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Abstract 

New improved expressions for the harmonic oscillator energy level spacing Κω as 
function of Ν and Ζ are derived. The isospin dependence is introduced by using 
new expressions for the mean square radius of nuclei, which fit the experimental 
mean square radii and the isotopie shifts of even-even nuclei much better than 
other frequently used relations. The effect of the neutron excess an Ηω is studied. 
Very accurate approximate asymptotic formulae for Ηω are also derived, which are 
suitable for practical use. 

1 I n t r o d u c t i o n 

There are various expressions in the literature for the harmonic oscillator 
energy level spacing Ηω as function of A. The most well known expression 
[1,2] is: 

Ηω = fA~l'z (1) 

where / = | ( ^ ) ( | ) 1 / 3 =* 41 MeV ( r 0 = 1.2 fin), which, holds for large A. 

Other improved expressions [3-4] have been proposed with the aim of obtaining 

more satisfactory expressions for lighter nuclei. 

The aim of the present paper is to determine Ηω as function of Ν and Ζ intro­
ducing an isospin dependence by exploiting very accurate recent experimental 
data for the isotopie shifts. The paper is organised as follows: 

In section 2 a new formula for Ηω as function of Ν and Ζ is derived using 
a very recently proposed expression for the nuclear charge radius [5] .This 



expression is isospin dependent and is based on a uniform density distribu­

tion. In the same section, another formula for Ηω as function of Ν and Ζ is 

also derived, using the same procedure, but instead of a uniform distribution, 

the symmetrised Fermi (SF) density distribution [6,7] (see also [8,9]) is used 

together with a new parametrization of the radius parameter R. 

In section 3 approximate asymptotic expressions for Ηω aie given. 

In section 4 Ηω is determined again, as in section 2, but the usual corrections 

due to the center of mass and finite size of the nucléons are taken into account 

together with the valence nucléons. Shell effects are observed at the closed 

shells. 

Finally section 5 contains our main conclusions. 

D e t e r m i n a t i o n of Ηω w i thout taking into account correct ions 

and the valence nucléons . 

Very recently, a new formula for the nuclear charge radius was proposed [5], 
dependent on the mass number A and neutron excess N-Z in the nucleus: 

ßoo = 1.240^(1 + 1J^-0.m
iJ^l) (2) 

A A 

In contrast to the simple expression R= rQA}^ the above formula reproduces 
well all the experimentally available ms radii and the isotopie shifts of even-
even nuclei, much better than other frequently used relations. This should be 
expected as the isotopie shifts,which are obtained from high precision Laser 
spectroscopy [10] provide an extra very accurate input. In addition they give us 
the opportunity to study the effect of the isovector component on the nuclear 
radius and consequently on Ηω. 

As < r > is directly connected to Ηω, it is interesting to estimate the effect 

that the improved expression (2) may have on Ηω. Thus using (2) instead 

of R = Rao = T Q A 1 ' 3 and following the standard procedure described in the 

l iterature, we obtain the isospin dependent formula in a straightforward way: 

38.6 
U ~ AV3(l + 1.646/Λ - 0.191(7V - Z)/A)2 ( 3 ) 

This expression could be compared with another isospin dependent expression 

existing in the literature,namely the formula suggested in [11] 

Ηω = 41Α-^(ΐ + Χ ? ^ ) (4) 
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where t = l / 2 ( - l / 2 ) for a neutron(proton). The first term of (4) (isoscalar ter­

ni) originates from the condition that the radius of the nucleus should be 

given roughly by 1.2A1/3 fm. The second term (isovector term) comes from 

the requirment that < r2 > should have roughly the same value for protons 

and neutrons. However, it was shown in [12] that this choice of Κω does not 

correspond to the right values of the ms radii and the isotopie shifts. 

Fig 1. Oscillator spacing Κω as function of A (without corrections) for three 

cases: 1) the simple liquid drop formula (long dashed curve), 2) formula (2) 

(solid curve) and 3) using the distribution of Gambhir and Patii (short dashed 

curve). 

As a test of the new formula and for the sake of comparison with other known 

formulae, which however depend only on A, we remove from (3) the isospin 

dependence putting N = Z and plot the resulting formula for Κω for A up to 

about 60 (where N = Z is meaningful) 

Κω — 
38.6 

Λ1/3(ι + 1.646/Λ)2 (5) 

as function of A in fig.l (solid line), hi the same figure the old formula (1) is 

also plotted (long- dashed line) together with the corresponding curve (short 

dashed line) obtained using the radii obtained with the distribution of Gamb­

hir and Patii [13-15]. We recall that this semi-phenomenological algebraic form 

for the nuclear densities has no free parameter and the only experimental in-
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put is the separation energies of the last proton or neutron. It is seen in fig. 

1 that the new formula gives values for Ηω significantly lower than the old 

one and also it agrees very well with the curve coming from the distribution 

of Gambhir and Patii. It is noted that the three curves of fig. 1 were derived 

without taking into account any corrections as described below. 

An isospin dependence of the charge radius can also be derived using the 

symmetrised Fermi density distribution [6,7] 

sinh(fl/a) 
PSF P°cosh(r/a)+<x>sh{R/a) K ) 

with 

Po 
πα v, 

4 T T Ä 3 L v R 
(7) 

The advantage over the usual Fermi distribution is that it is more suitable for 

light nuclei because it has zero slope at the origin. In addition the expression 

for ms radius : 

< r * > " = lRΗ1 + 3( Υ » ) ( 8 ) 

is exact and not a transcendental function of the radius R , as is the case with 

the Fermi distribution. We parametrize the radius R as follows: 

R = C l A
1 / 3 + c2A~1/3 + c3{N - Ζ)Α~λ (9) 

The parameters are determined by a least squares fitting of (8) to the exper­

imental radii and isotopie shifts of 142 even-even isotopes, in the spirit of [5] 

. The best fit values aie : cx =1.217, c2 =-2.783, c 3 =-1.047 and a =0.620. 

We note that we have also tested different powers of A in the second and 

third term of the right-hand side of (9) and the best fit was obtained with the 

powers of A (-1/3) and (-1) respectively. 

Using the ms radius (8) with R from (9) and following the simple procedure 

described in section 2 the following expression for Κω is obtained: 

35.6Λ1/3 

Ηω = — (10) 
0.6R2 + 5.31 V ; 

In figures 2.1-2.4 we compare values of /ΐω against A (A = Ν -+- Ζ) for various 

isotopes of representative nuclei, i.e O, Ca, Sn and Pb in the region 8 < Ζ < 82. 

These values aie obtained with relation (3) (denoted Pomorski in the figures) 

and relation (10) (denoted Sym. Fermi). For the sake of comparison we also 

include the asymptotic expressions Κω = 41 A - 1 / 3 [1] (denoted Moszkowski) 

and Ηω =39.0Α- 1 / 3 -36 .8Α - 1 from [4] (denoted Gambhir). 
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It is seen that as the atomic number increases from Z=8 (O isotopes) to Z=82 
(Pb isotopes) the two curves which correspond to the isöspin dependent Κω 

(Pomorski and Sym. Fermi respectively) for small Ζ aie close to the asymptotic 

expression based on the Gambhir-Patii distribution and differ a lot from the 

Moszkowski formula . For large Ζ they are closer to the Moszkowski formula, 

though the difference of the two asymptotic expressions is less than 0.5 MeV 

in the case of Pb nuclei. 

The effect on Κω of the diffuseness of the nuclear surface is also seen in the 

figures. It is observed that the curve corresponding to the SF distribution is 

always somewhat lower than the curve corresponding to the uniform distri­

bution. This difference ranges from about 1 MeV for Z=8 to about 0.3 MeV 

for Z=82. This is due to the fact that a diffuse distribution leads to higher 

values for the m.s. radii and consequently to smaller values of Κω. As it is 

expected this difference is larger for light nuclei where the surface effects aie 

more important. 

3 A s y m p t o t i c formulae for Κω 

The dependence of Κω on N,Z and A can be shown explicitly by finding the 

following asymptotic expression of (3): 

Κω = 3 8 . 6 / Γ 1 / 3 - 127.0Λ" 4 / 3 + 14.75A~4 / 3{Ν - Ζ) (11) 

Another asymptotic expression can be found employing (10) i.e. for the SF 

distribution: 

Κω = 40.0A~ 1 / 3 - 56.0/Γ 1 - 208.8/T 5 / 3 + 68.8A"~5/3(iV - Z) (12) 

In table 1 we compare the exact and asymptotic expressions obtained from 

the uniform nucléon density distribution (relations (3) and (11)) and the SF 

distribution (relations (10) and (12)). The comparison is made for some nuclei 

increasing the neutron excess. It is observed that the asymptotic expressions 

are very accurate and can be used in practice. 
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4 Determination of Ηω taking into account corrections and the va­
lence nucléons. 

The average harmonic oscillator shell model square radius for nucléons may 
be written [3,4]: 

fc 4 Σ ( ρ + l/2)N{p) + (K + 3/2)n 
p = l 

< r2 > ( A - + n ) = v- j-. (13) 

p=l 

where η is the number of valence nucléons and Κ the number of the highest 
filled shell. It is found that Κ satisfies the equation: 

h<{K + 1){K + 2) + η = A (14) 

Using (13) and taking into account the corrections due to the center of mass 
and to the proton and neutron finite size effects, we obtain : 

hu!=3_^l(K + l){A + ln) + ln-2i 

where (< r 2 > p + < r2 >n) ~ 0.659 fm2 

However,in the present paper we take into account an additional isospin de­
pendence in the numerator of (13) i.e. the sum over nucléons is replaced by a 
sum over protons and neutrons separately. 

Thus we find: 

_ 3 h2 (Kn + l)(N + | u n ) + \nn + (Kp + \){Z + \np) + \np - 2 

4m,4 [< r2 > - ( < r2 >p + § < r2 >n)] 
(16) 

Next we calculate numerically Ηω as function of Ν and Ζ using as input in 
(16) the ms radii corresponding to the following four cases: 1. the simple 
formula Rœ = 1.2Λ1/3 2.expression (2) 3.The SF distribution with parameters 
determined in section 2 and 4. the Fermi distribution. 

In figure 3 we plot for the special case N=Z the corresponding curves of Ηω as 
function of A for the four cases mentioned ab ove. It is seen in figure 3 that the 
old formula (case 1) gives again a curve which is higher than the other cases 
2,3 and 4. 

The isospin dependence of Ηω can be seen in figure 4.1,where we plot Ηω 
=f(N) for various values of Ζ (8 < Ζ < 20) i.e. for various isotopes calculated 
numerically from (16) using as input the mean square radius corresponding to 
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the formula (2). In figure 4.2 we plot the corresponding values obtained with 

the SF distribution(relations (8) and (9)). Shell effects (i.e. a discontinuity in 

the slope of the curve) are observed at the closed shells with N = 8 and N=20. 

In figure 4.3 we compare the two cases (i.e. Κω calculated using relations (2) 

and (8) respectively) for three nuclei increasing the neutron excess. It is seen 

that, in accord with figures 2.1-2.4 and the comments made above, the curve 

corresponding to SF distribution lies lower than the curve obtained with the 

uniform distribution. It is also seen that an increase of the atomic number Ζ 

results to a decrease of the difference of the two curves. 

5 Conc lus ions 

In the present paper we exploit the extra input provided by very recent and 

accurate experimental data for the isotopie shifts in order to obtain expressions 

for the ms radius of nuclei as functions of Ν and Z. These expressions allow 

us to propose formulae for Κω using a uniform distribution from [5] and the 

symmetrized Fermi density distribution. Thus we are able to study the effect 

on Κω of neutron excess and the diffuseness of the nuclear surface, as well as 

the variation of Κ ω with Ν. 

Our study has shown the following: 

1. As seen from figures 2.1-2.4 and the comments made in section 2, the isospin 

dependence of Κω is important for relatively light and medium heavy nuclei. 

For very heavy nuclei all the formulae examined in the present paper give 

practically similar results. 

2. Shell effects i.e. discontinuities in the slope of the curve of Κω as function 

of Ν (figures 4.1-4.3) aie observed at the closed shells ( N = 8 and N=20) . 

3. We derive very accurate approximate asymptotic formulae for Κω as func­

tions of Ν and Z, which can be used in practice. 

4. The effect of the nuclear surface on Κω, which is studied by comparing the 

results using the uniform distribxition of Pomorski with those coming from 

the SF density distribution, is that the distribution with a surface has a larger 

radius compared with the radius of a uniform distribution and consequently 

the values of Κω for the SF distribution are lower than the corresponding values 

obtained with a uniform distribution. The difference ranges from 1 Mev for 

light nuclei to 0.3 MeV for heavy nuclei. 
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Table 1 

The values of Πω calculated with the exact and asymptotic expressions using a uniform 

nucléon density distribution ( columns 3,4) and a symmetrized Fermi density distribution 
( columns 5,6). It is seen that the asymptotic expressions are quite accurate and thus 
they can be used in practice. 

N-Z exact (3) asympt. (11) exact (10) asympt. (12) 

18 Ο 12.86 12.66 12.06 11.58 

lCa 10.51 10.50 10.22 10.18 

;Ni 12 9.64 9.64 9.44 9.52 

106 Zr 26 8.69 8.67 8.51 8.59 

132 Sn 32 8.12 8.09 7.96 8.01 

2 0 8 Pb 44 6.96 6.94 6.85 6.87 

3 

17 

15 

13 

11 I 1 1 L, 

Oscillator spacing: 0 isotopes 

14 16 18 

ο Moszkowski 
ο Gambhir 
Δ Sy m. Fermi 
Ο Pomorski 

ι ι ι 

20 22 

A 

24 26 28 

Fig 2.1.Oscillator spacing for a number of isotopes for Ο nuclei. For explana­

tion see text. 
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Oscillator spacing: Ca isotopes 
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Fig 2.2.Oscillator spacing for a number of isotopes for Ca nuclei. For explana­

tion see text. 

Oscillator Spacing: Sn isotopes 

> 

3 

0 Moszkowski 
ο Gombhir 
Δ Sym.Fermi 
Ο Pomorski 

o o o o o o o o o o o o o o o o o o o o o o o y » » A i OOP 
Y Y i 6 f Ι Λ ti (\ ι-ι ri L-| ύ ù t Λ ii ù ù ά < > Λ .·, • ^ ^ S " » * > 

7 
Κ )0 

, 
106 

, 
112 

A 
118 124 130 136 

Fig 2.3.Oscillator spacing for a number of isotopes for Sn nuclei. For explana­

tion see text. 
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Oscillator spacing: Pb isotopes 
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Fig 2.4.Oscillator spacing for a number of isotopes for Pb nuclei. For explana­
tion see text. 
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Fig 3.Oscillator spacing Ιϊω as function of A taking into account corrections 
and the valence nucléons, for four cases: 1) with the simple liquid drop formula 
(upper solid curve), 2) with expression (2) (lower solid curve), 3) using the SF 
distribution (short dashed curve) and 4) using the Fermi distribution (dotted 
curve). 
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Fig 4.1.The variation of the oscillator spacing Κω as function of Ν for various 
isotopie chains. The values next to each curve denote the atomic number Z. 
For the calculation formula (16) is used with the ms radius of (2). All the 
corrections are included. 

Fig 4.2.The same as in fig. 3.1 but with the ms radius from the SF distribution 

(relations (8) and (9). 
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Fig 4.3.Comparison of Κω as function of Ν for two cases: The solid boxes 

correspond to the uniform distribution from Pomorski (fig. 4.1) and the solid 

circles to the SF distribution (fig. 4.2). The difference of the curves decreases 

as Ζ increases. 
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