for the mass excess while in section 4 we present the
corresponding results for one and two proton separation energies and we estimate the
position of the proton drip line for nuclei with 29<Z<40. Finally, section 5 states the
general conclusions of the current study and views the prospects for further
improvements in statistical prediction of proton separation energies.

2. Neural network mass model

After a substantial number of attempts (see Ref. [11] for details) a multilayered feed-
forward neural network is adopted with gross architecture summarized in the notation
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(4-10-10-10-1)[363]. The four units of the input layer encode the atomic number Z,
neutron number N and their respective parities, while the single unit of the output layer
encodes the mass excess AM. A scaling recipe has been used for the Z, N and AM
variables which allows for the ranges [0,130], [0,200] and [-110,250] respectively. The
total number of weight/bias parameters that connect the input to the output layer
through the three intermediate layers (each consisted of 10 units) is 363.

The training of the neural network was simple: when the training patterns were
presented to the input interface, the states of all units within a given layer were updated
successively, proceeding from input to output. Based on the deviation between the
target and output mass excess values, the weight parameters were continuously
readjusted through a minimization training algorithm. Specifically, a novel back-
propagation algorithm has been used that helps to avoid the local minima during the
training process. In addition, several other techniques have been used to improve
training and predictive performance.
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Fig. 1: Locations in the N-Z plane are indicated for the M1, M2, NB and AM data sets employed in
neural-network modeling of nuclear mass excesses.

For training the neural network mass model we have employed a database of 1654
nuclei which form the database fitted by the FRDM parameterization of Ref. [4]. We
have split them randomly into two data sets of 1303 (M1) and 351(M2) nuclei that are
utilized as learning and validation sets respectively. The former has being used during
training for adjusting the weight parameters while the performance on the latter was
used as a criterion for when to stop the training process. While the members of the
validation set are not used in the weight updates, they clearly do affect the choice of
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model. To obtain a clean measure of predictive performance, a prediction set is needed
that is never referred to during the training process. Such a set (denoted NB) was
formed from 158 new nuclei drawn from the NUBASE evaluation of nuclear and decay
properties [14], which lie beyond the 1654 nuclide set as viewed in the N — Z plane (see
Fig. 1).

3. Mass Excess evaluation
As performance measure we chose the root mean square error orms. We report in

Table 1 its values on learning, validation and prediction sets for the neural network of
Ref. [11] and for the FRDM [4] and HFB2 [6] models.

Table 1: Root mean square error (opys) of global models for the atomic mass table (see
text for details).

Model Learning set (M1) Validation set (M2) Prediction set (NB)
orms (MeV) orms (MeV) orms (MeV)

FRDM (Ref. [4]) 0.68 0.71 0.70

HFB2 (Ref. [6]) 0.67 0.68 0.73

(4-10-10-10-1) (Ref. [11]) 0.44 0.44 0.95

Further information on the predictive performance of the neural network mass model
is furnished in Figs 2 and 3. In Fig. 2, we compare the deviations from experimental
data of the mass excess values generated by the net and by the FRDM evaluation, for
the NB nuclei. The extrapolation capability of the neural network model is better
illustrated in the Fig. 3 which shows these deviations as a function of the number of
neutrons away from the f-stability line.

After completing the training of the above neural network model, the 2003 Atomic
Mass Evaluation (AMEO03) was published [15]. This compilation made available
precision mass measurements for nuclei farther off the stability line, while providing
corrected mass-excess values for nuclei already used in our study. The next generation
of neural-network models will be trained using the AMEO3 data. Already however, we
can further appraise the extrapability performance of our network by making use of 376
new nuclei included in the AMEO3, which extend mostly beyond the edges of the
M1+M2+NB nuclide set as viewed in the N — Z plane. The resulting value of orums for
this set of nuclei (denoted AM, see Fig. 1) is 1.06 MeV, which is to be compared with
the figures 0.52 MeV and 0.68 MeV obtained in the FRDM and HFB2 evaluations
respectively. When comparing these results, it should be kept in mind that the
parameters of the HBF2 model have been adjusted by making use of an extended data
set of 1888 nuclei, which includes 102 of the 376 nuclides.
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Fig. 2: Top panel: deviations from experiment Fig. 3: Top panel: deviations from experiment
(in MeV) of mass-excesses values predicted (in MeV) of mass-excesses values predicted by
by the neural-network model [11] for the NB the neural-network model [11] for the NB
nuclei. The plot represents a projection of the nuclei plotted versus the number of neutrons
mass surface onto a plane of constant Z and away from the line of S-stability. Bottom panel:
thus shows dependence on neutron number N. same for the FRDM evaluation [4].
Bottom panel: same for the FRDM evaluation

[4].

4. Proton separation energies

The AMEO3 basis contains 2040 nuclei with experimentally measured one proton
separation energies S(p). For 1968 of these nuclei with Z, N > 8, values for S(p) can be
evaluated from the mass excess values evaluated by the FRDM, HFB2 and neural
network models discussed in section 3. The corresponding orps are reported in Table 2.
To estimate the predictive performance of the models we report separately results for
123 and 330 nuclei of the NB and AM data sets respectively, for which one proton
separation energies can also be evaluated.

The AMEO3 basis also contains 1900 nuclei with experimentally measured two
proton separation energies S(2p). For 1846 of these nuclei with Z, N > 8, values for
S(2p) can be evaluated from the mass excess values evaluated by the FRDM, HFB2 and
neural network models discussed in section 3. The corresponding crms are reported in
Table 3. To estimate the predictive performance of the models we report separately
results for 107 and 327 nuclei of the NB and AM data sets respectively, for which two
proton separation energies can also be evaluated.
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Table 2: Performance measures of global models of one proton separation
energies derived from global models of the mass excess (see text for details).

Model 1968 of 2040 123 of 158 (NB) 330 0f 376 (AM)
orms (MeV) orms (MeV) orms (MeV)
FRDM (Ref. [4]) 0.40 0.48 0.37
HFB2 (Ref. [6]) 0.49 0.49 043
(4-10-10-10-1) (Ref. [11]) 0.53 0.72 0.62

Table 3: Performance measures of global models of two proton separation
energies derived from global models of the mass excess (see text for details).

Model 1836 of 1900 107 of 158 (NB) 327 of 376 (AM)
orms (MeV) orms (MeV) orms (MeV)
FRDM (Ref. [4]) 0.49 0.54 033
HFB2 (Ref. [6]) 0.51 0.66 043
(4-10-10-10—1) (Ref. [11]) 0.61 0.74 0.69

From the orms values reported for S(p) and S(2p) in Tables 2 and 3, we see that the
neural network models have reached extrapability levels comparable with those reached
by the best global models rooted in quantum theory. The ultimate test of any global
model is the accuracy that can be realized in the prediction of separation energies of
nuclear species prior to measurement. It is particularly important to predict for each Z
the first isotope with negative S(p) or S(2p), indicating the position of the proton drip
line. For the elements with 29<7<40 the position of the proton drip line has been
estimated and drawn in Fig. 4 using the systematics of S(p) and/or S(2p) created by the
neural network mass model (in a few cases where no negative value was predicted for
either S(p) or S(2p), the minimum value has been used instead). As it was mentioned
before, this region of the nuclear chart is of great current importance in the rp-process at
relatively high temperature. As expected due to pairing, the odd Z proton drip line is
located substantially closer to the stability line compared to the even Z proton drip line.
Our results do not differ significantly from those derived by Brown et al. and presented
in Fig. 3 of Ref. [9].

5. Conclusions — Future steps

The current generation of neural network models of the nuclear mass excess display
substantially improved performance relative to earlier attempts that use neural networks
to predict masses far from the valley of B stability. We have used such models to create
statistical models for the one and two proton separation energies. The results suggest
that with further development this approach may provide a valuable complement to
conventional global models. Strong impetus for such improvement comes from studies
of nucleosynthesis (especially the rp-process), proton-rich nuclei and two-proton
emission.
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We are currently exploring and implementing a number of refinements of neural-
network approaches to the mass problem which we will use afterwards for modelling
the separation energies. These include the introduction of self-constructed neural
networks that will tackle the subtle regularities of the nuclear mass systematics. We
have also made some initial attempts to construct a neural network model of the
differences between the experimental mass-excess values and the theoretical ones given
by the FRDM model [4]. Furthermore, we have made some attempts to create directly
global models for separation energies with the use of neural networks trained with the
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Fig. 4: Proton drip line evaluation based on the prediction of one and two proton separation
energies. In italics, nuclei with experimentally measured separation energy.

experimental separation energies.
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