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Abstract

It is proved that quasi-exactly soluble potentials corresponding to an oscillator
with harmonic, quartic and sextic terms, for which the n +1 lowest levels of a given
parity can be determined exactly, may be approximated by WKB equivalent poten-
tials corresponding to deformed anharmonic oscillators of SU,(1,1) symmetry, which
have been used for the description of vibrational spectra of diatomic molecules. This
connection allows for the immediate approximate determination of the levels of the
same parity lying above the lowest n 4 1 known levels, as well as of all levels of the
opposite parity. Such connections are not possible in the cases of the g-deformed
oscillator, the Q-deformed oscillator, and the modified Poschl-Teller potential with
SU(1,1) symmetry.

1 Introduction

Quantum algebras (also called quantum groups), which are deformed versions
of the usual Lie algebras, to which they reduce when the deformation parame-
ter is set equal to unity, have recently been attracting considerable attention.
The interest in possible physical applications was triggered by the introduction
of the ¢-deformed harmonic oscillator by Biedenharn and Macfarlane in 1989,
although similar oscillators had already been in existence. The common math-
ematical structure of these various types of oscillators was shown by several



authors (see [1] for a list of references), using the concept of the generalized
deformed oscillator.

One way to clarify the physical content of deformed oscillators is to try to
construct potentials which give, exactly or approximately, the same spectrum
as these oscillators. Along these lines, WKB equivalent potentials correspond-
ing to the g-deformed oscillator, as well as to deformed anharmonic oscillators
found useful in the description of vibrational spectra of diatomic molecules
[2] have been constructed, both numerically and in analytic form [3]. These
potentials give approximately the same spectrum as the deformed oscillators
under discussion.

On the other hand, several quasi-exactly soluble potentials (QESPs) have been
introduced [4, 5, 6], for which the exact calculation of the first n + 1 energy
levels is possible, with no information provided for the rest of the levels. In
particular, in the case of the harmonic oscillator with both quartic and sextic
anharmonicities (4], the exact calculation of the first n + 1 energy levels of a
given parity is possible.

It is therefore interesting to check if there is any relation between the WKB
equivalent potentials (WKB-EPs) approximating the behavior of the deformed
oscillators on the one hand and the quasi-exactly soluble potentials on the
other. If such a link exists, as we shall demonstrate in this letter, one can fix
the parameters of a WKB potential equivalent to an appropriate oscillator so
that the potential agrees, up to the sextic term, with a given quasi-exactly
soluble potential. If the approximations involved (WKB method, truncation
of the WKB potential to sixth order only) are good, one can subsequently
use the levels of the relevant oscillator in order to approximate the unknown
higher levels of the quasi-exactly soluble potential. In the case of the harmonic
oscillator with both quartic and sextic anharmonicities [4], the levels of the
opposite parity can also be approximated in this way.

2 Deformed oscillators

The g-numbers are defined as

q:c _ q—:r
] = ———. (1
[] pR— (1)
In the case that ¢ = €7, where 7 real, they can be written as
__sinh(ra)
2] = sinh(r) @)
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while in the case that g is a phase (¢ = €', with 7 real) they take the form

_ sin(rx)
le] = sin(r)

(3)

It is clear that in both cases the g-numbers reduce to the usual numbers as
g—1(r —0).

The g-deformed harmonic oscillator is determined by the creation and anni-
hilation operators a* and a, which satisfy the relations:

+ _ ,F1

aat —g¥lata = ¢*V

) [Nva+] =a+’ '[N’a] = —a, (4)
where N is the number operator. The Hamiltonian of the g-deformed osci}lator
is

H= hyw(aa*' + a*a), (5)

and its eigenvalues are

E() = " (in] + [n + 1), ©)

From Eq. (6) it is clear that the spectrum of the q-deformed harmonic oscillator
is not equidistant. For real q the spectrum increases more rapidly than in the
classical case, while for ¢ complex it increases less rapidly than in the classical
case, i.e. it gets squeezed.

In addition to the gq-numbers, Q-numbers have been defined in the Literature
as QF -1

=2 7

[z]e 0—1 (7)

The corresponding Q-deformed harmonic oscillator is determined by the cre-

ation and annihilation operators b* and b, satisfying the commutation relations

bbt — Qbtb=1, [N,b*]=0b%, [N,b] = -b. (8)
The Hamiltonian of the relevant oscillator is
H= ’Ezﬁ(w + b*h), 9)
with corresponding eigenvalues
B() = 2 (inlq + I + 1lo) (10)

I Q = €T, with T real, the spectrum increases more rapidly than an equidis-
tant spectrum for 7' > 0, while it increases less rapidly than an equidistant
spectrum for 7' < 0.
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Using two q¢-deformed oscillators described by the operators a;,ay, N;, and
ay,af, Ny, the generators of the quantum algebra SU,(1,1) are written as

K, =ata), Komng, &K = %(N1 + Ny +1), (11)
and satisfy the commutation relations
(Ko, Ki] = +Ky, (K4, K_]=—[2K,], (12)

where the square bracket in the rhs of the last equation is a ¢-number as
defined in eq. (1). In ref. [2] this symmetry has been used for the description
of vibrational molecular spectra. The ¢-deformed anharmonic oscillator used
there is a g-generalization of the anharmonic oscillators used in the usual
Lie algebraic approach to molecular spectroscopy. (See ref. [2] for detailed
references. )

3 WKB equivalent potentials

In the case in which ¢ = €'", the spectrum of the g-oscillator (Eq. (6)) can be

written as
_ hwsin(r(n +1/2))

E, = .
2 sin(7/2)
In this case one can see (3] that the WKB equivalent potential is given by

2 2
. T mw® ,
Viz) = (2sin(T/2)) 2 "
[1_§_(i)4+@( i )8_3@(_3:_)124_ ] (14
15 \2R, 1575 \2R, 675675 \2R, b )

2\ 1/2 . 1/2
R - 1 (L) (2sm(7/2)) ' (15)

T \2m hw
For 7 = 0 the usual harmonic oscillator potential is obtained. For * — oo the
potential goes to a finite limiting value.

(13)

with

For ¢ = €™ with 7 real, the g-oscillator has a spectrum given by

_ hwsinh(r(n +1/2))
En = 2 sinh(r/2) W)
while the WKB equivalent potential is given by [3]

2

Viz) = (25inh(7’/2)) 7
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[1+8(x)4+4448(x)8+345344(i)”+ ] 17
15 \2R, 1575 \2R, 675675 \ 2R, P

B X (h? )‘“ (2_11(@)’ -

with

r \2m hw

This WKB-EP gives the classical harmonic oscillator potential for 7 = 0, while
it goes to infinity for z — oo.

Using the same inversion technique one finds that the WKB equivalent poten-
tial for the Q-deformed harmonic oscillator takes the form [7]

(1n Q) (Q+1)”1 e

V(z) = Vain + 0 0-1 ™
2/2\? 2B /ax\* 134 /2\® 5297 [z\8
- ) EE -5 () ]
where
L he(G-1)
Y = 2R .
d
B R - (ﬁ\/Q(Q = 1))1/2 (n @) (21)
wm(@ + 1) V2

We now turn our attention to the anharmonic oscillator with SU,(1,1) sym-
metry, which has been found useful in the description of vibrational molecular
spectra [2]. The energy spectrum of this oscillator, in the case of complex ¢,
is given by [2]

sin(r(n — N/2))sin(r(n + 1 — N/2))
sin(7)

E,=E)— A : (22)

where
N = 2n,0, or N =200 +1, (23)

with 7,4, corresponding to the last level before the dissociation limit. For
7 — 0 a Morse or modified Poschl-Teller spectrum is obtained. The WKB
equivalent potential in this case is

5 2
V(z) = Viin + g (ﬂ‘&) o2

sin” T
27%cos(NT7) 1 7%(23 cos?(NT) — 6)
T s rmmma o Vo 2 - 4
[ 3 snir + 45 sin’ 7 “
2 7867 cos®(N7) — 36) cos(NT)
315 sin® 7 “ +.“]’ 24)
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where

cos(7) — cos(TN)

Vmin = Ey — A 3 ) 25
D 2sin’ 7T (25)

and
v \/2mA:c. (26)

k
It can be easily seen that for 7 — 0 Eq. (24) reduces to the Taylor expansion
of the modified Péschl-Teller potential

N A, 2 5. IT ]
V(z) = Vipin + 4u 1 3u 4 u 315 S, 27
where
U, = Z’T:A:c, (28)

while the modified Poschl-Teller potential in closed form is

2 /
‘/(:U) = Vm:n + Aiv tanhz (—2%1'é£) E

(29)

This means that the WKB-EP of a system with SU,(1,1) symmetry is a
deformation of the modified Poschl-Teller potential.

4 Relation to Quasi Exactly Soluble Potentials

On the other hand, it is known [4, 5] that the potentials
V(z) = 8a’2° + 8uba* 4 2[b* — (2k + 3)a]z?, (30)

with £ = 2n + r, where n = 0, 1, 2, ...and » = 0, 1 are quasi-exactly
soluble. The meaning of this term is the following: for these potentials one can
construct exactly the first n + 1 levels with parity (—1)". (The extra factors
of 2 1n eq. (30) in comparison to refs [4, 5] are due to the fact that we use the
usual form of the Schrédinger operator

k* d?
H———%E*‘V(l)a (31)
while in refs [4, 5] the form
h* d*
H_—EE+V(I) (32)

is used.)
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4.1 The SU,(1,1) anharmonic oscillator

We wish to check if the WKB-EPs for the deformed oscillators mentioned
above correspond, up to terms of 2%, to quasi-exactly soluble potentials of the
form of eq. (30). For reasons of convenience we start the comparison from the
SU,(1,1) potential of eq. (24), setting A = m = 1. Comparing the coefficients
of 22, 2* and z° in egs (24) and (30) we get respectively the following equations

A?r%sin*(NT)
2 — (2k == 3
A — 2k +3)a) = -, (33)
4 002 N
8ab — _EAST sin (]Yrgcos( 'r)’ (34)
3 sin° T
62 2 _
8a2 — 3A4T sin (NT)(2-3:os (NT) 6). (35)
45 sin® T

We can consider a? = 1 without loss of generality. For the ground state to
be normalizable one should have ¢ > 0 [6], which implies in the present case
a = 1. Having in mind that in eq. (22) one must have A > 0 in order to get
an increasing spectrum (this fact can be seen also in the realistic applications
to molecular spectra given i ref. [2]), from eq. (35) one finds

/ sin? 7
A= 6\/57'3/2\@(NT)\*/23 cos?(N7) — 6 6)

Because of the symmetry ¢ « ¢~! characterizing the g-deformed oscillators,
it suffices to consider 7 > 0. The following conditions should then be satisfied

sin(N1) > 0, (37
cos?(N7) > 6/23. (38)
Then eq. (34) gives

g \/15\/5 \/Sill(NT) cos(NT)
~ V2 \/r(23cos?(NT1) — 6)3/4’

(39)

while eq. (33) gives

_3\/55in(NT)(18 cos?(NT) — 6)

2k+3 =
T 2 7(23cos?(Nt) — 6)3/2

(40)
The fact that £ = 2n + r has to be positive gives the additional condition
cs?(N1) < 1/3. (41)

From eq. (39) it is clear that b can be either positive (when cos(N7) < 0) or
negative (when cos(Nt) > 0).
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For reasons of convenience, let us consider the case b > 0 first. In this case the
conditions sin(N7) > 0 and cos(N7) < 0 imply that we can limit ourselves
to the region # > N7 > 7/2. The conditions (38) and (41) then imply that
2.1863 + 2xl > N7 > 2.1069 + 2x/, with [ =0, 1, 2, .... Thus though we can
find an infinity of values for NV, as we shall see it suffices to consider { = 0.

We first wish to check the accuracy of our approach, which already involves
two major approximations: the WKB approximation and the omission in the
WKB-EP of terms higher than z°. In order to achieve this, we will compare
the results given by this method to the exact results given i ref. [4] for the
case n = 1, r = 0, in which 2k + 3 = 7. From eq. (40) one then sees that
a possible solution is N = 151, 7 = 0.0144503, which gives A = 0.4343473,
b = 12.589097, while from eq. (25) (for Vi = 0) one has Ej = 1636.8943. We
see therefore that eqs (33)—(35) are indeed satisfied and the potentials of egs
(24) and (30) (up to the 2% term) are identical, being

V(x) = 303.02(z* + 0.33242* + 0.026402°). - (42)
The two solutions which can be obtained exactly are [4]
Eo = 3b — 202 + 2 = 12.4307, Ey = 3b 4+ 2/b% + 2 = 63.1039,

while eq. (22) gives the complete spectrum, including
Eo =12.3805, £, =63.0584, [y — Eq = 50.6779. (44)

We remark that the agreement between the exact results of ref. [4] and the
predictions of eq. (22) is excellent, implying that in this case:

i) the WKB method is accurate,

6

ii) the omission of terms higher than 2° is a good approximation.

An additional check for the case n = 3, » = 0 is also made. In this case
2k + 3 = 15. One possible solution of egqs (33)-(35) in this case is given by
N = 325, 7 = 0.00671384, A = 0.2960795, b = 18.469158, E} = 5168.941. The
potential is

V(z) = 652.20(2* + 0.2265z* + 0.012272°). (45)

Eq. (22) gives the levels
E, = 18.1126, F, = 91.3482, E, = 165.8771, Eg = 241.6456,

(46)
while, following the procedure of ref. [4], one sees that in this case the exact
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Table 1

Exact energy levels of the quasi-exactly soluble potential of eq. (30) with n =9, r =
0, « = 1, b = 21.275801, compared to the approximate energy levels of the WKB-
EP potential of eq. (24) with A = 0.2703882, Fj = 7126.0336, 7 = 0.00545864,
N =399, given by eq. (22).

n E, (approx) FE, (exact)

0 20.3991 20.4153

(3%

102.672 102.682

4 186.131 186.138
6 270.735 270.749
8 356.444 356.485
10 443.217 443.317
12 531.013 531.218
14 619.791 620.165
16 709.507 710.133
18 800.118 801.101

energy levels are the roots of the equation

E*—28bE> +(2546% —240) E* +(—8126° 4-2592b) £ +(5856" — 46566 +2880) = 0,
(47)
given by

Ey = 18.1429, £, =91.3783, Ey=165.913, Ee =241.703. (48)

We remark that excellent agreement between the approximate and the exact
results is again obtained.

The agreement remains equally good if more levels are considered. For the
case n = 9, » = 0, in which 2k + 3 = 39, one possible solution of egs (33)-
(35) is given by N = 399, 7 = 0.00545864, A = 0.2703882, b = 21.275801,
E} = 7126.0336. The potential is

V(z) = 827.43(2 + 0.20572 + 0.0096692°).
The energy levels are compared to the exact ones in Table L

We turn now to the case with b6 < 0. The conditions sin(N7) > 0 and
cos(N7) > 0 imply that we should limit ourselves to the region /2 > N7 > 0.
Then the conditions (38) and (41) imply that 1.0347 > N7 > 0.9553. (We a-
gain ignore terms of 2w/.)
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We again consider the case n = 1, r = 0, 2k + 3 = 7. One possible solution
is given by N = 61, 7 = 0.0157377, A = 0.4538508, b = —12.108743, E} =
390.66689. The relevant potential is

V(z) = 279.095(z% — 0.3471z* + 0.028662°). (49)
The exact solutions given by ref. [4] are
Eo = —60.7083,  E, = —11.9441, (50)
while eq. (22) gives

Eo = 11.7456,  E, = 57.3764. (51)

The reasons for this dramatic failure are well understood. The potential of eq.
(49) has a central well in the middle, having its minimum at z = 0, £ = 0,
plus two symmetrically located wells, on either side of the central one, with
their minima at £ < 0. The method of ref. [4] gives the lowest two energy
eigenvalues of the system, which in this case are the lowest two levels mn the
side wells. The WKB method used in ref. [3], however, is known to be valid
only for small values of z, i.e. in the area of the central well. Therefore in this
case eq. (51) gives the lowest two levels of the central well, which in this case
are not the lowest two levels of the system.

We therefore conclude that a correspondence between the SU,(1,1) WKB-EP
and the quasi-exactly soluble potentials of eq. (30) can be made only for b > 0,
in which case both methods will give the levels corresponding to a well around
x = 0. In this case, as we have already seen, the approximation is very good,
providing us with the following method:

Given a quasi-exactly soluble potential for which only the n + 1 lowest levels
of parity r can be found exactly, we can choose appropriately the parameters
of an SU,(1,1) WKB-EP, sc that the two potentials are identical up to order
z%. Then using eq. (22), ie. the known eigenvalues of the WKB-EP, we can
approximate the levels of the same parity lying above the first n + 1 known
levels, as well as the levels of opposite parity, for which the method of ref.
[4] gives no information for the potential under discussion. (It is worth noting
that .changing the values of n and r changes the potential.)

4.2  The g-deformed oscillator

It is now worth examining if the WKB-EPs corresponding to the g-oscillator
and the Q-oscillator can be made to correspond to a quasi-exactly soluble
potential.
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In the case of the g-deformed harmonic oscillator with ¢ = e (7 real) one
should set & = 0, since no z! terms appear in the WKB-EP of eq. (14).
Comparison of the coefficients of 2® gives then the condition

T6w4

8a? = —— Y
240sin*(7/2)’

(52)
which cannot be satisfied. Therefore no connection between this oscillator and
the quasi-exactly soluble potentials of eq. (30) is possible.

In the case of the g-deformed harmonic oscillator with ¢ = €7 (7 real) one
should again set b = 0, since no z* terms appear in the WKB-EP of eq. (17).
In addition, because of the symmetry ¢ « ¢~! characterizing this oscillator,
it suffices to consider 7 > 0. Then, taking into account that a > 0 for the
ground state to be normalizable [6], the coefficients of z°® give the equation

7_3w‘2

“ = 830 sinh’(r/2)’ (53)

while the coefficients of z? give the condition

/151
2%k +3=— 27 (54)

Since both 2k + 3 and 7 are positive, this condition cannot be satisfied. There-
fore no connection between this oscillator and the quasi-exactly soluble po-
tentials of eq. (30) is possible, either.

4.8 The Q-deformed oscillator

In the case of the Q-deformed oscillator the 2* term is present in the WKB-
EP (see eq. (19)), in contrast to the g-deformed oscillator. In this case the
coefficients of the z8, #* and 2? terms give the equations

1 B WP (Q+1)°
(L—ii ET (m) w2’ (55)
1 [5mQQ+1
=y gﬁ—Q—lw’ (56)
271 [5 1
2lc+3=:{:5 BRg (57)

We know that for the ground state to be normalizable one should have « > 0.
Therefore in eq. (55) the selection of the upper (lower) sign requires In () > 0
(In@ < 0). In both cases it is impossible to satisfy eq. (57). Therefore no
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connection between the Q-deformed oscillator and the quasi-exactly soluble
potentials of eq. (30) is possible.

4.4  The modified Poschi-Teller potential

In the case of the modified Poschl-Teller potential, comparing its Taylor ex-
pansion (eq. (27)) to the quasi-exactly soluble potentials of eq. (30) and taking
into account that a > 0 one obtains from the coefficients of the z®, z* and 22

terms the following equations
17 A?
“=\F e (58)

[5 A
B i 59
b Fa (59)

18 |5
—\ = 60
17V 17 @)
Since 2k + 3 has to be positive, it is clear from the last equation that no con-
nection between the modified Poschel-Teller potential and the quasi-exactly

soluble potentials of eq. (30) is possible.

2k +3=-—

5 Discussion

The following comments on the results can now be made:

1) The quasi-exactly soluble potentials are known to be related to the SL(2) [5]
and deformed SU(2) [8] symmetries. Among the several oscillators considered
here, the only one for which the connection to QESPs was possible is the
oscillator with SU,(1,1) symmetry. Apparently the H,(4) symmetry of the
g-deformed oscillator is “not enough” to guarantee such a connection.

ii) The QESPs of eq. (30) are characterized by 3 parameters (a, b, k). The
SU,(1,1) potential is also characterized by 3 parameters (A, 7, N), while the
WKB-EPs of the g-oscillator and Q-oscillator are characterized by 2 parame-
ters (w, 7 and w, @ respectively) and the modified Poschl-Teller potential is
characterized by only one parameter (A). It is therefore not surprising that a
connection is possible only for the case in which the number of parameters of
the two potentials to be related is the same.

In summary, we have proved that the quasi-exactly soluble potentials cor-
responding to a harmonic oscillator with quartic and sextic anharmonicities
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can be approximated by the WKB equivalent potentials corresponding to a
deformed anharmonic oscillator with SU,(1,1) symmetry. As a result one can
use the relevant SU,(1,1) oscillator in order to approximate the levels of the
QESP which cannot be obtained using that approach. In the specific case un-
der discussion the extra levels obtained i this way are the levels of the same
parity lying above the first n+1 known levels, as well as all the levels of the op-
posite parity. The fact that the modified Poschl-Teller potential with SU(1,1)
symmetry cannot be connected to these QESPs, while its deformed version
with SU,(1,1) symmetry can, is an example where the use of q-deformation
allows the solution of an otherwise intractable problem.

In ref. [2] the deformed anharmonic oscillator with SU,(1,1) symmetry has
been proved appropriate for the description of vibrational spectra of diatomic
molecules. An extension to vibrational spectra of highly symmetric polyatomic
molecules has been given in [9]. The construction of QESPs related to realistic
vibrational spectra is receiving attention.

One of the authors (DB) has been supported by the EU under contract ER-
BCHBGCT930467. Another author (HM) acknowledges the warm hospitality
during his stay in NCSR “Demokritos”.
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