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Abstract 

Observed rates of the fusion of interacting heavy ions well below the Coulomb 

barrier are considerably lower than estimates obtained from penetration factors. An 

interpretation of this discrepancy has been in terms of tunnelling in semiclassical 

models, with the observed depletion being taken as evidence of a "friction" under 

the barrier. An extension of that approach is to consider tunnellin in fully quantal 

models. We consider tunnelling in one-dimensional models to investigate possible 

sources for such a friction. Under certain conditions, we find that tunnelling may 

be enhanced or diminished by up to 50%, which finds analogy with observation, 

without the invocation of a friction under the barrier. 

Fusion reactions near the Coulomb barrier play a large part in nucleosynthesis 

in the Big Bang and stellar environments. Theoretical understanding is nec

essary given that most of these reactions, required as input in nucleosynthesis 

models, may not be measured in the laboratory due to the very small cross 

sections involved. 
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For reactions far below the Coulomb barrier (see, for example, [1,2]), mea
sured fusion cross sections are considerably lower compared to their estimates 
from penetration factors. Normally, the conjecture is that an energy loss has 
occurred under the Coulomb barrier. Intuitively, that loss may be understood 
as a "friction" [3], accounting for coupling to other reaction channels. An al
ternative postulate (see [1], for example) is that the nucleus-nucleus optical 
potential involved in fusion processes may require a much larger diifuseness 
than that for elastic scattering. But that approach may be problematic given 
that the coupling of the nonelastic and elastic channels in the nucleus-nucleus 
interaction should be specified self-consistently. The role of breakup in the 
depletion of fusion has also been investigated [4], wherein fusion involving 
weakly bound nuclei may be diminished by up to 35%. Herein, we investigate 
the tunneling hypothesis and the notion of a "friction". 

The invocation of a friction is a result of the use of semi-classical models. It is 
an alternative to the purely quantal nature of tunneling. The kinetic energy 
under a barrier should be negative and time under the barrier must be made 
imaginary, or at least complex, to compensate for the classical anomaly. That 
is essential if a position and velocity are to be used as measures of the prop
agation of the fusing ions under the barrier. In such an analytic continuation 
of classical physics to complex trajectories and complex time, can one then 
contemplate a random Langevin force to describe this friction? For a simpler 
understanding of the (quantal) real time processes, a fully quantal model of 
tunneling is necessary. 

Herein we shall not follow the approach of Caldeira and Leggett [3] (see also 
[5,6]) in which the tunneling degree of freedom is coupled to a bath of har
monic oscillators. From that approach, a conclusion was drawn that a loss 
of transmission occurs. But recent studies [7-9] show that for some chaotic 
potentials, barrier penetration in fact is enhanced. Thus we seek a more ped
agogical approach recognizing that, if Langevin processes exist to account for 
friction, the effective potential experienced by the tunneling particle will not 
be smooth. Thus we wish to study tunneling through rough potentials in real 
time. 

Herein, to facilitate such an investigation, we construct models where wave 
packets are prepared far from the barrier. These will be broad packets having 
few (if any) components with energy higher than the barrier. Such packets 
are boosted toward the barrier and we use the time-dependent Schrödinger 
equation (TDSE) as the equation of motion. A priori, we shall use two (non-
equivalent) approaches, namely 

(i) space fluctuations of a time independent barrier, and 
(ii) time fluctuations of a spatially smooth barrier. 
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The potentials of case (i) may induce enough incoherence in the wave propa
gation to trigger some localization [10] so diminishing the transmission. Either 
case may represent couplings to other channels. 

Our one-dimensional model assumes spatially even barriers of the type 

V{x,t) = w(i)exp(-2cü:r2) (1) 

for which the TDSE is 

_5Φ f ti2 d2 „, A · 

Arbitrarily we have chosen ω = 0.5 and, for our reference model, v(t) — 1. 

The problem could be intractable as there are four conflicting considerations, 
namely: 

(1) Gaussian wave packets, or quasi-Gaussian ones, are required to maintain 
an analogy of classical particles with maximally well-defined positions 
and velocities as far as is possible. But 

(2) under the barrier the wave will certainly not be Gaussian and at best one 
might observe probability bumps. Then 

(3) wave packets must be broad enough to avoid excessive zero-point energies, 
but 

(4) the same packets, or their bumps if any, should be narrower than the 
width of the barrier if the particles are to be localized within the barrier. 

These problems will be addressed as necessary below. 

Given the precise determination of the energies of projectiles in experiment, 
realistic wave packets must be initiated significantly broader than the barrier. 
Our even barrier [Eq. (1)] is centered at the origin with a width of order 1. For 
the one-dimensional problem, we choose an initial wave packet of the form 

Φί(χ,Ο) =7T 1 / 4 exp{-a :c 2 -bx-c}, (3) 

where the initial parameters are ao — 1/(2AQ), b0 — 3/λο — iK, and c0 — 
(1ηλο)/2 + 9/2, with λο = 5 being the initial width of the packet. The momen
tum of the packet is given by Κ and the subscript indicates that the packet 
moves from the left (negative values of x). With these choices the initial packet 
also has the form 

7Γ-1/4 

Φ ί(χ,0) = - ^ - ε χ ρ 
(x + 15)2 ' ;-+iKx 

50 
(4) 

Typically, 0.3 < Κ < 1.3 whence the kinetic energy (K2/2) is well below the 
height of the barrier. With initial momentum Κ ~ 1 and similar orders of 
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Fig. 1. Modulus of the wave packet |Ψ/(α;,ί)| at times t = 0 (dashed line), 18 (solid 
line), and 40 (dot-dashed line). The potential is portrayed by the dotted line. 

magnitude for all parameters, the packet will collide with the barrier typically 

at times ~ 10/K, the penetration reaching its peak at ~ 15//Γ, and full 

transmission and reflection should be complete by ~ 30/Κ'. 

Taking the Hamiltonian as Η = -d2/(2dx2) + e~x , the modulus |Φ/(α:,ί)| 

of the wave packet is shown in Fig. 1 at times t — 0, 18, and 40, for the 

momentum Κ — 1.06. The potential is frozen in time with v(t) — 1. The 

energy is 0.571834 which includes the zero point kinetic energy (0.01) and a 

small contribution from the potential energy (0.000034); the latter due to the 

overlap of the tails of the potential and initial wave packet. The energy of the 

colliding packet is slightly above half the barrier height. 

The difference between the negative and positive sides of the packet at t = 18 

is most telling. The modulus for negative values of χ shows clearly the interfer

ence between the incoming and reflected waves while that on the positive-^ side 

exhibits a good fraction of the transmitted packet. At t — 40 we clearly observe 

two distinct Gaussian packets corresponding to the reflected and transmitted 

waves. The shapes of the reflected and transmitted waves have been effectively 

restored to the original Gaussian shape, with no memory of the interaction 

with the potential. 

We display in Figs. 2 to 5, the transmitted norm of the wave Φ/. The trans
mitted norm is defined as a function of time as 

T(t)= ~Γ\%(χ,ή\2 dx. (5) 

The lower bound in the integral, χ = 5, is chosen to be far enough away 

from the barrier to ensure no contamination of the transmitted wave by the 

barrier. We are also interested in the asymptotic value of the transmitted 

1.0 

0.5 

η c\ 
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Fig. 2. Transmitted norm T(t) for the case Κ = 1.06 and for the reference potential. 

norm, T(oo). This observable is also important for comparisons of different 
potentials. Fig. 2 shows the case for the reference potential, V(x) — e~x , with 
Κ = 1.06. The asymptotic value for this case is T(oo) = 0.203 confirming the 
earlier observation of 20% transmission for the wave with Κ — 1.06. 

Given the same starting wave packet as in Eq. (3), transmission through a 
barrier \\(x) will be less than that through barrier V^x) if \'\(x) > V2(x), 
Vre. Details of the shape of the incident packet may change this result. But 
we assume packets to be close to eigenstates, for which theorems bounding 
growth and curvatures of waves in relation to the potential hold. To investigate 
deviations from this estimate, we compare results for potentials where \\{x) > 
VQ,{X) for some x, and \\{x) < V^x) for other values. 

This is achieved by using the following modulation to our base potential, 

W(x) ae 

sin (lire) sin il3\/2rcj cos (2πχ) cos ( —-j= J + τ sin Ì3\/7ra:) sin (7x) 

-2ωχ2 

5x 
, (6) 

where σ is the strength of the modulation and r, which is weakly dependent 
on σ, is used to cancel the semi-classical effect introduced by W(x) (discussed 
below), ο achieve a fair comparison to our base potential, we rely on the action 
integral 

Λ = Γ dxyß [E - V(x) - W{x)} , (7) 
Jx\ 

where E is the energy of the packet and X[ and xr are the left and right turning 
points respectively. Of course this assumes that there are only two such turning 
points. We compare potentials for which A is invariant. Note that this criterion 
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Fig. 3. The potentials used for solving the TDSE. The base potential (W(x) = 0) 
is given by the solid line, while the potentials for σ = 0.5 (ears up) and σ = —0.5 
(ears down) are given by the dashed and dotted lines respectively. 

is better suited to the comparison of smooth potentials only; we use it for want 

of a better criterion applicable as well to rough potentials. Fig. 3 shows three 

such potentials for E = 0.571834. The base potential V(x) is portrayed by 

the solid line. The modulations introduced by Eq. (6) correspond to the case 

σ = 0.5, r = -0.111 (dashed line, "ears up") and σ = -0.5, r = -0.132 

(dotted line, "ears down"). The slight difference in the value of r comes from 

the condition of satisfying the action specified in Eq. (7). If one requires that 

the average modulations vanish, i.e. W = /f̂  W(x)dx — 0, then r = —0.118; 

a value not too different from the two values given. In fact, for r = —0.111, 

W = 8 χ 10~4, while for r = -0.132, W = 2 χ 10~3. Thus the modulations we 

have introduced do not change the action and the associated changes in the 

average of the potential are negligible. 

In Fig. 4, we display the transmitted norm T(t) for the three potentials de

scribed and for an incident wave packet with Κ = 1.06. Transmission is hardly 

affected by the changes to the reference potential. For the "ears up" potential 

Γ(40) = 0.202 while for the "ears down" it is 0.204. These are to be compared 

with the value of 0.203 found using the reference potential. These changes, of 

the order of a percent, are small in comparison to the associated variations 

of the potentials from the reference; the modulations of which are as much as 

30%. That is especially so in the region of the "ears". 

Results have been obtained also for the same potentials but with lower incident 

momenta. For Κ = 0.6, hence E = 0.190034, the condition of fair comparison 

[Eq. (7)] of potentials with modulations defined by Eq. (6) requires r = 0.050 

for σ = 0.5 and r = -0.084 for σ = -0.5. These parameters give also the 

"ears up" and "ears down" potentials respectively with fluctuations on refer-
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Fig. 4. Transmitted norms for a wave packet with Κ = 1.06 incident on the three 
potentials. The curves correspond to the results obtained for the reference (solid 
line), "ears up" (dashed line), and "ears down" (dotted line) potentials. 
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Fig. 5. As for Fig. 4 but for Κ = 0.6 (left) and Κ = 0.42 (right). 

enee ~ ±30% in the ears. The results for the transmitted norm in this case 
are displayed in Fig. 5. For the "ears-up" potentials at this energy, the trans
mission now appears depleted as the value of T(oo) in this case is 0.0226. But 
there is little change for the "ears-down" case from the asymptotic transmitted 
norm obtained for the reference potential, 0.0239. 

A different picture occurs for the case Κ = 0.42, or E = 0.098234. This 
is displayed in the right of Fig. 5 for the same potentials used previously. 
For the lowest momentum considered, there is a slight enhancement in the 
transmission from the "ears-up" potential and a significant depletion with the 
"ears-down" potential. This is the reverse situation to that with Κ = 0.6. 

It is noteworthy that, with any of these modifications to the reference poten
tial, the effect on the transmission is minimal; changes being at most of the 
order of 10%. This is not sufficient to explain the Observed depletion of fusion 
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Fig. 6. Ratio of T(oo) against the reference value (T#(oo) = 0.0239) for the runs 
made using the random pair of {Ω0, Ω5} specified in Eq. (8). For these calculations, 
Κ = 0.6. The line is a guide to the eye. 

rates below the Coulomb barrier. 

As the spatial fluctuations are unlikely to be the source of the large loss of fu
sion that is observed experimentally, we turn our attention to time-dependent 
fluctuations on the base potential. We assume those fluctuations are of the 
form 

v{t) = l+jcos(Üct)sm(Qst). (8) 

We take 7 = 0.2 while Qc and Qs are chosen at random with uniform distri
butions varying between 0 and 5 for Çlc and between —5 and 5 for Ω5. These 
parameters are then sampled allowing for a good simulation of the chaotic 
character of (v(t) — 1). 

We start again with our initial wave packet, Eq. (4). The fine structures in 
the packet experience the weakly correlated components of the oscillating 
fluctuations and so we need not be concerned about any time periodicity 
in V(x,t). The sampling space is one of 200 to 500 potentials (independent 
choices for flc and Qs) and we use the asymptotic value of the transmitted norm 
T(oo) as the measure of effect of the time-dependent potentials in comparison 
to that from the reference potential for which v(t) = 1. The latter we designate 
as TR(OO). 

Displayed in Fig. 6 is the ratio of T(oo)/TÄ(oo), obtained from 200 runs for 
a packet with initial momentum Κ = 0.6. The reference value for this case 
is TÄ(co) = 0.0239. For most of the pairs sampled, the transmission is close 
to the reference potential. But there are a few instances where the tunneling 
is greatly enhanced as well as others where it is greatly reduced. Variations 
of as much as 50% occur. The distribution of values of T(oo) for Κ — 0.6 is 

31 



100 

80 

I 60 

3 
O H 

Ρ 40 

ι ' ι ' : Ι ' Ι ' Ι 

20 

0%10 0.015 0.020 0.025 0.030 0.035 0.040 
Τ(οο) 

Fig. 7. Distribution of values of T(oo) for the runs shown in Fig. 6, for which 
Κ — 0.6. The reference value TR(OO) = 0.0239 is indicated by the dashed line. 
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Fig. 8. As for Fig. 7 but for Κ = 1.06 and using a sample of 500 potentials. The 
value of TR(OO) for the reference potential is 0.2039. 

displayed in Fig. 7. As indicated in Fig. 6, the introduction of time fluctuating 
potentials increases slightly the value of T(oo) on average indicating that the 
transmission is enhanced, if only a little. That is a general feature we find for 
many conditions and one such is shown in Fig. 8. Therein the histogram for 
runs with Κ = 1.06 (sample size of 500) are displayed. The slight increase of 
Γ(οο) on average is evident again. 

We have considered various cases of tunneling in a fully quantal approach, 
changing the base potential in our model by adding either space-dependent or 
time-dependent fluctuations to see if there is any enhancement in the trans
mission of the packet beyond the barrier. For the cases of the space-dependent 
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fluctuations, the induced changes were made such that the action was invari
ant so allowing for a fair comparison of the results obtained with those of the 
base (reference) potential. The effects of those changes seem to be momentum 
dependent. For a high incident momentum, corresponding to Κ — 1.06, there 
is very little change in the transmission of the wave through the barrier. For 
much lower momenta, particularly the case for Κ = 0.42, there is change, with 
the "ears up" potential producing a reduction in the transmission. The same 
occurs at this momentum for an effectively random change in the modulating 
potential. But the size of the changes in the transmission are not very large, 
typically ~ 10% and given that we can produce both enhancement and de
pletion by such (relatively large) changes in the barrier, we conclude that the 
cause of the large (~ 50%) loss of fusion observed experimentally is unlikely to 
be solely, or even largely, caused by changes in the transmission due to space 
fluctuations in the barrier. 

By perturbing the barrier with time-dependent oscillations, we have been able 
to produce a small systematic increase in the transmission. Yet with our sam
ple over a large number of potentials and at various incident momenta we 
were only able to find small numbers of cases where the transmission was 
either greatly enhanced or greatly diminished. The enhancement may corre
spond to a situation where fusion is also enhanced and vice-versa. However, 
the number of such cases is relatively few, and the average of all lead to small 
enhancements in transmission for all momenta. 

In all cases, there is one overriding consideration: there is no evidence for a 
"friction", or decoherence, related to a Langevin process with complex time. 
By considering the full quantal TDSE no such effects with classical analogues, 
or those involving complex time, are needed to produce changes to the ob
served transmission. But those changes are not significant enough to indicate 
that the source of the depletion of fusion rates in heavy-ion reactions at ex
treme sub-Coulomb barrier energies comes from changes in tunneling. 
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