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aInstitute of Nuclear Physics, N.C.S.R. “Demokritos”

bInstitute for Nuclear Research and Nuclear Energy, Bulgarian Academy of
Sciences, 72 Tzarigrad Road, BG-1784 Sofia, Bulgaria

Abstract

A critical point symmetry for the prolate to oblate shape phase transition is intro-
duced, starting from the Bohr Hamiltonian and approximately separating variables
for v = 30°. Parameter-free (up to overall scale factors) predictions for spectra and
B(E2) transition rates are found to be in good agreement with experimental data
for 194Pt, which is supposed to be located very close to the prolate to oblate critical
point, as well as for its neighbours (192Pt, 196Pt).

Key words: Z(5) model; Critical point symmetry; Shape phase transition; Prolate
to oblate transition; Triaxial rotator

1 Introduction

Critical point symmetries in nuclear structure are recently receiving consid-
erable attention [1-3], since they provide parameter-free (up to overall scale
factors) predictions supported by experimental evidence [4-7]. So far the E(5)
[U(5) (vibrational) to O(6) (y-unstable)] [1,4,5] and the X(5) [U(5) to SU(3)
(prolate deformed)] [2,6,7] critical point symmetries have been considered,
with the recent addition of Y(5) [3], related to the transition from axial to
triaxial shapes. All these critical point symmetries have been constructed by
considering the original Bohr equation (8], separating the collective 8 and ~
variables, and making different assumpions about the u(3) and u(y) potentials
involved.

Furthermore, it has been demonstrated [9] that experimental data in the Hf-Hg
mass region indicate the presence of a prolate to oblate shape phase transi-
tion, the nucleus %Pt being the closest one to the critical point. No critical

73



-point symmetry for the prolate to oblate shape phase transition originating
from the Bohr equation has been given so far, although it has been suggested
[10,11] that the (parameter-dependent) O(6) limit of the Interacting Boson
Model (IBM) [12] can serve as the critical point of this transition, since vari-
ous physical quantities exhibit a drastic change of behaviour at O(6), as they
should [13].

In the present work a parameter-free (up to overall scale factors) critical point
symmetry, to be called Z(5), is introduced for the prolate to oblate shape
phase transition, leading to parameter-free predictions: which compare very
well with the experimental data for 1%Pt.

2 The spectrum

The original Bohr Hamiltonian [8] is

9B |31 op” 38 " Fsindyoy o oy
1 Q;

Y — 7 N +V .7, 1
46  Zp5sin? (y — Znk) (8,7 (1)

where 8 and  are the usual collective coordinates, while Qy (k = 1, 2, 3) are
the components of angular momentum and B is the mass parameter.

In the case in which the potential has a minimum around v = 7/6 one can
write the last term of Eq. 1 in the form

2
___Qk__j QD+ 4(QE+ QD) = 4(Q3 + Q3 + Q%) - 302 (2)

.2 2
k=123 Sin ('y - ?”k

Using this result in the Schrédinger equation corresponding to the Hamiltonian
of Eq. 1, introducing (as in [2]) reduced energies ¢ = 2BE/h* and reduced
potentials v = 2BV/?, and assuming [2] that the reduced potential can be
separated into two terms, one depending on 3 and the other depending on +,
ie. u(B,7) = u(B) +u(7), the Schrédinger equation can be separated into two
equations

[——1—2— 19 + ~1~(4L(L +1) -3a%) + u(ﬁ)] €La(B) = €5ér.a(B), (3)

prop"” B = 4p?
1 d . Q.
g 1 O] 10 = ) (@
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where L is the angular momentum quantum number, a is the projection of
the angular momentum on the body-fixed Z'-axis (o has to be an even integer
[14]), (8?) is the average of 3% over £(f), and € = €g + €.

The total wave function should have the form

\Il(ﬂ”)'a 01) = fL,a(IB)n(7)DII;4,a(0i)7 (5)

where 6; (i = 1, 2, 3) are the Euler angles, D(6;) denote Wigner functions of
them, L are the eigenvalues of angular momentum, while M and o are the
eigenvalues of the projections of angular momentum on the laboratory fixed
5-axis and the body-fixed #'-axis respectively.

Instead of the projection o of the angular momentum on the Z'-axis, it is
customary to introduce the wobbling quantum number {14,18] n,, = L — o
Inserting @ = L — n,, in Eq. 3 one obtains

9 0
_%55 =t 4%2 (L(L +4) + 310 (2L — 1)) + u(B)] €Lnu (B) =
:€B£L,nm(ﬂ)7 (6)

where the wobbling quantum number n,, labels a series of bands with L =
Ny T + 2, M + 4, ... (with n,, > 0) next to the ground state band (with
ny = 0) [14].

In the case in which u(8) is an infinite well potential

u(B) = (7)

ooforﬂ>ﬁw,

{0 if B < Bw

one can use the transformation [2] £(8) = 8%2%¢(B), as well as the definitions
[2] e5 = k3, z = kg, in order to bring Eq. 6 into the form of a Bessel equation

26 1dE are
@4’;3;4-[1—;2-]6—0, (8)

with

VAL(L+1) =302 +9  /L(L+4)+3n,(2L —ny) +9
v= 5 = 5 . (9)
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Then the boundary condition f(ﬂw) = 0 determines the spectrum

M
€8is,v = €8;s,n, L = (ks,u)Q, ks,V 22 ity (]0)

Bw’
and the eigenfunctions

§s,u(ﬁ) = gs.nw,L(B) = fs.a,L(B) = Cs,uﬁ-s/z']u(ks,uﬁ)y (11)

where z,, is the sth zero of the Bessel function J,(z), while the constants
¢s,» are determined from the normalization condition [5° 3*€Z,(5)dS = 1. The
notation for the roots has been kept the same as in Ref. [2], while for the
energies the notation E; ,, 1, will be used. The ground state band corresponds
to s = 1, n, = 0. We shall refer to the model corresponding to this solution

as Z(5) (which is not meant as a group label), in analogy to the E(5) [1], X(5)
(2], and Y(5) [3] models.

The v-part of the spectrum is obtained from Eq. 4, which can be simply
rewritten as

-7 (5 I ) | =) (2)

As already mentioned, we consider a harmonic oscillator potential having a

™

2
minimum at v = /6, i.e. u(y) = 3c (7— g) = 1y, y=v-%In
the case of ¥ =~ 7/6 the cos 37y term vanishes and the above equation can be
brought into the form

[—— ; —cww] 705) = e (82n(3), (13)

which is a simple harmonic oscillator equation with energy eigenvalues

3
eﬁz‘/<—ﬂ%<ni+-21->, ns=0,1,2,... (14)

Similar potentials and solutions in the y-variable have been considered in [8,19]
The total energy in the case of the Z(5) model is then

E(S, nw,L, n:,) = Eo +A(zs,y)2 +B7’L—7. (15)

It should be noticed that in Eq. 13 there is a latent dependence on s, L, and
n, “hidden” in the (3?) term. The approximate separation of the 8 and 7
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variables is achieved by considering an adiabatic limit, as in the X(5) case
[2,20].

3 B(E2) transition rates

For v ~ 7 /6 the quadrupole operator is given by

1
T;SEQ) - —Etﬂ(p‘%(ei) + D,(,Q,)—2(91))- (16)

where t is a scale factor. After the insertion of the symmetrized wave function,
B(E2) transition rates are given by

5t2 Ig(sz,Liy O,’i,Sf,Lf,af)
B(E2; Lio; — Lyay) = 3or (1+ 0a.0)(1 + 60%0)

x [(Li2Lglas2as) + (Li2Lglos — 204) + (=1)%(L2Lyg| — oéimf)]2 17)
(For details on the calculation and numerical results, see ref. [26].)

One can easily see that the Clebsch-Gordan coefficients (CGCs) appearing
in this equation impose a Aa = 2 selection rule. Indeed, the first CGC is
nonvanishing only if a; + 2 = oy, while the second CGC is nonvanishing only
if & — 2 = ay. The third CGC is nonvanishing only if o; + oy = 2, which
can be valid only in a few special cases. The angular part of this equation is
equivalent to the results obtained in [14].

It should also be noticed that quadrupole moments vanish, because of the
Aa = £2 selection rule, since in the relevant matrix elements of the quadru-
pole operator one should have o; = oy.

4 Numerical results

The lowest bands of the Z(5) model are given in Table 1. The notation L, is
used. All levels are measured from the ground state, 0, 9, and are normalized
to the first excited state, 2 . The ground state band is characterized by s = 1,
ny = 0, while the even and the odd levels of the 7;-band are characterized by
s=1,mn, =2,and s = 1, ny, = 1 respectively. The $;-band is characterized
by s = 2, n,, = 0. All these bands are characterized by n; = 0, and, as seen
from Eq. 15, are parameter free. The fact that the v,-band is characterized by
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Table 1
Energy levels of the Z(5) model (with ny = 0), measured from the Ly, = 019
ground state and normalized to the 2; o lowest excited state.

5, Ny 1,0 1,2 2,0 1,1
L L
0 0.000 3.913
2 1.000 1.837 5.697| 3 2597
4 2350 4420 7.962| 5 4.634
6 3.984 7.063 10.567 | 7 6869
8 5877 9.864 13469 | 9 9.318
10 8.019 12.852 16.646 | 11 11.989

12 10.403 16.043 20.088 | 13 14.882
14 13.024 19.443 23.788 | 15 18.000
16 15.878 23.056 27.740 | 17 21.341
18 18.964 26.884 31.942 | 19 24.905
20 22279 30.928 36.390 | 21 28.691

ny = 0 is not surprising, since this is in general the case in the framework of
the rotation-vibration model [21].

5 Comparison to experiient

Several energy levels and B(E2) transition rates predicted by the Z(5) model
are compared in Table 2 to the corresponding experimental quantities of 4Pt
[22], which has been suggested [9] to lie very close to the prolate to oblate
critical point. Its neighbours, 2Pt [23] and 6Pt [24], which demonstrate
quite similar behaviour, are also shown. Not only the levels of the ground
state band are well reproduced (below the backbending), but in addition the
bandheads of the ~;-band and the £;-band are very well reproduced, without
involving any free parameter. The staggering of the theoretical levels within
the y;-band is quite stronger than the one seen experimentally, as it is expected
(17] for models related to the triaxial rotator [14-16].

The main features of the B(E2) transition rates are also well reproduced. As
far as the transitions from the +;-band to the ground state band are concerned,
the transitions L, — Ly are strong, while the transitions (L + 2); 2 — Ly,
which are forbidden in the Z(5) framework, are weaker by two or three orders
of magnitude.
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Table 2
Comparison of the Z(5) predictions for energy levels (left part) and B(E2) transition
rates (right part) to experimental data for 92Pt [23], %Pt [22], and 9Pt [24].

Len, Z(5) %Pt 9Pt 19%p¢ | 1() L), Z(5) Pt 19pt  196py

410 2.350 2.479 2.470 2.465 410 210 1.590 1.559 1.724 1.476
610 3.984 4314 4.299 4.290
81,0 5.877 6377 6.392 6.333 419 212 0.736 0.446 0.715

3

10,0 8.019 8.624 8.558 61,2 4,2, 1.031 1.208

212 1.837 1.935 1.894 1.936 31,1 212 2171 1.786
412 4.420 3.795 3.743 3.636
610 7.063 5905 5.863 5.644 21,2 00 0.000 0.009 0.006 0.0004

3

212 210 1.620 1.909 1.805

’

311 2.597 2.910 2.809 2854 | 412 210 0.000 0.004 0.014
51,1 4.634 4.682 4.563 4.526 41 410 0.348 0.406
7, 6.869 6.677 61,2 41,0 0.000 0.012

020 3.913 3.776 3.858 3.944
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