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Dependence of Information Entropy of
Uniform Fermi Systems on Correlations and
Thermal Effects

Ch.C. Moustakidis and S.E. Massen

Department of Theoretical Physics, Aristotle University of Thessaloniki,
GR-54124 Thessaloniki, Greece

Abstract

The influence of correlations of uniform Fermi systems (nuclear matter, electron gas
and liquid 3He) on Shannon’s information entropy, S, is studied. It is found that,
for three different Fermi systems with different particle interactions, the correlated
part of S (Scor) depends on the correlation parameter of the systems or on the
discontinuity gap of the momentum distribution through two parameter expressions.
The values of the parameters characterize the strength of the correlations. A two
parameter expression also holds between S, and the mean kinetic energy (K') of the
Fermi system. The study of thermal effects on the uncorrelated electron gas leads to
a relation between the thermal part of S (Sthermai) and the fundamental quantities
of temperature, thermodynamical entropy and the mean kinetic energy. It is found
that, in the case of low temperature limit, the expression connecting Sipermar With
K is the same to the one which connects S¢or with K. Thus, regardless of the reason
(correlations or thermal) that changes K, S takes almost the same value.

Key words: Information theory, Fermi systems, Momentum distribution
PACS: 05.30.Fk, 21.65.+f, 67.55.-s, 89.70.+c, 65.40.Gr

1 Introduction

Information theoretical methods have in recent years played an important role
in the study of quantum mechanical systems [1-8] in two cases: first in the
clarification of fundamental concepts of quantum mechanics and second in
the synthesis of probability densities in position and momentum space. An
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important step was the discovery of an entropic uncertainty relation [1] which
for a three-dimensional system has the form

S=5+5>3(1+1Inm) ~6.434, (1)

where

&, = —/p(r) Inp(t)dr, S = —/n(k) Inn(k)dk (2)

are Shannon’s information entropies (IE) in position- and momentum-space
and p(r), n(k) are the density distribution (DD) and momentum distribution
(MD), respectively, normalized to unity.

The physical meaning of S, and Sy is that it is a measure of quantum-
mechanical uncertainty and represents the information content of a probability
distribution, in our case of various fermionic systems density and momentum
distributions. Inequality (1) provides a lower bound for S which is attained
for Gaussian wave functions [1]. It is mentioned that the sum S = S, + 5y is
invariant to uniform scaling of coordinates, while the individual entropies S,
and Sy are not.

The motivation of the present work is to extend our previous study of IE
in nuclei, atomic clusters and correlated bosonic systems to the direction of
various uniform fermionic systems and to connect it with the interaction of the
particles and the temperature. [n uniform systems the density p = N/V is a
constant and the interaction of the particles is reflected to MD which deviates
from the theta function form of the ideal Fermi-gas model. It is important to
study how the interaction affects the MD as well as the IE. An attempt is also
made to relate the IE with fundamental quantities such as the temperature,
the thermodynamical entropy and the mean kinetic energy of the fermionic
system (electron gas).

The quantum systems which are examined in the present work are nuclear
matter, electron gas and liquid *He. The inter-particle interactions of these
systems generally differ by many orders of magnitude in their strengths and
ranges. If the potentials are scaled with suitable energy and length measures
for the different systems, i.e. Fermi energy and inverse Fermi momentum, the
potentials still differ by orders of magnitude. The helium system is the most
strongly interacting, with an almost-hard-core interaction, and the electron gas
the most weakly interacting [9]. The nuclear case lies somewhere between. In
all these cases the strength of the interaction may be gauged by the depletion
of the Fermi sea. Quantitatively, one examines the deviation of Zr from unity,
where Zr is the discontinuity gap of the momentum distribution n(k) at k =
kr in an uniform Fermi system [10].
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The paper is organized as follows. The method leading to the expression of
Shannon’s information entropy sum in finite Fermi systems is presented in
Section II. Applications of that expression to nuclear matter, electron gas,
and liquid 3He are made in the three subsections of Section II. In the same
subsections numerical results are also reported and discussed. In Section III
the study of the influence of thermal effects on the information entropy sum
is made.

2 Information entropy for an infinite Fermi system

The key quantity for the description of the MD both in infinite and finite
quantum systems is the one-body density matrix (OBDM). The OBDM is
defined as

p(ry,ry) = / U*(ry,ro, ..., Iy ) ¥ (1], rgy ..., Ty )dra...dr y (3)

The diagonal elements p(ry,ry) of the OBDM yields the local density distri-
bution, which is just a constant p in the uniform infinite system. Homogenity
and isotropy of the system require that p(r1,r}) = p(| ry — 1} |) = p(r). In the
case of noninteractive Fermi systems the associated OBDM is

p(r) = pl(kp | 11 — 1} |),

where

I(z) = 3z7%(sinz — z cos z)

and p = N/V is the constant density of the uniform Fermi system.

The density, normalized to 1 (f ppdr = 1), is given by the relation

1 1

po= NV, Ninr3 4

where the volume V, = $7r corresponds to the effective volume of the Fermi

particle and N is the number of fermions.

The MD for fermions, having single-particle level degeneracy v, is defined by

n(k) =v! /p(r)eikrdr (5)
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The MD, normalized to 1 (f n(k)dk = 1), is given by the relation

(6)

k) = —n(k) = —
n(k) 7 (k) A

1 1 {fz_(k),k<kp

where V; = 37k} The Fermi wave number kp is related with the constant

density p = Npy = 3/(4nrd) as follows
6m2p 1/3 g7 1\"?
k = —_— = —_— 7
F ( v ) 2vry @

where v = 2 for electron gas and liquid *He and v = 4 for nuclear matter. In
the case of an ideal Fermi gas the MD has the form

1
no(k) = 79(/61? — k) (8)
k
The information entropy in coordinate space (for density py normalized to 1)

for a correlated or uncorrelated Fermi system is given by the relation

Sy =— / Poln podr = 1In V. (9)

Considering that V' = NV,, S, becomes

Sp=1In (%wr?) +InN. (10)

The information entropy in momentum space (for n(k) normalized to 1) is
given by the relation

g =— / n(k) lnn(k)dk. (11)

Sy for an ideal Fermi gas, using Eq. (8), becomes

2
Sy =1nV; = In (ﬁi) (12)

v o

From Eq. (10) and (12) the information entropy sum S = S, + S; for an
uncorrelated infinite Fermi system becomes

o

SO:S,+Sk:ln(y>+lnN (13)
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It turns out that the functional form

So=a+blnN

for the entropy sum as a function of the number of particles N holds for the
ideal infinite Fermi systems. The same function has been found in Ref. [2] for
atoms and in Ref. [8] for nuclei and atomic clusters. That expression has been
found also in Ref. [11] for the ideal electron gas. It is well known that relation
(1) (Sy + Sk > 3(1 + In7)) holds always. We found that for N large relation
(13) holds. Relation (13) for N = 1 violates relation (1), but this is hardly a
problem because (13) holds only for large N and we do not expect to agree
with (1), e.g. relations holding for nuclear matter cannot lead to relations
holding for finite nuclei with a few nucleons.

In the case of correlated Fermi systems, the IE in coordinate space is given
again by Eq. (10) while the IE in momentum space can be found from Eq.
(11) replacing n(k) from Eq. (6). Sk is written now

4

Sp=InV; -
k Il/ch

k7 %
/ k27i_ (k) In7_ (k)dk + / K27y (k) Infis (K)dE | . (14)
0

K
The correlated entropy sum has the form
S = Sr -+ SJ; = SD + Scor (15)
where Sp is the uncorrelated entropy sum of Eq. (13) and S, is the contri-

bution of the particles correlations to the entropy sum. That contribution can
be found from the expression

Seor = =3 (/ 2*i_(z)Inf_(z)dz + /z2ﬁ+(:c) In ﬁ+(x)dx) . (16)

0 1+

where = = k/kp.

Another quantity expected to be related with the IE is the mean kinetic energy
K, defined by

K= [kt = 3 7I4ﬁ(z)d:r
2m F

0

177



1~ 00
=3z (/ r*i_(z)dz + /z“fu(z)dm) (17)
1+

0
where e = h?k%/(2m) is the Fermi energy.

From the above analysis it is clear that in order to calculate the IE sum in
uniform Fermi systems, the knowledge of the MD is required.

In the present work we apply the low order approximation (LOA) for the
calculation of the MD in nuclear matter [12-14]. For liquid *He we use the
results of Moroni et al. [15], while the MD for the electron gas is taken from
a work of P. Gori-Giorgi et al. [16].

2.1 Nuclear matter

The model we study is based on the Jastrow ansatz for the ground state wave
function of nuclear matter

W(ry,ry,...,Iy) = H f(rij)®(r1, 12, ..., TN) (18)

1<i<G<N

where r;; =| r; — r; |, ® is a Slater determinant (here, of plane waves with
appropriate spin-isospin factors, filling the Fermi sea) and f(r) is a state-
independent two-body correlation function. In the present work the correlation
function is taken to be the Jastrow function [17]

f(r) =1 — exp[-5*rY (19)

where [ is the correlation parameter. A cluster expansion for the one-body
density matrix p(rq,r}) has been derived by Gaudin, Gillespie and Ripka [12-
14] for the Jastrow trial function (18).

In the LOA the momentum distribution is constructed as [14]

nioa(k) = 0(kr — k) [1 — kair + Y (k,8)] +8 [kdiry(k,2) - [Y(k, 4)]2] (20)

where
k2 —k2 1'-“—|

- ky o
GV (k)= "t [Pyt snh) [eVay (@)
0 0
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Fig. 1. The correlated part of the information entropy, S¢or, for nuclear matter (a),
electron gas (b), and liquid 3He (c) versus the wound parameter kg;, the effective
radius rs, and the density p, respectively. The lines in the tree cases correspond
to the fitted expressions Scor(kdgir) = sk{}ir, Scor(rs) = sr;\ and Scor(p) = sp*,
respectively. For the values of the parameters s and X see text.

and

1w\ - k- kptk
CH = 8_\/-_—7( (§> 5 k= ﬂ—\/ﬁ, kj: = ,B—\/_H—’ H= 2747 8. (22)

and sgn(z) = z/ | z |. The normalization condition for the momentum distri-
bution is

[ mroakdr = 2k (23)
0

A rough measure of correlations and of the rate of convergence of the cluster
expansion is given by the dimensionless Jastrow wound parameter

kar = p [17(r) = Pdr (24)

where p = 2k3./(37?%) is the density of the uniform nucleon matter.

The calculated values of S,,, for nuclear matter versus the wound parameter
kq;r are displayed by points in Fig.1a. It is seen that S,,, is an increasing func-
tion of k4. The function S, (k4ir) is equal to zero for kg, = 0 (no correlations)
and the dependence of S, on kg, is not very far from a linear dependence.
Thus we fitted the numerical values of S, with the two parameters formula

Scor (kdir) = Sk:}ir (25)
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Fig. 2. The correlated part of the information entropy for nuclear matter, electron
gas, and liquid ®He versus the discontinuity parameter 1 — Zp. The lines in nuclear
matter and electron gas correspond to the fitted expression S, (Zr) = s(1 — Zp)*
while in *He liquid to the fitted expression Seor(ZF) = s(1 — Z3). For the values of
the parameters s and A see text.

That simple formula, with the best fit values of the parameters

s = 2.0575, A =0.6364

reproduces the numerical values of S, very well.

Another characteristic quantity which is used as a measure of the strength of
correlations of the uniform Fermi systems is the discontinuity, Zg, of the MD
at k/kp = 1. It is defined as

Zr =n(17) — n(1%).
For ideal Fermi systems Zr = 1, while for interacting ones Zp < 1. In the
limit of very strong interaction Zr = 0 there is no discontinuity on the MD
of the system. The quantity (1 — Zp) measures the ability of correlations to

deplete the Fermi sea by exciting particles from states below it (hole states)
to states above it (particle states) [14].

The dependence of S, on the quantity (1 — Zr) is shown in Fig. 2. It is seen
that Seor is an increasing function of (1— Zr). For the same reasons mentioned
before we fitted the numerical values of S,,, to the two parameters formula

Scm-(Zp) = 8(1 - Zp)'\ (26)

As before, the above simple formula, with the best fit values of the parameters

s = 2.2766, A =0.6164
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Fig. 3. The correlated part of the information entropy for various Fermi systems
and its thermal part for electron gas versus the mean kinetic energy in units of
Fermi energy. The lines in the various cases correspond to the fitted expression
Seor(K) = s(g —0.6)*. For the values of the parameters s and A see text.

reproduces the numerical values of S, very well.

From the above analysis we can conclude that the correlated part of the infor-
mation entropy sum can be used as a measure of the strength of correlations
in the same way the wound parameter and the discontinuity parameter are
used.

An explanation of the above behaviour of S, is the following: The effect of
nucleon correlations is the departure from the step function form of the MD
(ideal Fermi gas) to the one with long tail behaviour for k£ > kp. The diffusion
of the MD leads to a decrease of the order of the system (in comparison to
the ordered step function MD), thus it leads to an increase of the information
content of the system.

Concluding we should state that, the increase of information entropy sum of
the nuclear matter is due to the increase of the number of nucleons of the
system, as it is seen from Eq. (13) and also to the increase of correlations.

Finally, the dependence of the IE on the kinetic energy K, which is given by
Eq. (17), is also examined. The calculated values of the correlated part of IE,
Secor, versus K is shown in Fig. 3. S, is an increasing function of K. It should
be noted that S, is equal to 0 for K = %eF. For that reason we fitted the
numerical values of S,,, to the formula

A

Seor(K) = s (5 - 0.6) . (27)

€r
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That simple formula, with the best fit values of the parameters

s = 3.7413, A =1.5911

reproduces the numerical values of S, very well.

2.2  Electron gas

We consider the electron gas as a system of fermions interacting via a Coulomb
potential. The electron gas is a model of the conduction electrons in a metal
where the periodic positive potential due to the ions is replaced by a uniform
charge distribution. The density of the uniform electron gas (Jellium) is p =
3/(4nr?) and the momentum distribution is n(z,r), where z = k/kp and
rs = 1o/ap (with ag = h?/me?, the Bohr radius).

The momentum distribution of the unpolarized uniform electron gas in its
Fermi-liquid regime, n(z,r,) is constructed with the help of the convex Ku-
lik function G(x) [16]. It is assumed that n(0,7,), n(1%,rs), the on-top pair
density ¢(0,7,), and the kinetic energy K(r;) are known (respectively, from
accurate calculations for ry = 1,...,5, from the solution of the Overhauser
model, and from quantum Monte Carlo calculations via the virial theorem)
[16].

We examined the dependence of the correlated part of the IE for the electron
gas on the correlation parameter r;, (or p = 3/(4nr?)), the discontinuity
parameter (1 — Zr) and the mean kinetic energy K. The dependence of S,
on those parameters are shown in Fig. 1b, 2, 3. It is seen that, as in the case
of nuclear matter, S,,, depends on those quantities through two parameter
expressions of the form

Seor(rs) = 817 (28)
with
s =0.1312, A = 0.8648,
Seor(ZF) = s(1 — Zp)* (29)
with

s = 2.0381, A =1.6899
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and

Ser(K) = 5 (5 _ 0.6)A (30)

¢F

with

s=20786,  \=0.6601.

The values of the parameters s and A have been found by least squares fit of
the above expressions to the calculated values of S,

2.8 Liquid 3He

The helium interaction potential is very strong at small distances, its core
repulsion being very hard (but not infinite). As a consequence there is a
Fermi-surface discontinuity of roughly Zp ~ 0.3. This small value supports
the view that liquid 3He is the most strongly interacting Fermi system we
have considered.

In the case of liquid 3He the calculation of the momentum distribution is per-
formed from diffusion Monte Carlo (DMC) simulations using trial functions,
optimized via the Euler Monte Carlo (EMC) method [15].

As in the cases of nuclear matter and electron gas, we examined the de-
pendence of the correlated part of the IE for the liquid 3He on the density
p = 3/(4nr?), the discontinuity parameter (1 — Zr) and the mean kinetic en-
ergy K. The dependence of those parameters are shown in Figures 1c, 2 and 3,
respectively. As in the previous two cases, S, depends on those parameters
through simple two parameter formulae of the form

Seor(p) = sp” (31)
with
s = 2032.56, A = 1.4757
Seor(Zr) = 5(1 = Zp) (32)
with

s = 13.0640, A =0.2070
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and

Seor(K) = s (5 50.6)A (33)

€r

with

s = 3.0993, A = 0.5236.

The values of the parameters s and A have been found by least squares fit of the
above expressions to the calculated values of S,,,. The values of the parameters
of expressions (31) and (32) indicate the strong character of the interaction
of liquid ®*He. That character is also indicated by the expression of S.,,.(ZF¢)
(Eq. (32)). That expression differs from the corresponding expressions of the
electron gas and nuclear matter.

3 Thermal effects in electron gas

The electrons of the electron gas, at temperature 7' = 0, occupy all the lower
available states up to a highest one, the Fermi level. As the temperature
increases the electrons of the gas tend to become excited into states of energy
of order kT higher than the Fermi energy. However, the electrons with the
lower energy cannot be excited as there are not available states for them
to be excited. Only a small fraction of the gas, of order T/Tr, with energy
about kT lower than the Fermi energy have any chance to be excited. The
rest remain unaffected in their zero-degree situation. The net result is that
the mean occupation number becomes slightly blurred compared to its sharp,
step function form at T = 0 [18]. In general the occupation number of the
electron gas is given by the Fermi-Dirac formula

1
n(e) = - [;#T(f — u)] ", (34)

where € = {% (p = hk), kp is the Boltzmann’s constant and g is the chemical
potential. The chemical potential of a gas at absolute zero (7" = 0) coincides
with the Fermi energy ep. This is the characteristic energy for a Fermi gas
and is by definition the energy of the highest single-particle level occupied at
T = 0. The Fermi energy is given by the relation

€p = % (31r2p)2/3 (35)
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while the Fermi temperature is defined by

€ = kBTF' (36)

We will examine how the IE sum of the electron gas is affected when the
temperature starts to increase above zero. Our study will include the cases of
low temperature and high temperature limit, separately.

3.1 Thermal effects in electron gas for T < Tk

Since there is only one characteristic temperature, the Fermi temperature, by
the term low energy we will mean the limit T" < TF. It is easy to see that for
electron gas, i.e. in copper, T ~ 8.5 x 10* °K, while the melting point is of
the order of 103 °K. Thus, at all temperatures at which copper is a solid, the
condition T < TF is satisfied; the electron gas is in its low-temperature limit.
For T < Tr the chemical potential, in a first approximation, is [18-20]

o[- )]

and so Eq. (34) becomes

_ 1
n{z) = " [% (1,2 e %52)] T (38)

where z = (¢/er)'/? = k/kp and € = T/Tr < 1. The normalization of n(z) is
o oen(zide =1/8.

Following the same steps as in Section 2, the information entropy sum of the
electron gas at temperature 7' < T is written

S = SO + Sthermal (39)

where S is given by Eq.(13) and

o

B =8 / 2*n(z) Inn(z)dz (40)
0

It is worthwhile to notice that the correlations between the fermi particles
invoke discontinuity to the MD at k = kr while the thermal effect causes just
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Fig. 4. a) The momentum distribution for correlated electron gas with effective
radius r; = 5 and the uncorrelated one for temperature T' = 0 and 7' = 0.2TF
versus the ratio z = k/kp. b) The thermal part of the information entropy versus
the temperature T in units of Tx.

a slight deviation from the sharp step function form at 7' = 0. That is shown
in Fig. 4a, where the MD for a correlated electron gas with 7, = 5 and for an
ideal electron gas at temperature T = 0 and T/Tr = 0.2 have been plotted
versus k/kp. The two cases of the figure (ry = 5 and T/Tr = 0.2) give the
same value for the information entropy. Thus, even though the origin of the
two effects (correlations and temperature) is different and they influence in
a different way the MD, the two information entropies Scor and Siperma are
almost the same.

The calculated values of Siperma for various values of the temperature ( for
T <« T ) are shown in Fig. 4b. It is seen that Sipermar 1s an increasing function
of the temperature and depends linearly on it. The line

Sth.ermal = (Z) ; a = 2.5466 (41)
Tr

reproduces very well all the calculated values of Siermar. That expression of
the information entropy is similar to the expression which gives the thermo-
dynamical entropy, Stg, for T < Tr. Stg in the low temperature limit has
the form [18,20]

2 T
Ste = —Nkg—
T8 = 5 Nkp T (42)
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Comparing Eqgs. (41) and (42), a relation between the two entropies could be
found in the case T < Tr. That relation has the form

2c0 STE’

Sthermal = Fm, o = 2.5466 (43)

while the information entropy sum is written

20 STE
=InN +1 L& Mo
Sie nN + In4n° + 72 Nkp

(44)

Thus, the information entropy of a Fermi gas, which is a measure of the
information content of the system, depends on the number of fermions as well
as on the thermodynamical entropy of the system.

The increase of the temperature changes also the mean kinetic energy K of
the ideal electron gas. For T <« T, K is given by [20]

3 5 T *
K=2 2 (_) 4
BEF [1+ 2" 7 } (45)

In the examined range of T, K changes about 15 %. As K appears both in
correlated and uncorrelated Fermi systems, and a relation of the form S, =
Seor(K) was already found in Sec. 2, it is of interest to examine the existence
of a relation between Siperma and K.

That relation can be easily found writing Eq. (45) in the form
T 2 (K )‘/ "

and replacing T/TF into Eq. (41). The expression connecting Sipermar and K
is

K &
Sthermal =38 (-— - 06) (46)
€F

with

s = 2a = 1.6212, A=05
T

Expression (46) is the same with the corresponding expression of S.,.(K)
which is given by Eq. (30). The values of the parameter s and A (s = 2.0786
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and A = 0.6601 ) of Eq. (30) are close to the constants s = 1.6212 and A = 0.5
of Eq. (46). For that reason we should expect that the same values of K cor-
responding either to the temperature or to the electron correlation lead to
similar values for the two entropies Sipermar and Seor. The calculated values of
Sthermal, for the uncorrelated Fermi gas, versus K are shown in Fig. 3. From
that figure, it is seen that for the same values of K, Sipermar and S.,. take
similar values, as expected. From the above analysis it is seen that the infor-
mation entropy sum and the thermal part of it are related with fundamental
quantities, such as, the temperature, the thermodynamical entropy and the
mean kinetic energy of the system.

3.2 Thermal effects in electron gas for T > Tg

A relation can also be established between the IE and the thermodynamical
entropy in the classical case when it is assumed that n(k) < 1. That condition
is valid when the density is low and/or the temperature is high. In that case
the MD has the gaussian form [19]

3/2 K2
—ak? 4
e = 4
) = (w> € T kT L4

and is normalized as [n(k)dk = 1. The thermodynamical entropy of the
system is given by the relation [18,19]

STE 5 kaT

=InV _1
Nhp =V - lnN+2+ N

(48)

Following the steps of Section 2, the information entropy sum for the above
system is written

kaT

i 2 (49)

S’IE—an+z+3ln2 +§ln

Comparing Eqgs. (49) and (48) and using Eq.(13) a relation between Srg and
Sig can also be found in the case T > Tr. That relation has the form

_ StE
S]E—So+(1n2 1)+N_/€B

=N + (3ln27r - 1) + St

Nig (50)
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while the thermal part of the information entropy depends on Srg through
the relation

S
Sthermal = (ln2 - 1) ¥ qu;i (51)

Thus the information entropy sum as well the thermal part of it, in the limit
T > Tr depends also on the number of electrons as well as on the thernody-
namical entropy of the system. Those relations are similar to the ones which
have been found in the limit case T' < Tp, only the two constants are different.

From Egs. (51) and (48) a relation connecting Sihermar With the temperature
can be found. That relation has the form
3 3rl/2

Sthermal =-+In

3 T
ST L L 9
5 7 talhg (52)

Finally, from the well known result

h? 2 - g
K= %/n(k)k dk = kT (53)

and Eq. (52) a relation connecting Stpermas and K can be found. That relation
has the form

3
St,herma.l ==+

1. = 3 K 3 K

€F €F

We can conclude that, at the classical limit, the IE as well as its thermal part
is related to Stg, T and K, as in the low temperature limit.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Paola Gori-Giorgi for providing the data
for the correlated electron gas and Dr. Saverio Moroni for providing the data
for the liquid *He. They would like also to thank Dr. C.P. Panos for fruitful
discussions.

References

[1] I Bialynicki-Birula, J.Mycielski, Commun. Math. Phys. 44, 129 (1975).

|
[2] S.R. Gadre, Phys. Rev. A 30, 620 (1984); S.R. Gadre, SB. Sears, S.J.
Chakravorty, R.D. Bendale, Phys. Rev. A 32, 2602 (1985); S.R. Gadre, R.D.
Bendale, Phys. Rev. A 36, 1932 (1987).

189



3]
]

=

(9]

M. Ohya, P. Petz, ”Quantum entropy and its use” (Springer Berlin, 1993).

V. Zelevinsky, M. Horoi, and B.A. Brown, Phys. Lett. B 350, 141 (1995). V.V.
Sokolov, B.A. Brown, and V. Zelevinsky, Phys. Rev E 58, 56 (1998).

A. Nagy, R.G. Parr, Int. J. Quant. Chem. 58, 323 (1996).
V. Majernic, T. Opatrny, J. Phys. A 29, 2187 (1996).

C.P. Panos, S.E. Massen, Int.J. Mod. Phys. E 6, 497 (1997); G.A. Lalazissis,
S.E. Massen, C.P. Panos, S.S. Dimitrova, Int. J. Mod. Phys. E 7, 485 (1998).

S.E. Massen, C.P. Panos, Phys. Lett. A 246, 530 (1998); S.E. Massen, C.P.
Panos, Phys. Lett. A 280, 65 (2001); S.E. Massen, Ch.C. Moustakidis and C.P.
Panos, Phys. Lett A 289, 131 (2002); C.P. Panos, Phys. Lett. A 289, 287 (2001).

P.E. Sokol, R.N. Silver, and J.W. Clark, in Momentum Distribution, edited by
R.N. Silver and P.E. Sokol (Plenum, New York, 1989) pages 1-35.

[10] J.W. Clark, and M.L. Ristig, in Momentum Distribution, edited by R.N. Silver

and P.E. Sokol (Plenum, New York, 1989) pages 39-58.

11] C.P. Panos, N.K. Spyrou, and K.Ch. Chatzisavvas, unpublished work.

[
[12] M. Gaudin, J. Gillespie, and G. Ripka, Nucl. Phys. A176, 237 (1971).
[

13] M. Dal Ri, S. Stringari, and O. Bohigas, Nucl. Phys. A376, 81 (1982).

[14] M.F. Flynn, J.W. Clark, R.M. Panoff, O. Bohigas, and S. Stringari, Nucl. Phys.

A427, 253 (1984).

[15] S. Moroni, G. Senatore and S. Fantoni, Phys. Rev. B 55, 1040 (1997).

(16] P. Gori-Giorgi, and P. Ziesche, Phys. Rev. B 66, 235116 (2002).

[17] R. Jastrow, Phys. Rev. 98, 1479 (1955).

[18] D.L. Goodstein, States of Matter (Dover Publications, Inc, New York, 1985).

[19] F. Mandl, Statistical Physics (John Wiley, New York, 1978).

[20] K. Huang, Statistical Mechanics (John Wiley, New York, 1987).

190


http://www.tcpdf.org

