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Dependence of Information Entropy of 

Uniform Fermi Systems on Correlations and 

Thermal Effects 

Ch.C. Moustakidis and S.E. Massen 

Department of Theoretical Physics, Aristotle University of Thessaloniki, 

GR-54124 Thessaloniki, Greece 

Abstract 

The influence of correlations of uniform Fermi systems (nuclear matter, electron gas 

and liquid 3He) on Shannon's information entropy, S, is studied. It is found that, 

for three different Fermi systems with different particle interactions, the correlated 

part of S (Soor) depends on the correlation parameter of the systems or on the 

discontinuity gap of the momentum distribution through two parameter expressions. 

The values of the parameters characterize the strength of the correlations. A two 

parameter expression also holds between Scor and the mean kinetic energy (K) of the 

Fermi system. The study of thermal effects on the uncorrelated electron gas leads to 

a relation between the thermal part of S (Sthermai) a n d the fundamental quantities 

of temperature, thermodynamical entropy and the mean kinetic energy. It is found 

that, in the case of low temperature limit, the expression connecting Sthermai with 

Κ is the same to the one which connects Scor with K. Thus, regardless of the reason 

(correlations or thermal) that changes K, S takes almost the same value. 

Key words: Information theory, Fermi systems, Momentum distribution 

PACS: 05.30.Fk, 21.65.+f, 67.55.-s, 89.70.+C, 65.40.Gr 

1 I n t r o d u c t i o n 

Information theoretical methods have in recent years played an i m p o r t a n t role 

in the study of q u a n t u m mechanical systems [1-8] in two cases: first in the 

clarification of fundamental concepts of q u a n t u m mechanics and second in 

the synthesis of probability densities in posit ion and m o m e n t u m space. An 
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important step was the discovery of an entropie uncertainty relation [1] which 

for a three-dimensional system has the form 

S = Sr + Sk > 3(1+ In π) ~ 6.434, (1) 

where 

Sr = -ίρ(τ)\ηρ(τ)άτ, Sk = - / n ( k ) l n n ( k ) d k (2) 

are Shannon's information entropies (IE) in position- and momentum-space 
and ρ(τ), n(k) are the density distribution (DD) and momentum distribution 
(MD), respectively, normalized to unity. 

The physical meaning of Sr and Sk is that it is a measure of quantum-

mechanical uncertainty and represents the information content of a probability 

distribution, in our case of various fermionic systems density and momentum 

distributions. Inequality (1) provides a lower bound for S which is attained 

for Gaussian wave functions [1]. It is mentioned that the sum S = Sr + Sk is 

invariant to uniform scaling of coordinates, while the individual entropies Sr 

and Sk are not. 

The motivation of the present work is to extend our previous study of IE 

in nuclei, atomic clusters and correlated bosonic systems to the direction of 

various uniform fermionic systems and to connect it with the interaction of the 

particles and the temperature. In uniform systems the density ρ = N/V is a 

constant and the interaction of the particles is reflected to MD which deviates 

from the theta function form of the ideal Fermi-gas model. It is important to 

study how the interaction affects the MD as well as the IE. An attempt is also 

made to relate the IE with fundamental quantities such as the temperature, 

the thermodynamical entropy and the mean kinetic energy of the fermionic 

system (electron gas). 

The quantum systems which are examined in the present work are nuclear 

matter, electron gas and liquid 3He. The inter-particle interactions of these 

systems generally differ by many orders of magnitude in their strengths and 

ranges. If the potentials are scaled with suitable energy and length measures 

for the different systems, i.e. Fermi energy and inverse Fermi momentum, the 

potentials still differ by orders of magnitude. The helium system is the most 

strongly interacting, with an almost-hard-core interaction, and the electron gas 

the most weakly interacting [9]. The nuclear case lies somewhere between. In 

all these cases the strength of the interaction may be gauged by the depletion 

of the Fermi sea. Quantitatively, one examines the deviation of ZF from unity, 

where Zp is the discontinuity gap of the momentum distribution n{k) at k — 

kF in an uniform Fermi system [10]. 
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The paper is organized as follows. The method leading to the expression of 
Shannon's information entropy sum in finite Fermi systems is presented in 
Section II. Applications of that expression to nuclear matter, electron gas, 
and liquid 3He are made in the three subsections of Section II. In the same 
subsections numerical results are also reported and discussed. In Section III 
the study of the influence of thermal effects on the information entropy sum 
is made. 

2 Information entropy for an infinite Fermi sys tem 

The key quantity for the description of the MD both in infinite and finite 
quantum systems is the one-body density matrix (OBDM). The OBDM is 
defined as 

Ρ ( Γ Ι , Γ Ί ) = J y*{vur2,...,rN)1$(r'1,r2,...,rN)dT2...drN (3) 

The diagonal elements p(ri,ri) of the OBDM yields the local density distri
bution, which is just a constant ρ in the uniform infinite system. Homogenity 
and isotropy of the system require that ρ(τι,τ[) = p(\ Τχ — r[ |) = p(r). In the 
case of noninteractive Fermi systems the associated OBDM is 

p(r) = pl(kF | r ! - r[ |), 

where 

l(x) = 3^_ 3(sina: — ζ cos a;) 

and ρ = N/V is the constant density of the uniform Fermi system. 

The density, normalized to 1 (/ pQdr = 1), is given by the relation 

1 1 m 

Po ~ NV0 " Nfrr* [ j 

where the volume V0 — | π Γ 3 corresponds to the effective volume of the Fermi 
particle and Ν is the number of fermions. 

The MD for fermions, having single-particle level degeneracy v, is defined by 

n{k) = v-1 j p(r)eikrdr (5) 
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The MD, normalized to 1 (/n(k)dk = 1), is given by the relation 

1 1 [ n-(k), k < kF 

n(k) = ±n(k) = - (6) 

where \'\ = ink p. The Fermi wave number kF is related with the constant 

density ρ — Np0 — 3/(4πΓβ) as follows 

where ν = 2 for electron gas and liquid 3He and ν — 4 for nuclear matter. In 
the case of an ideal Fermi gas the MD has the form 

no(k) = L·^ - k) (8) 

The information entropy in coordinate space (for density po normalized to 1) 
for a correlated or uncorrelated Fermi system is given by the relation 

Sr = — p0\n p0dr = In V. (9) 

Considering that V = NV0, Sr becomes 

Sr=\n^r3

0) I In V 

The information entropy in momentum space (for n(k) normalized to 1) is 
given by the relation 

Sk = - in(k)\nn{k)dk. (11) 

Sk for an ideal Fermi gas, using Eq. (8), becomes 

S t = lnVt = l n ( ^ ì ì (12) 

From Eq. (10) and (12) the information entropy sum S — Sr + Sk for an 
uncorrelated infinite Fermi system becomes 

So = Sr + Sfc = l n ( ^ J +lniV (13) 
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It turns out that the functional form 

S0 = a + blnN 

for the entropy sum as a function of the number of particles TV holds for the 
ideal infinite Fermi systems. The same function has been found in Ref. [2] for 
atoms and in Ref. [8] for nuclei and atomic clusters. That expression has been 
found also in Ref. [11] for the ideal electron gas. It is well known that relation 
(I) (Sr + Sk > 3(1 + In π)) holds always. We found that for Ν large relation 
(13) holds. Relation (13) for Ν = 1 violates relation (1), but this is hardly a 
problem because (13) holds only for large Ν and we do not expect to agree 
with (1), e.g. relations holding for nuclear matter cannot lead to relations 
holding for finite nuclei with a few nucléons. 

In the case of correlated Fermi systems, the IE in coordinate space is given 
again by Eq. (10) while the IE in momentum space can be found from Eq. 
(II) replacing n(k) from Eq. (6). Sk is written now 

4-7Γ 

Sk = lnVk- — 

f kp (χ, 

f k2n^{k)lnn_(k)dk + I k2h+(k)\nn+{k)dk\ . (14) 

The correlated entropy sum has the form 

S — Sr + Sk = So + Scor (15) 

where So is the u n c o r r e c t e d entropy sum of Eq. (13) and Scor is the contri
bution of the particles correlations to the entropy sum. T h a t contribution can 
be found from the expression 

Scor = — 3 / x2n_(x) In n_(x)dx + / x2n+(x) \nn+(x)dx , (16) 

Vo 1+ ) 

where χ — k/kp-

Another quantity expected to be related with the IE is the mean kinetic energy 
K, defined by 

t 2 . °° 

Κ = — ! n{k)k2dk - 3eF / x4n{x)dx 
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1- oo \ 

= Sep / x4n-(x)dx + / x4n+(x)dx 

v 0 1 ' 

(17) 

where ê r = h kF/(2m) is the Fermi energy. 

From the above analysis it is clear that in order to calculate the IE sum in 

uniform Fermi systems, the knowledge of the MD is required. 

In the present work we apply the low order approximation (LOA) for the 
calculation of the MD in nuclear matter [12-14]. For liquid 3He we use the 
results of Moroni et al. [15], while the MD for the electron gas is taken from 
a work of P. Gori-Giorgi et al. [16]. 

2.1 Nuclear matter 

The model we study is based on the Jastrow ansatz for the ground state wave 

function of nuclear matter 

Φ ( Γ Ι , Γ 2 > . . . , Γ Λ Γ ) = Π /(Γ„·)Φ(ΓΙ,Γ 2 ) . . . ,ΓΛΓ) (18) 
\<i<j<N 

where r^ —\ r* — Tj |, Φ is a Slater determinant (here, of plane waves with 

appropriate spin-isospin factors, filling the Fermi sea) and f(r) is a state-

independent two-body correlation function. In the present work the correlation 

function is taken to be the Jastrow function [17] 

f(r) = 1 - exp[-/3V] (19) 

where β is the correlation parameter. A cluster expansion for the one-body 

density matrix p(ri,r' 1) has been derived by Gaudin, Gillespie and Ripka [12-

14] for the Jastrow trial function (18). 

In the LOA the momentum distribution is constructed as [14] 

nL0A{k) = 6{kF ~ k) [1 - kdir + Y{k, 8)] + 8 [kdirY{k, 2) - [Y{k, 4)]2] (20) 

where 

_~k2 _p_ • k+ \k-\ 

c;lY(k, μ) = 6 + ~ e + I e~y2dy + sgn(L) f e'^dy (21) 
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Ο 3 6 ρ 9 12 0012 0016 

Fig. 1. The correlated part of the information entropy, Scor, for nuclear matter (a), 
electron gas (b), and liquid 3He (c) versus the wound parameter kdir, the effective 
radius r s, and the density p, respectively. The lines in the tree cases correspond 
to the fitted expressions Scor(kdir) — sk\ir, SCOT{rs) = sr* and SCOr(p) = spx, 
respectively. For the values of the parameters s and λ see text. 

and 

c„ = — (*) 
8v^F V27 

3/2 r k ~ kF±k 
k = -ë-p, k± = , μ = 2,4, (22) 

and sgn(x) = x/ | χ |. The normalization condition for the momentum distri
bution is 

00 

/ 
nL0A{k)k2dk = -k3

F (23) 

A rough measure of correlations and of the rate of convergence of the cluster 
expansion is given by the dimensionless Jastrow wound parameter 

kdir = pj[f{r)-l}2dT (24) 

where ρ = 2kF/(3K2) is the density of the uniform nucléon matter. 

The calculated values of Scor for nuclear matter versus the wound parameter 
kdir are displayed by points in Fig.la. It is seen that Scor is an increasing func
tion oikdir. The function Scor{kdir) is equal to zero for kdir = 0 (no correlations) 
and the dependence of Scor on kdir is not very far from a linear dependence. 
Thus we fitted the numerical values of SC0T with the two parameters formula 

b cor [k dir) — s^dir (25) 
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Fig. 2. The correlated part of the information entropy for nuclear matter, electron 
gas, and liquid 3He versus the discontinuity parameter 1 — Ζ ρ. The lines in nuclear 
matter and electron gas correspond to the fitted expression SC0T(ZF) = s (I - Zp)x 

while in 3He liquid to the fitted expression SC0T(ZF) = s(l - ZF). For the values of 
the parameters s and λ see text. 

That simple formula, with the best fit values of the parameters 

s = 2.0575, λ = 0.6364 

reproduces the numerical values of Scor very well. 

Another characteristic quantity which is used as a measure of the strength of 

correlations of the uniform Fermi systems is the discontinuity, ZF, of the MD 

at k/kp = 1. It is defined as 

ZF = n(l-)-n{l+). 

For ideal Fermi systems ZF = 1, while for interacting ones Ζ ρ < 1. In the 

limit of very strong interaction ZF = 0 there is no discontinuity on the MD 

of the system. The quantity (1 — Zp) measures the ability of correlations to 

deplete the Fermi sea by exciting particles from states below it (hole states) 

to states above it (particle states) [14]. 

The dependence of 5 c o r on the quantity (1 — ZF) is shown in Fig. 2. It is seen 

that 5 c o r is an increasing function of (1 — ZF)· For the same reasons mentioned 

before we fitted the numerical values of Scor to the two parameters formula 

Scor(ZF) = s(l - ZF)X (26) 

As before, the above simple formula, with the best fit values of the parameters 

s = 2.2766, λ = 0.6164 
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« 1 

Fig. 3. The correlated part of the information entropy for various Fermi systems 
and its thermal part for electron gas versus the mean kinetic energy in units of 
Fermi energy. The lines in the various cases correspond to the fitted expression 
Scor{K) — s{— — 0.6)\ For the values of the parameters s and λ see text. 

reproduces the numerical values of Scor very well. 

From the above analysis we can conclude that the correlated part of the infor
mation entropy sum can be used as a measure of the strength of correlations 
in the same way the wound parameter and the discontinuity parameter are 
used. 

An explanation of the above behaviour of Scor is the following: The effect of 
nucléon correlations is the departure from the step function form of the MD 
(ideal Fermi gas) to the one with long tail behaviour for k > kF. The diffusion 
of the MD leads to a decrease of the order of the system (in comparison to 
the ordered step function MD), thus it leads to an increase of the information 
content of the system. 

Concluding we should state that, the increase of information entropy sum of 
the nuclear matter is due to the increase of the number of nucléons of the 
system, as it is seen from Eq. (13) and also to the increase of correlations. 

Finally, the dependence of the IE on the kinetic energy K, which is given by 
Eq. (17), is also examined. The calculated values of the correlated part of IE, 
Scor, versus Κ is shown in Fig. 3. Scor is an increasing function of K. It should 
be noted that Scor is equal to 0 for Κ = |ef. For that reason we fitted the 
numerical values of Scor to the formula 

(K > λ 

Scor(K) = s ( 0.6 (27) 
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That simple formula, with the best fit values of the parameters 

s = 3.7413, λ = 1.5911 

reproduces the numerical values of Scor very well. 

2.2 Electron gas 

We consider the electron gas as a system of fermions interacting via a Coulomb 
potential. The electron gas is a model of the conduction electrons in a metal 
where the periodic positive potential due to the ions is replaced by a uniform 
charge distribution. The density of the uniform electron gas (Jellium) is ρ — 
3/(4πΓ^) and the momentum distribution is n(x,rs), where χ — k/kF and 
Ts — T0/üB (with Oß = h2/me2, the Bohr radius). 

The momentum distribution of the unpolarized uniform electron gas in its 
Fermi-liquid regime, n(x, rs) is constructed with the help of the convex Ku-
lik function G(x) [16]. It is assumed that n(0, r s), n ( l ± , r s ) , the on-top pair 
density g(0,rs), and the kinetic energy K(rs) are known (respectively, from 
accurate calculations for rs = 1 , . . . ,5 , from the solution of the Overhauser 
model, and from quantum Monte Carlo calculations via the virial theorem) 
[16]. 

We examined the dependence of the correlated part of the IE for the electron 
gas on the correlation parameter rs, (or ρ — 3/(4πτ·;))), the discontinuity 
parameter (1 — Zp) and the mean kinetic energy K. The dependence of Scor 

on those parameters are shown in Fig. lb, 2, 3. It is seen that, as in the case 
of nuclear matter, Scor depends on those quantities through two parameter 
expressions of the form 

Scor{rs) = sr$ (28) 

with 

s = 0.1312, λ = 0.8648, 

Scor{ZF) = s(l - ZFf (29) 

with 

s = 2.0381, λ = 1.6899 
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and 

Scor(K) = s (Ζ- - 0.6) (30) 

with 

s = 2.0786, λ = 0.6601. 

The values of the parameters s and λ have been found by least squares fit of 

the above expressions to the calculated values of Scor. 

2.3 Liquid 3He 

The helium interaction potential is very strong at small distances, its core 

repulsion being very hard (but not infinite). As a consequence there is a 

Fermi-surface discontinuity of roughly Ζ'ρ ~ 0.3. This small value supports 

the view that liquid 3He is the most strongly interacting Fermi system we 

have considered. 

In the case of liquid 3He the calculation of the momentum distribution is per

formed from diffusion Monte Carlo (DMC) simulations using trial functions, 

optimized via the Euler Monte Carlo (EMC) method [15]. 

As in the cases of nuclear matter and electron gas, we examined the de

pendence of the correlated part of the IE for the liquid 3He on the density 

ρ = 3/(4πΓ3), the discontinuity parameter (1 — Zp) and the mean kinetic en

ergy K. The dependence of those parameters are shown in Figures lc, 2 and 3, 

respectively. As in the previous two cases, Scor depends on those parameters 

through simple two parameter formulae of the form 

Scor(p) = SP

X (31) 

with 

5 = 2032.56, A = 1.4757 

Scor(ZF) = s(l - Zp) (32) 

with 

s = 13.0640, λ = 0.2070 
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and 

Scor(K) = s (j- - Ο.β) (33) 

with 

s = 3.0993, λ - 0.5236. 

The values of the parameters s and λ have been found by least squares fit of the 
above expressions to the calculated values of 5 c o r . The values of the parameters 
of expressions (31) and (32) indicate the strong character of the interaction 
of liquid 3He. That character is also indicated by the expression of SC0T{ZF) 
(Eq. (32)). That expression differs from the corresponding expressions of the 
electron gas and nuclear matter. 

3 Thermal effects in electron gas 

The electrons of the electron gas, at temperature Τ = 0, occupy all the lower 
available states up to a highest one, the Fermi level. As the temperature 
increases the electrons of the gas tend to become excited into states of energy 
of order kT higher than the Fermi energy. However, the electrons with the 
lower energy cannot be excited as there are not available states for them 
to be excited. Only a small fraction of the gas, of order T/TF, with energy 
about kT lower than the Fermi energy have any chance to be excited. The 
rest remain unaffected in their zero-degree situation. The net result is that 
the mean occupation number becomes slightly blurred compared to its sharp, 
step function form at Τ = 0 [18]. In general the occupation number of the 
electron gas is given by the Fermi-Dirac formula 

n(e) = f—— Ί (34) 
exPLÄir^-^J + 1 

where e = %- (jp — fok), kB is the Boltzmann's constant and μ is the chemical 
potential. The chemical potential of a gas at absolute zero (T = 0) coincides 
with the Fermi energy eF. This is the characteristic energy for a Fermi gas 
and is by definition the energy of the highest single-particle level occupied at 
Τ = 0. The Fermi energy is given by the relation 

< , - £ ( * « , ) " (35) 
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while the Fermi temperature is defined by 

eF = kBTF (36) 

We will examine how the IE sum of the electron gas is affected when the 

temperature starts to increase above zero. Our study will include the cases of 

low temperature and high temperature limit, separately. 

?._/ Thermal effects in electron gas for Τ <C Tp 

Since there is only one characteristic temperature, the Fermi temperature, by 

the term low energy we will mean the limit Τ <C Tp. It is easy to see that for 

electron gas, i.e. in copper, Tp ~ 8.5 χ 104 °K, while the melting point is of 

the order of 103 °K. Thus, at all temperatures at which copper is a solid, the 

condition Τ <^Tp is satisfied; the electron gas is in its low-temperature limit. 

For Τ <^Tp the chemical potential, in a first approximation, is [18-20] 

μ = eF 
1 12 VTp 

rp ν 2" 

(37) 

and so Eq. (34) becomes 

exp [i (.τ2 - 1 + f^ejj + 1 

where χ = (e/e^)1^2 = k/kp and ξ — T/Tp <C 1. The normalization of n(x) is 
f™x2n{x)dx = 1/3. 

Following the same steps as in Section 2, the information entropy sum of the 

electron gas at temperature Τ «C Tp is written 

S = So + Sthermal (39) 

where 5 0 is given by Eq.(13) and 

00 

Sthermal = ~3 / x2n(x) liin(x)dx (40) 

It is worthwhile to notice that the correlations between the fermi particles 

invoke discontinuity to the MD at k = kp while the thermal effect causes just 
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Fig. 4. a) The momentum distribution for correlated electron gas with effective 
radius rs = 5 and the uncorrelated one for temperature Τ = 0 and Τ = 0.2Tp 
versus the ratio χ = k/kp. b) The thermal part of the information entropy versus 
the temperature Τ in units of Tp. 

a slight deviation from the sharp step function form at Τ = 0. That is shown 

in Fig. 4a, where the MD for a correlated electron gas with rs = 5 and for an 

ideal electron gas at temperature Τ = 0 and T/Tp — 0.2 have been plotted 

versus k/kp. The two cases of the figure (r3 == 5 and T/Tp = 0.2) give the 

same value for the information entropy. Thus, even though the origin of the 

two effects (correlations and temperature) is different and they influence in 

a different way the MD, the two information entropies Scor and Sthermai are 

almost the same. 

The calculated values of Sthermai i ° r various values of the temperature ( for 
Τ <C Tp ) are shown in Fig. 4b. It is seen that Sthermai is an increasing function 
of the temperature and depends linearly on it. The line 

Sthermai = <* (ψ~) , <* = 2.5466 (41) 

reproduces very well all the calculated values of Sthermai- That expression of 
the information entropy is similar to the expression which gives the thermo-
dynamical entropy, STE, for Τ <^TF. STE in the low temperature limit has 
the form [18,20] 

? T # 
*2κτ, T 

2 BTF 

(42) 
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Comparing Eqs. (41) and (42), a relation between the two entropies could be 
found in the case Τ <C Tp. That relation has the form 

Sthermal = ^ | ^ > <* = 2.5466 (43) 

π2 Nkß 

while the information entropy sum is written 

5 7 Ε - 1 η Λ Γ + 1η4π3 + ^ ^ (44) 
7T Ν KR 

Thus, the information entropy of a Fermi gas, which is a measure of the 
information content of the system, depends on the number of fermions as well 
as on the thermodynamical entropy of the system. 

The increase of the temperature changes also the mean kinetic energy Κ of 
the ideal electron gas. For Τ <C Τρ, Κ is given by [20] 

K = \eF 

5 

5 ofT 
1 + — πζ ^r 

12 VTi F 

(45) 

In the examined range of Τ, Κ changes about 15 %. As Κ appears both in 
correlated and uncorrelated Fermi systems, and a relation of the form Scor = 

Scor(K) was already found in Sec. 2, it is of interest to examine the existence 
of a relation between S thermal and K. 

That relation can be easily found writing Eq. (45) in the form 

Tp 7Γ \ € F 

and replacing T/Tp into Eq. (41). The expression connecting Sthermal and Κ 
is 

(Κ λ λ 

Sthermal = S ( 0 .6J (46) 

with 

2a 
s - — = 1.6212, λ = 0.5 

7Γ 

Expression (46) is the same with the corresponding expression of Scor{K) 

which is given by Eq. (30). The values of the parameter s and λ (s = 2.0786 
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and λ = 0.6601 ) of Eq. (30) are close to the constants s = 1.6212 and λ = 0.5 
of Eq. (46). For that reason we should expect that the same values of Κ cor
responding either to the temperature or to the electron correlation lead to 
similar values for the two entropies Sthermai and Scor. The calculated values of 
Sthermah for the uncorrected Fermi gas, versus Κ are shown in Fig. 3. From 
that figure, it is seen that for the same values of K, Sthermai and Scor take 
similar values, as expected. From the above analysis it is seen that the infor
mation entropy sum and the thermal part of it are related with fundamental 
quantities, such as, the temperature, the thermodynamical entropy and the 
mean kinetic energy of the system. 

3.2 Thermal effects in electron gas for Τ ^>TF 

A relation can also be established between the IE and the thermodynamical 
entropy in the classical case when it is assumed that n(k) «C 1. That condition 
is valid when the density is low and/or the temperature is high. In that case 
the MD has the gaussian form [19] 

n « :^) e a=^h (47) 

and is normalized as J n(k)dk — 1. The thermodynamical entropy of the 
system is given by the relation [18,19] 

STE , χ, , »r 5 3 , mkßT / Λ . 

Following the steps of Section 2, the information entropy sum for the above 
system is written 

S,* = lnV + § + 31n2* + § l n ^ { £ (49) 

Comparing Eqs. (49) and (48) and using Eq.(13) a relation between STE and 
SIE can also be found in the case Τ ~^>Tp- That relation has the form 

STE 

NkB 

Nk, 

SIE = SQ + (\ii2-l) + 
iv KB 

= 1ηΛΓ + ( 3 1 η 2 π - 1 ) + | ^ (50) 
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while the thermal part of the information entropy depends on ST E through 
the relation 

Sthermal = (ln2-1) + ^ - (51) 

Thus the information entropy sum as well the thermal part of it, in the limit 
Τ » Τρ depends also on the number of electrons as well as on the thernody-
namical entropy of the system. Those relations are similar to the ones which 
have been found in the limit case Τ <^.Tp, only the two constants are different. 

From Eqs. (51) and (48) a relation connecting Sthermai with the temperature 
can be found. That relation has the form 

3 1 37Γ1/2 3 , Τ , c n . 
Sthermai = £ + l n ~^~ + 2 J 7 " ' ' 

Finally, from the well known result 

h2 

Κ = — [n(k)k2dk = -kBT (53) 
2m J 2 

and Eq. (52) a relation connecting Sthermai and Κ can be found. That relation 
has the form 

fc—=l+lin^+linO ^ii765+1in S) (54) 

We can conclude that, at the classical limit, the IE as well as its thermal part 

is related to STE, Τ and K, as in the low temperature limit. 
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