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Abstract

Using in the Bohr Hamiltonian the approximations leading to the Bohr and Mot-
telson description of wobbling motion in even nuclei, a W(5) model for wobbling
bands, coexisting with a X(5) ground state band, is obtained. Separation of vari-
ables is achieved by assuming that the relevant potential has a sharp minimum at
70, which is the only parameter entering in the spectra and B(E2) transition rates
(up to overall scale factors). B(E2) transition rates exhibit the features expected in
the wobbling case.
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1 Introduction

Nuclear wobbling motion [1] is expected to occur for triaxial nuclei at high
angular momenta, when the angular momentum is aligned with the axis corre-
sponding to the largest moment of inertia, a situation which classically corre-
sponds to simple rotation without precession of the axes. Although wobbling
motion was initially introduced for even nuclei [1], it has been seen experimen-
tally up to now (and only recently) only in odd nuclei (*3Lu [2-4], 55Lu [5],
187Lu [6]). Detailed theoretical works have been performed in the cranked shell
model plus random phase approximation [7-9], as well as in the particle-rotor
model [10,11], which naturally contain free parameters.

In the present work we attempt a nearly parameter-free (up to overall scale
factors) description of wobbling in even nuclei, following the methods devel-



oped in the E(5) [12], X(5) [13], Y(5) [14], and Z(5) [15] models, which corre-
spond to the U(5)-O(6), U(5)-SU(3), axial-triaxial, and prolate-oblate shape
phase transitions respectively. Furthermore, the wobbling nucleus is assumed
to possess a relatively rigid triaxial shape, as in Refs. [16-18], with the poten-
tial having a sharp minimum at v = 7. 7, is the only free parameter entering
in the problem. It turns out [19], however, that the results are changing very
little with -y within the region of interest. The path we follow is described
here:

1) We assume that the ground state band (gsb), which should be Yrast at
low angular momentum L, is axial, characterized by o = 0. We then use for
this purpose the X(5) gsb, which is indeed derived from the original Bohr
Hamiltonian [20] after approximately separating variables for v = 0 [13].

2) We assume (as in Ref. [21]) that triaxiality should appear at higher L.
Starting then from the original Bohr Hamiltonian, we approximately separate
variables following the steps of Bohr and Mottelson [1] in the definitive de-
scription of wobbling and keeping -y close to . The resulting model, in which
only v, appears as a parameter, we call W(5). The spectrum of W(5) is mea-
sured from the ground state of X(5) and normalized to the first excited state
of the gsb of X(5), in order to be directly comparable to the X(5) spectrum.

3) The n,, = 0 band of W(5) (where n,, is the number of wobbling phonons [1])
is found to cross the gsb of X(5) at certain L, depending (very weakly within
the region of interest) on 7p. Thus the n,, = 0 band of W(5) becomes Yrast
beyond some specific L. Bands with n,, = 1, 2, ...exist at higher energies.

4) The n,, = 0, 1, 2 bands of W(5) are connected by intraband and interband
B(E2) transitions which exhibit the characteristic features expected in the
case of wobbling [22].

In Sections 2 and 3 of the present work the S-part and the ~-part of the W(5)
spectrum are derived respectively, while the results are discussed in Section 4
and plans for further work are presented in Section 5.

2 The j-part of the spectrum

The original Bohr Hamiltonian [20] is H = T + V (5, v) with

Rl10 ,08 1 90 . 9] 1 2
-5 Fa_ﬁ %+m551n37%_wk£,3Aka , (1)
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where 3 and v are the usual collective coordinates, B is the mass parameter, ()
(k =1, 2, 3) are the components of angular momentum, and Az = 1/ sin®(y —
2mk/3).

Introducing [13] reduced energies ¢ = 2BE/h* and reduced potentials u =
QBV/FLQ. one aims at an approximate separation of variables by assuming
that the reduced potential can be separated into two terms, one depending on
3 and the other depending on 7, i.e. u(8.7) = u(3) + u(y).

In the X(5) model [13,23], approximate separation of variables is achieved by
assuming that the potential u(y) has a minimum around vy, = 0, guarantee-
ing that K, the projection of angular momentum on the body-fixed 2’-axis,
is a good quantum number. Similarly, in the Z(5) model [15], approximate
separation of variables is achieved by assuming that the potential u(~) has a
minimum around -y, = 7/6, guaranteeing [24] that a, the projection of angular
momentum on the body-fixed #'-axis, is a good quantum number.

The X(5) and Z(5) solutions, briefly mentioned above, are obtained for specific
values of vy (0, 7m/6 respectively), and are valid for any value of the angular
momentum L. A different approximate solution, which for brevity we are going
to call W(5), can be obtained by following the steps of Bohr and Mottelson
[1] for the description of wobbling motion. This solution will be obtained for
a range of v, values, but it will be valid only for large values of the angular
momentum L, which is supposed to be aligned along the axis corresponding
to the largest moment of inertia.

Using the A; (k = 1, 2, 3) appearing in Eq. (1), one sees that in the region
0 <y <7/6one has A; < Ay < Az. Therefore the largest moment of inertia
corresponds to £ = 1. In what follows we are going to restrict ourselves to the
0 <y < m/6 region.

For large angular momenta L aligned along the £ = 1 axis, following Bohr and

Mottelson [1] one can see that the eigenvalues of the 4;Q% + A2Q% + A3Q%
term in Eq. (1) take the form

e(n, L) = A;L(L + 1) + 24, L (n + %) - (2)

with A, = \/(AQ/AI —1)(As/A; — 1), where n,, is the number of the wobbling
excitation quanta, for which the approximate (in the present case) relation
ny = L — o (where « is the projection of angular momentum on the £ = 1
body-fixed axis, as before) holds. Since @ ~ L and L is a good quantum
number, o can be approximately treated as a good quantum number, too.
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Using this result in the Schrodinger equation corresponding to the Hamiltonian
of Eq. (1), one can separate it into two equations

19 4,0 1 L
[_E%mgﬂ_ + WAI (L(L +15+ 2L (nw - 5) Aw> + U(ﬁ)} €L.n,(B)

= €s61.n.(8), (3)

[_m% B 37% T “(’Y)] n(7) = en(y), (4)

where ((2) is the average of 5?2 over £(), and € = €5 + ¢,. Here we assume, as
in Refs. [16-18], that the potential u(y) has a deep minimum at v = v, and
that the variable « remains “frozen” at the value -y, in A; and A,,, appearing
in Eq. (3).

The total wave function should have the form

¥(B,7,6;) = EL,nw(B)n(’Y)DIL\/[,a(Hi)a (5)

where 6; (¢ = 1, 2, 3) are the Euler angles, D(6;) denote Wigner functions
of them, L and M are the eigenvalues of angular momentum and the eigen-
values of the projection of angular momentum on the laboratory-fixed z-axis
respectively, and oo = L — ny,.

In the case in which u(8) is an infinite well potential (u(8) = 0 for 8 < By,
u(f) = oo for 8 > fBw) one can use the transformation [13] £(8) = 8%2¢(B),
as well as the definitions [13] €3 = k3, z = Bkg, in order to bring Eq. (3) into
the form of a Bessel equation

c c 2
§2_5+1§+[1_5_}g:o, (6)

with

\/AlL(L +1) + 2A4,L (ny + 1) Ay +9
V= .

Then the boundary condition f (Bw) = 0 determines the spectrum
‘ZS v
€8isv = €@isnu,L = (ks,u)Q’ ksp = ==, (8)
Bw
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and the eigenfunctions

fs,u(ﬂ) = fs,nw,L(B) = és,a,L(/B) = Cs,uﬂ_S/QJu(ks,uﬁ)a (9)

where z,, is the sth zero of the Bessel function J,(z), while the constants
¢s,, are determined from the normalization condition [5° 8*€2,(8)dS = 1. The
notation for the roots has been kept the same as in Ref. [13], while for the
energies the notation E;,, ; will be used. The lowest band corresponds to
s=1,n, =0with L =0, 2, 4, ..., while the next bands are s =1, n, =1
with L=1,3,5,...,and s=1, n, =2 with L =2, 4, 6, ...[24].

In the special case of 7y = 7/6 one can easily see that A; = 1, Ay = A3 = 4,
Ay = 3. Then Eq. (7) takes the form v = %\/L(L +4) 4+ 6n,, L + 9, which is in
agreement with the corresponding Z(5) expression [15], up to terms of order

2
ng.

3 The vy-part of the spectrum

The ~y-part of the spectrum is obtained from Eq. (4). We consider a harmonic
oscillator potential having a sharp minimum at v =7, (0 < 7 < 7/6), i.e.

1 1. X
u(y) = 5e(y - Y)? = ST T=7= (10)

The minimum is sharp as long as the constant c is taken to be sufficiently
large. Considering only small oscillations around ~p, and

n(7) = i(F)e SN, (11)
Eq. (4) is brought into the form
ot 1
[~ + ) 1) = () - SeormP) i), (12

~5

which is a simple harmonic oscillator equation.
The total energy in the case of the W(5) model is then

E(s,ny, L,ns) = By + A(zs,)* + Bns, (13)
where ny denotes the number of quanta of the above oscillator.
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4 Results

For low angular momentum the nucleus is expected to have vy = 0. As angular
momentum rises, at some point the nucleus will “jump” (as in Ref. [21]) to
the large L limit corresponding to wobbling motion. As a consequence, the
ground state band (gsb) of the nucleus should correspond to the gsb of X(5).
The X(5) gsb should be the Yrast band up to some value of L, beyond which
the n, = 0 wobbling band should become Yrast, while additional wobbling
bands with n,, = 1, 2, ...should be seen further up in energy.

The calculation of B(E2) transition rates resembles the one of the Z(5) model
[15] and has been carried out in Ref. [19]. It is worth comparing the results to
the main features expected to be exhibited by B(E2)s in wobbling bands [22].

1) In region 2 of the Lund convention, which corresponds to the present case,
the interband (n, = 1) — (n, = 0) transitions are expected to be strong for

L — L+ 1 and weak for L — L — 1 [7]. This is exactly the situation seen in
Ref. [19].

2) The ratio

(14)

B(E2)ou _ B[E2; L1 — (L + 1))
B(E2)in  B[E2% Ly — (L—2)1]

where the notation L, is used, is expected [22] to be of the order 0.2-0.3,
i.e. much larger than what is expected for typical interband transitions. The
(nw = 1) = (ny, = 0) transitions in Ref. [19] do exhibit this behaviour.

3) The B(E2)out = B[E2; Ly — (L + 1)) values are expected to go as 1/L
and not as 1/L* [22]. The results in Ref. [19] do exhibit this feature.

5 Discussion

In summary, a W(5) model describing the wobbling bands coexisting with
a X(5) ground state band in even nuclei has been introduced. Separation of
variables is achieved by assuming that the potential has a sharp minimum at
% = 7Yo. The model predictions for given value of 7, are parameter-free (up to
overall scale factors). The W(5) predictions for intraband and interband B(E2)
transition probabilities exhibit the features expected for wobbling bands. A
characteristic feature of the model is that the n, = 0 wobbling band is not
coinciding with the gsb, but with the superband crossing the gsb.
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Concerning further work, the following comments can be made:

1) It is clear that the W(5) model should be tested against experiment in
nuclei of which the gsb at low L appears to be close to X(5). A summary of
such nuclei in the rare earth region is given in Ref. [23]. It is indeed seen [19]
that existing experimental spectra on %Dy [26,27] correspond very well to
the n, = 0 and n, = 1 bands of the W(5) model for vy = 20°, a value which
has been found of interest [4] in the framework of “Ultimate Cranker” [28]
calculations.

2) The 8-equation [Eq. (3)] obtained above in the W(5) framework is also
exactly soluble [29,30] for the Davidson potentials [31] u(8) = 8% + f§3/3%,
where 5 is the position of the minimum of the potential. In analogy to earlier
work in the E(5) and X(5) frameworks [32] it is expected that 3, = 0 will
correspond to a “wobbling vibrator”, while 3y — oo will lead to the original
wobbling rotator of Ref. [1].

3) Using the variational procedure developed recently in the E(5) and X(5)
frameworks [32], one should be able to prove that the W(5) model can be
obtained from the Davidson potentials by maximizing the rate of change of
various measures of collectivity with respect to the parameter 3y, thus proving
that W(5) corresponds to the critical point symmetry of the transition from
a “wobbling vibrator” to a wobbling rotator.

Work in these directions is in progress.
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