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Abstract

Davidson potentials of the form A% + 33/3%, when used in the original Bohr
Hamiltonian for y-independent potentials bridge the U(5) and O(6) symmetries.
Using a variational procedure, we determine for each value of angular momentum
L the value of f§y at which the derivative of the energy ratio R, = E(L)/E(2) with
respect to By has a sharp maximum, the collection of R values at these points
forming a band which practically coincides with the ground state band of the E(5)
model, corresponding to the critical point in the shape phase transition from U(5)
to O(6). The same potentials, when used in the Bohr Hamiltonian after separating
variables as in the X(5) model, bridge the U(5) and SU(3) symmetries, the same
variational procedure leading to a band which practically coincides with the ground
state band of the X(5) model, corresponding to the critical point of the U(5) to
SU(3) shape phase transition. A new derivation of the Holmberg-Lipas formula for
nuclear energy spectra is obtained as a by-product.

Key words: Davidson potential, Shape phase transition, Variational method, E(5)
model, X(5) model
PACS: 21.60.Ev, 21.60.Fw

1 Introduction

The recently introduced E(5) [1] and X(5) [2] models are supposed to de-
scribe shape phase transitions in atomic nuclei, the former being related to

1 Deceased

10



the transition from U(5) (vibrational) to O(6) (y-unstable) nuclei, and the lat-
ter corresponding to the transition from U(5) to SU(3) (rotational) nuclei. In
both cases the original Bohr collective Hamiltonian (3] is used, with an infinite
well potential in the collective S-variable. Separation of variables is achieved
in the E(5) case by assuming that the potential is independent of the collective
y-variable, while in the X(5) case the potential is assumed to be of the form
u(8) +u(7). We are going to refer to these two cases as “the E(5) framework”
and “the X(5) framework” respectively. In the present work we examine if the
choice of the infinite well potential is the optimum one for the description of
shape phase transitions. For this purpose, we need one-parameter potentials
which can span the U(5)-O(6) region in the E(5) framework, as well as the
U(5)-SU(3) region in the X(5) framework. It turns out that the exactly soluble
[4,5] Davidson potentials [6]

B4
u(B) = 5% + ﬂ—‘;, (1)

where [y is the position of the minimum of the potential, do possess this
property. Taking into account the fact that various physical quantities should
change most rapidly at the point of the shape phase transition [7], we locate
for each value of the angular momentum L the value of 5, for which the rate
of change of the ratio R, = E(L)/E(2), a widely used measure of nuclear
collectivity, is maximized. It turns out that the collection of Ry, ratios formed
in this way in the case of a potential independent of the -y-variable correspond
to the E(5) model, while in the case of the u(8) + u(7y) potential lead to the
X(5) model, thus proving that the choice of the infinite well potential made
in Refs. [1,2] is the optimum one.

2 Davidson potentials in the E(5) framework

The original Bohr Hamiltonian [3] is

2B |3198" 98 " Brsindyoy o By
1 Q}
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4132 k=1,2,3 sin2 (’)’ - %’ﬂ'k‘

where 3 and v are the usual collective coordinates describing the shape of the
nuclear surface, Qy (k = 1, 2, 3) are the components of angular momentum,
and B is the mass parameter.
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Assuming that the potential depends only on the variable 3, i.e. V(8,v) =
U(8), one can proceed to separation of variables in the standard way [3,8],
using the wave function ¥(3,%,6;) = f(8)®(v,6;), where 6; (i = 1,2,3) are
the Euler angles describing the orientation of the deformed nucleus in space. In
the equation involving the angles, the eigenvalues of the second order Casimir
operator of SO(5) occur, having the form A = 7(7+3), where 7 =0, 1, 2, .. .is
the quantum number characterizing the irreducible representations (irreps) of
SO(5), called the “seniority” [9]. This equation has been solved by Bes [10].
The “radial” equation can be simpliﬁed by introducing [1] reduced energies

€= —;—E and reduced potentials u = U, leading to
1 3 s 0 8 T(r+3) + 3) 7

When plugging the Davidson potentials of Eq. (1) in the above equation, the
B5/B? term is combined with the 7(r + 3)/3? term appearing there and the
equation is solved exactly [4,5], the eigenfunctions being Laguerre polynomials,
while the energy eigenvalues are given by [4,5] (in hw = 1 units)

3 2 1/2
Ep,=2n+1+ [(r % 5) + /33} . (4)

The levels of the ground state band are characterized by L = 27 and n = 0.
Then the energy levels of the ground state band are given by

1/2 )
Bop=1+% [(L+3) +463] ", (5)

while the excitation energies of the levels of the ground state band relative to
the ground state are

Boese = B = Bog = 5 ( (@ +37+45]" - Jo+481]™). @)

For u(f3) being a 5-D infinite well one obtains the E(5) model of Iachello [1] in
which the eigenfunctions are Bessel functions J;,3/2(2) (with z = 8k, k = \/e),
while the spectrum is determined by the zeros of the Bessel functions.

It is instructive to consider the ratios

EO,L — EO,O

Ry = ,
L Eps — Eop

(7)

where the notation Ey ; is used. For 8, = 0 it is clear that the original vibra-
tional model of Bohr [3] (with R, = 2) is obtained, while for large 5, the O(6)
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Table 1
Parameter values 80 ma, Where the first derivative of the energy ratios Ry (defined
in Eq. (7)) in the E(5) framework has a maximum, while the second derivative
vanishes, together with the Ry, ratios obtained at these values (labeled by “var”)
and the corresponding ratios of the E(5) model, for several values of the angular
momentum L.

L Bomes Rr Ry,
var E(5)

4 1.421  2.185 2.199
6 1.522 3.549  3.590
8 1.609 5.086 5.169
10 1.687 6.793 6.934
12 1759 8.667 8.881
14 1.825 10.705 11.009
16 1.888 12.906 13.316
18 1.947  15.269 15.799
20 2.004 17.793 18.459

limit of the Interacting Boson Model (IBM) [12] (with R4 = 2.5) is approached
[4]. One can easily see that these ratios increase with fy, the increase becoming
very steep at some value Bgmqs Of Bo, where the first derivative %‘f reaches a
maximum value, while the second derivative %g“ vanishes. Then the values of
Bo at which the first derivative dRy,/df, exhibits a sharp maximum are deter-
mined for each value of the angular momentum L separately, the collection of
Ry ratios at these values of 3, forming a band, which turns out to be in very
good agreement with the ground state band of E(5), the model supposed to
be appropriate for describing nuclei at the critical point in the transition from
U(5) to O(6), thus indicating that the choice of the infinite well potential used
in the E(5) model is the optimum one. The results are depicted in Table 1.

3 Davidson potentials in the X(5) framework

Starting again from the original Bohr Hamiltonian [3], one seeks solutions of
the relevant Schrodinger equation of the form W(8, v,6;) = ¢§(8,7) D (6:),
where 6; (i = 1, 2, 3) are the Euler angles, D(6;) denote Wigner functions
of them, L are the eigenvalues of angular momentum, while M and K are
the eigenvalues of the projections of angular momentum on the laboratory-
fixed z-axis and the body-fixed z’-axis respectively. As pointed out in Ref.
[2], an approximate separation of variables can be achieved by assuming that
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the potential has a minimum around v = 0, as well as that it can be sepa-
rated into two terms, one depending on § and the other depending on =, i.e.
u(B,7) = u(B) + u(y). As described in more detail in Ref. [11], the “radial”
equation occuring in this case can be solved exactly in the case of the Davidson
potentials of Eq. (1), the energy eigenvalues being (in fw = 1 units)

1 9 5 172
E,,,L:2n+1+[§L(L+1)+Z+60] (8)

The levels of the ground state band are characterized by n = 0. With appro-
priate normalization we get the expression

1/2
/ _ EO,L,ezc _ [ L(L + 1) 1 (9)
0,L,exc — 1/2 — 3
o™ L 3(+a)
which is the same as the Holmberg-Lipas formula [13]
Eu(L) = ax ( 1+ b L(L+1) - 1) , (10)

with ag = 1 and by = 1/(27/4 + 353).

It is clear that the Holmberg-Lipas formula gives rotational spectra for small
values of by, at which one can keep only the first L-dependent term in the
Taylor expansion of the square root appearing in Eq. (10), leading to energies
proportional to L(L+ 1). From the expression for by it is then clear that rota-
tional spectra are expected for large values of 8y. On the other hand, the case
Bo = 0 corresponds to an exactly soluble model with Ry = 2.646, which has
been called the X(5)-8% model [14]. Following the same variational procedure
as before, we produce a collection of Ry, ratios in very good agreement with
the ground state band of the X(5) model, as is shown in Table 2.

4 Discussion

A variational procedure for determining the values of physical quantities at
the point of shape phase transitions in nuclei has been suggested. Using one-
parameter potentials spanning the region between the two limiting symmetries
of interest, the parameter values at which the rate of change of the physical
quantity becomes maximum are determined for each value of the angular
momentum separately and the corresponding values of the physical quantity
at these parameter values are calculated.
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Table 2
Parameter values 8y maz Where the first derivative of the energy ratios Ry (defined
in Eq. (7)) in the X(5) framework has a maximum, while the second derivative
vanishes, together with the Ry, ratios obtained at these values (labeled by “var”)
and the corresponding ratios of the X(5) model, for several values of the angular
momentum L.

L Bomer Br Ry
var X(5)
4 1334 2901 2.904
6 1445 5419 5.430
8 1.543 8.4564 8.483
10 1.631 11.964 12.027
12 1.711 15.926 16.041
14 1.785 20.330 20.514
16 1.855 25.170 25.437
18 1.922 30.442 30.804
20 1.985 36.146 36.611

The method has been applied in the shape phase transition from U(5) to
O(6), using one-parameter Davidson potentials [6] and considering the energy
ratios R;, = E(L)/F(2) within the ground state band as the relevant physical
quantity, leading to a band which practically coincides with the ground state
band of the E(5) model [1]. It has also been applied in the same way in the
shape phase transition from U(5) to SU(3), leading to a band which practically
coincides with the ground state band of the X(5) model [2].

It should be emphasized that the application of the method was possible be-
cause the Davidson potentials correctly reproduce the U(5) and O(6) symme-
tries in the former case (for small and large parameter values respectively), as
well as the relevant X(5)-4? [14] and SU(3) symmetries in the latter case (for
small and large parameter values respectively).

As a by-product, a derivation of the Holmberg-Lipas formula [13] has been
achieved using Davidson potentials in the X(5) framework.
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