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Abstract 

It is proved that quasi-exactly soluble potentials corresponding to an oscillator 
with harmonic, quartic and sextic terms, for which the n + 1 lowest levels of a given 
parity can be determined exactly, may be approximated by WKB equivalent poten­
tials corresponding to deformed anharmonic oscillators of SU9(1,1) symmetry, which 
have been used for the description of vibrational spectra of diatomic molecules. This 
connection allows for the immediate approximate determination of the levels of the 
same parity lying above the fewest n + 1 known levels, as well as of all levels of the 
opposite parity. Such connections are not possible in the cases of the q-deformed 
oscillator, the Q-deformed oscillator, and the modified Pöschl-Teller potential with 
SU(1,1) symmetry. 

1 I n t r o d u c t i o n 

Quantum algebras (also called quantum groups), which are deformed versions 
of the usual Lie algebras, to which they reduce when the deformation parame­
ter is set equal to unity, have recently been attracting considerable attention. 
The interest in possible physical applications was triggered by the introduction 
of the g-deformed harmonic oscillator by Biedenharn and Macfariane in 1989, 
although similar oscillators had already been in existence. The common math­
ematical structure of these various types of oscillators was shown by several 



authors (see [1] for a list of references), using the concept of the generalized 

deformed oscillator. 

One way to clarify the physical content of deformed oscillators is to try to 

construct potentials which give, exactly or approximately, the same spectrum 

as these oscillators. Along these lines, WKB equivalent potentials correspond­

ing to the ^-deformed oscillator, as well as to deformed enharmonic oscillators 

found useful in the description of vibrational spectra of diatomic molecules 

[2] have been constructed, both numerically and in analytic form [3]. These 

potentials give approximately the same spectrum as the deformed oscillators 

under discussion. 

On the other hand, several quasi-exactly soluble potentials (QESPs) have been 

introduced [4, 5, 6], for which the exact calculation of the first η + 1 energy 

levels is possible, with no information provided for the rest of the levels, hi 

particular, in the case of the harmonic oscillator with both quartic and sextic 

anharmonicities [4], the exact calculation of the fust n + 1 energy levels of a 

given pari ty is possible. 

It is therefore interesting to check if there is any relation between the W K B 

equivalent potentials (WKB-EPs) approximating the behavior of the deformed 

oscillators on the one hand and the quasi-exactly soluble potentials on the 

other. If such a link exists, as we shall demonstrate in this letter, one can fix 

the parameters of a WKB potential equivalent to an appropriate oscillator so 

that the potential agrees, up to the sextic term, with a given quasi-exactly 

soluble potential. If the approximations involved (WKB method, truncation 

of the WKB potential to sixth order only) are good, one can subsequently 

use the levels of the relevant oscillator in order to approximate the unknown 

higher levels of the quasi-exactly soluble potential. In the case of the harmonic 

oscillator with both quartic and sextic anharmonicities [4], the levels of the 

opposite parity can also be approximated in this way. 

2 D e f o r m e d osci l lators 

The q-numb ers aie defined as 

r ι g! ~ V~x 

F = i p 

q-q l 

In the case that q = eT, where τ real, they can be written as 

. smh(rx) 
[XÌ = sinh(r) ' 

200 



while in the case that g is a phase (q = e'T, with r real) they take the form 

M - ^ · (3) 
an (τ) 

It is clear that in both cases the q-numbers reduce to the usual numbers as 

q -• 1 (r -* 0). 

The q-deformed harmonic oscillator is determined by the creation and anni­
hilation operators a+ and a, which satisfy the relations: 

aa+ - q^a+a = q±N, [N,a+] = a + , \N,a] = - a , (4) 

where Ν is the number operator. The Hamiltonian of the q-deformed oscillator 

is u 
Η = -^{aa+ + a+a), (5) 

and its eigenvalues are 

Ε{η) = γ([η) + [n + l]). (6) 

FVom Eq. (6) it is clear that the spectrum of the q-deformed harmonic oscillator 
is not equidistant. For real q the spectrum increases more rapidly than in the 
classical case, while for q complex it increases less rapidly than in the classical 
case, i.e. it gets squeezed. 

Ια addition to the q-numbers, Q-numbers have been denned in the literature 

as 

W« = | f f (7) 
The corresponding Q-deformed harmonic oscillator is determined by the cre­
ation and annihilation operators b+ and 6, satisfying the commutation relations 

66+ - Qb+b = 1, [N, b+] = 6+, [N, b] = -b. (8) 

The Hamiltonian of the relevant oscillator is 

Η = ^ ( 6 6 + + b+b), (9) 

with corresponding eigenvalues 

£(n) = Y ( [ n ] g + [ n + l]g). (10) 

Έ Q = eT, with Τ real, the spectrum increases more rapidly than an equidis­
tant spectrum for Τ > 0, while it increases less rapidly than an equidistant 
spectrum for Τ < 0. 
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Using two q-deformed oscillators described by the operators ai,af,N\, and 
0,2,0,2, N2, the generators of the quantum algebra SUg(l,l) are written as 

/ f + = a + a + , K=aia2, K0 = ί ( ^ + N2 + 1) , (11) 

and satisfy the commutation relations 

[tfo, I<±) = ±K±, [K+J<-} = - [2Ko], (12) 

where the square bracket in the rhs of the last equation is a q-number as 
denned in eq. (1). In ref. [2] this symmetry has been used for the description 
of vibrational molecular spectra. The q-deformed anharmonic oscillator used 
there is a q-generalization of the anharmonic oscillators used in the usual 
Lie algebraic approach to molecular spectroscopy. (See ref. [2] for detailed 
references.) 

3 WKB equivalent potentials 

In the case in which q = elT', the spectrum of the q-oscillator (Eq. (6)) can be 
written as 

= /uusin(r(n + l/2)) 

2 sin(r/2) " [ } 

hi this case one can see [3] that the WKB equivalent potential is given by 

V(x) = πιω 
2sin(r/2)y 2 

8 / x \ 4 4448 / χ \ 8 34'5344 

/ith 
Ι ~ Ï 5 \2Rj +\Eïb\2Rj " 675675 \2RJ + ' " ' J ' ( ^ 

For r = 0 the usual harmonic oscillator potential is obtained. For χ —> oo the 
potential goes to a finite limiting value. 

For q = eT with r real, the q-oscillator has a spectrum given by 

_fih;sinh(T(n + l/2)) 
Δ " " Τ sinh(r/2) ' ( 1 6 ) 

while the WKB equivalent potential is given by [3] 

vi \ - Ι τ \ m u ? 2 2 
{X)~ ^2sinh(r/2); 2 * 
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r 8 / χ \ 4 4448 / χ \ 8 345344 / χ \ 1 2 ι , , _ 

Î 1 + Ï F U : ) + Ì S T 5 Ì 2 A : ) +675675lud +···]· (17) 

with 

This WKB-EP gives the classical harmonic oscillator potential for r = 0, while 
it goes to infinity for χ —» oo. 

Using the same inversion technique one finds that the WKB equivalent poten­
tial for the Q-deformed harmonic oscillator takes the form [7] 

V(x) = Vmin + - _ ( _ j -mu, χ 

2 / Ï \ 2 2 3 / x \ 4 134 / a; \ 6 5297 / χ \ 8 

3 VßV 45 \R'J 315 VßV 14172 VA' 
(19) 

where 

Ä , = py^Q-lA1 '2 (InQ)-1 { 2 1 ) 

and 

V u;m(Q 4- 1) / ^ 2 

We now turn our attention to the anharmonic oscillator with SUq(l,l) sym­
metry, which has been found useful in the description of vibrational molecular 
spectra [2]. The energy spectrum of this oscillator, in the case of complex q, 
is given by [2] 

P ρ, >n(T(n-Ai/2))s in(T(n + l - A 7 2 ) ) 
En = E0-A - ^ , (22) 

where 
Ν = 2nmax or Ν = 2nmax + 1, (23) 

with nmax corresponding to the last level before the dissociation limit. For 
r —+ 0 a Morse or modified Pöschl-Teller spectrum is obtained. The WKB 
equivalent potential in this case is 

17, , 17 A / r s in ( iVr ) \ 2
 2 

V x) = Vmin + - — r i — - u2 

4 \ sin^T / 

r _2r 2 cos( iVr) 2 1 r4(23 cos2(yVr) - 6) 4 

L Π ein τ 4R RITI τ 

W···!, (24) 

Γ — - , · 4 

45 

2 r6(67 COS2(ÌVT) - 36) cos(iVr) 6 

315 
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where 

vmm = Ei - A°»<r)-™<rN)i ( 2 5 ) 
2sin τ 

and 
V2mAx 

u = . (26) 

It can be easily seen that for τ —> 0 Eq. (24) reduces to the Taylor expansion 

of the modified Pöschl-Teller potential 

V(X) = Vmin + -U2 
2 9 17 , 62 * 

1 - - i i 2 + — u4 u6 + . 
3 45 315 

where 
y/2mA 

while the modified Pöschl-Teller potential in closed form is 

(27) 

(28) 

w/ χ τ Λ ^ ^ 2 . 2 ( \/2mAx\ , , 

V(x) = Vmin + - j - tanh2 ί J . (29) 

This means that the WKB-EP of a system with ^ ^ ( l , 1) symmetry is a 

deformation of the modified Pöschl-Teller potential. 

4 Re la t ion to Quasi Exact ly Soluble Potent ia l s 

On the other hand, it is known [4, 5] that the potentials 

V(x) = 8ct2a·6 + Sabx4 + 2[62 - {2k + 3)a]x2, (30) 

with k = 2n + r, where η = 0, 1, 2, . . . a n d r = 0, 1 are quasi-exactly 

soluble. The meaning of this term is the following: for these potentials one can 

construct exactly the first η + 1 levels with parity (— l ) r . (The extra factors 

of 2 in eq. (30) in comparison to refs [4, 5] are due to the fact that we use the 

usual form of the Schrödinger operator 

while in refs [4, 5] the form 

η dx 

is used.) 

h2 (P 
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4-1 The SUq(l,l) anharmonic oscillator 

We wish to check if the WKB-EPs for the deformed oscillators mentioned 

above correspond, up to terms of x 6 , to quasi-exactly soluble potentials of the 

form of eq. (30). For reasons of convenience we start the comparison from the 

SU, (1,1) potential of eq. (24), setting h — m = 1. Comparing the coefficients 

of a;2, x4 and x6 in eqs (24) and (30) we get respectively the following equations 

^-pk + a w - ^ ^ M , (33, 
λ sm τ 

8 a i = - ^ 4 * " 2 ( J V T

6

) C O S ( J V T ) , (34) 
3 sin τ 

8α' = L A * r^(Nr)(2Zco^Nr)-6) 

45 sin 8 τ v ' 

We can consider α 2 = 1 without loss of generality. For the ground state to 

be normalizable one should have a > 0 [6], which implies in the present case 

a = 1. Having in mind that in eq. (22) one must have A > 0 in order to get 

an increasing spectrum (this fact can be seen also in the realistic applications 

to molecular spectra given in ref. [2]), from eq. (35) one finds 

A = Jfrjï . Sm,-I (36) 
T^!2yJsm{Nr)^2Zcos2{NT) - 6 

Because of the symmetry q <-+ q~l characterizing the q-deformed oscillators, 
it suffices to consider r > 0. The following conditions should then be satisfied 

sin(iVr) > 0, (37) 

COS2(ÌVT) > 6/23. (38) 

Then eq. (34) gives 

W 5 yJan(NT)cos(Nr) 

° V 2 V^(23 cos2(7Vr) - 6)3/4 ' [ ' 

while eq. (33) gives 

3V5s in ( iVr ) (18cos 2 ( iVT)-6) 
Zk + 6 - ~2 r ( 2 3 c o S 2 ( i V r ) - 6 p / 2 ' ^ 

The fact that k = 2n + r has to be positive gives the additional condition 

COS 2(WT) < 1/3. (41) 

From eq. (39) it is clear that b can be either positive (when COS(TVT) < 0) or 
negative (when COS(NT) > 0). 

205 



For reasons of convenience, let us consider the case ό > 0 first. In this case the 

conditions sin(iW) > 0 and COS(NT) < 0 imply that we can limit ourselves 

to the region χ > Ν τ > π/2. The conditions (38) and (41) then imply that 

2.1863 + 2x/ > Ν τ > 2.1069 + 2ττ/, with / = 0, 1, 2, Thus though we can 

find an infinity of values for TV, as we shall see it suffices to consider / = 0. 

We first wish to check the accuracy of our approach, which already involves 

two major approximations: the WKB approximation and the omission in the 

WKB-EP of terms higher than a 6 . In order to achieve this, we will compare 

the results given by this method to the exact results given in ref. [4] for the 

case η = 1, r — 0, in which 2k + 3 = 7. Prom eq. (40) one then sees that 

a possible solution is TV = 151, r = 0.0144503, which gives A = 0.4343473, 

b = 12.589097, while from eq. (25) (for Vmtn = 0) one has E0 = 1636.8943. We 

see therefore that eqs (33)-(35) aie indeed satisfied and the potentials of eqs 

(24) and (30) (up to the a 6 term) are identical, being 

V{x) = 303.02(a2 + 0.3324a·4 + 0.02640a6). · (42) 

The two solutions which can be obtained exactly are [4] 

E0 = 36 - 2\/62 + 2 = 12.4307, E2 = 3b + 2\/P + 2 = 63.1039, 

E2 - EQ - 50.6731, (43) 

while eq. (22) gives the complete spectrum, including 

E0 = 12.3805, E2 - 63.0584, E2 - E0 = 50.6779. (44) 

We remark that the agreement between the exact results of ref. [4] and the 

predictions of eq. (22) is excellent, implying that in this case: 

i) the W K B method is accurate, 

ii) the omission of terms higher than x6 is a good approximation. 

An additional check for the case η — 3, r = 0 is also made, hi this case 

2k + 3 = 15. One possible solution of eqs (33)-(35) in this case is given by 

Ν = 325, r = 0.00671384, A = 0.2960795, 6 = 18.469158, E'0 = 5168.941. The 

potential is 

V(x) = 652.20(.r2 + 0.2265a4 + 0.01227a6). (45) 

Eq. (22) gives the levels 

E0 = 18.1126, E2 = 91.3482, E4 = 165.8771, E6 = 241.6456, 

(46) 

while, following the procedure of ref. [4], one sees that in this case the exact 
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Table 1 

Exact energy levels of the quasi-exactly soluble potential of eq. (30) with η = 9, r = 

0, a = 1, .6 = 21.275801, compared to the approximate energy levels of the WKB-

EP potential of eq. (24) with A = 0.2703882, E'0 = 7126.0336, r = 0.00545864, 

TV = 399, given by eq. (22). 

η 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

En (approx) 

20.3991 

102.672 

186.131 

270.735 

356.444 

443.217 

531.013 

619.791 

709.507 

800.118 

En (exact) 

20.4153 

102.682 

186.138 

270.749 

356.485 

443.317 

531.218 

620.165 

710.133 

801.101 

energy levels aie the roots of the equation 

£ 4 - 2 8 ό £ 3 + ( 2 5 4 ό 2 - 2 4 0 ) £ 2 + ( - 8 1 2 ό 3 ^ 2 5 9 2 6 ) £ + ( 5 8 5 ο 4 - 4 6 5 6 ό 2 + 2 8 8 0 ) = 0, 

(47) 

given by 

E0 = 18.1429, E2 = 91.3783, E4 = 165.913, E& = 241.703. (48) 

We remark that excellent agreement between the approximate and the exact 

results is again obtained. 

The agreement remains equally good if more levels are considered. For the 

case η — 9, τ = 0, in which 2k + 3 = 39, one possible solution of eqs (33)-

(35) is given hy Ν = 399, r = 0.00545864, A = 0.2703882, b = 21.275801, 

E'0 = 7126.0336. The potential is 

V{x) = 827.43(.x·2 + 0.2057a;4 + 0.009669z6). 

The energy levels are compared to the exact ones in Table I. 

We turn now to the case with 6 < 0. The conditions shi(Nr) > 0 and 

cos (/VT ) > 0 imply that we should limit ourselves to the region χ / 2 > Ν τ > 0. 

Then the conditions (38) and (41) imply that 1.0347 > Ντ > 0.9553. (We a-

gain ignore terms of 2πΙ.) 
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We again consider the case η = 1, r = 0, 2k + 3 = 7. One possible solution 

is given by TV = 61, τ = 0.0157377, A = 0.4538508, b = -12.108743, E'0 = 

390.66689. The relevant potential is 

V{x) = 279.095(z2 - 0.3471z4 + 0.02866a:6). (49) 

The exact solutions given by ref. [4] are 

E0 = -60.7083, E2 = -11.9441, (50) 

while eq. (22) gives 

E0 = 11.7456, E2 - 57.3764. (51) 

The reasons for this dramatic failure are well understood. The potential of eq. 

(49) has a central well in the middle, having its minimum at χ = 0, E = 0, 

plus two symmetrically located wells, on either side of the central one, with 

their minima at E < 0. The method of ref. [4] gives the lowest two energy 

eigenvalues of the system, which in this case are the lowest two levels in the 

side wells. The WKB method used in ref. [3], however, is known to be valid 

only for small values of a;, i.e. in the area of the central well. Therefore in this 

case eq. (51) gives the lowest two levels of the central well, which in this case 

are not the lowest two levels of the system. 

We therefore conclude that a correspondence between the SU, (1,1) WKB-EP 

and the quasi-exactly soluble potentials of eq. (30) can be made only for 6 > 0, 

in which case both methods will give the levels corresponding to a well around 

χ = 0. In this case, as we have already seen, the approximation is very good, 

providing us with the following method: 

Given a quasi-exactly soluble potential for which only the η -f 1 lowest levels 

of parity r can be found exactly, we can choose appropriately the parameters 

of an SU9(1,1) WKB-EP, so that the two potentials are identical up to order 

xe. Then using eq. (22), i.e. the known eigenvalues of the WKB-EP, we can 

approximate the levels of the same parity lying above the first η -f 1 known 

levels, as well as the levels of opposite parity, for which the method of ref. 

[4] gives no information for the potential under discussion. (It is worth noting 

that ^changing the values of η and r changes the potential.) 

4-2 The q-deformed oscillator 

It is now worth examining if the WKB-EPs corresponding to the q-oscillator 

and the Q-oscillator can be made to correspond to a quasi-exactly soluble 

potential. 
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In the case of the q-deformed harmonic oscillator with q = etT (r real) one 
should set b = 0, since no x4 terms appear in the WKB-EP of eq. (14). 
Comparison of the coefficients of x6 gives then the condition 

6 4 

δ«2 = Τω

4/ — , (52) 
240sin4(r/2)' v ) 

which cannot be satisfied. Therefore no connection between this oscillator and 
the quasi-exactly soluble potentials of eq. (30) is possible. 

In the case of the q-deformed harmonic oscillator with q = eT (r real) one 
should again set 6 = 0 , since no x4 terms appear in the WKB-EP of eq. (17). 
In addition, because of the symmetry q <-> q~l characterizing this oscillator, 
it suffices to consider r > 0. Then, taking into account that a > 0 for the 
ground state to be normalizable [6], the coefficients of x6 give the equation 

τ-3,,,2 

(53) 
8\/30sinh2(r/2) ' 

while the coefficients of x2 give the condition 

2fc+3 = - ^ y - . (54) 

Since both 2k + 3 and τ are positive, this condition cannot be satisfied. There­
fore no connection between this oscillator and the quasi-exactly soluble po­
tentials of eq. (30) is possible, either. 

4-3 The Q-deformed oscillator 

In the case of the Q-deformed oscillator the x4 term is present in the WKB-

EP (see eq. (19)), in contrast to the q-deformed oscillator. In this case the 

coefficients of the .τ6, .τ4 and .τ2 terms give the equations 

a ι JW(±Ql (Q±lY^ (55) 
2V45 Q \Q-1J V ; 

^2\23^QQ-l ' V ' 

2fc+3 = T — \ — Γ^ττ- (57) 
^23 V 23 In Q V ' 

We know that for the ground state to be normalizable one should have a > 0. 

Therefore in eq. (55) the selection of the upper (lower) sign requires In Q > 0 
(In Q < 0). In both cases it is impossible to satisfy eq. (57). Therefore no 
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connection between the Q-deformed oscillator and the quasi-exactly soluble 

potentials of eq. (30) is possible. 

4-4 The modified Pöschl-Teller potential 

In the case of the modified Pöschl-Teller potential, comparing its Taylor ex­
pansion (eq. (27)) to the quasi-exactly soluble potentials of eq. (30) and taking 
into account that a > 0 one obtains from the coefficients of the a;6, x4 and x2 

terms the following equations 

iVl A 2 

a = \ 
V 5 6 

is ΓΕ-

a + 3 = - Î 7 V l 7 - ( 6 0 ) 

Since 2k + 3 has to be positive, it is clear from the last equation that no con­

nection between the modified Posch el-Teller potential and the quasi-exactly 

soluble potentials of eq. (30) is possible. 

5 Di scuss ion 

The following comments on the results can now be made: 

i) The quasi-exactly soluble potentials are known to be related to the SL(2) [5] 

and deformed SU(2) [8] symmetries. Among the several oscillators considered 

here, the only one for which the connection to QESPs was possible is the 

oscillator with SU9(1,1) symmetry. Apparently the H,(4) symmetry of the 

q-deformed oscillator is "not enough" to guarantee such a connection. 

ii) The QESPs of eq. (30) aie characterized by 3 parameters (a, 6, k). The 

SU9(1,1) potential is also characterized by 3 parameters (A, r , N), while the 

WKB-EPs of the q-oscillator and Q-oscillator are characterized by 2 parame­

ters (α;, τ and ω, Q respectively) and the modified Pöschl-Teller potential is 

characterized by only one parameter (.4). It is therefore not surprising that a 

connection is possible only for the case in which the number of parameters of 

the two potentials to be related is the same. 

In summary, we have proved that the quasi-exactly soluble potentials cor­

responding to a harmonic oscillator with quartic and sextic anharmonicities 
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can be approximated by the WKB equivalent potentials corresponding to a 
deformed enharmonic oscillator with SU g ( l , l ) symmetry. As a result one can 
use the relevant SU9(1,1) oscillator in order to approximate the levels of the 
QESP which cannot be obtained using that approach. In the specific case un­
der discussion the extra levels obtained in this way are the levels of the same 
parity lying above the first n + 1 known levels, as well as all the levels of the op­
posite parity. The fact that the modified Pöschl-Teller potential with SU(1,1) 
symmetry cannot be connected to these QESPs, while its deformed version 
with SU9(1,1) symmetry can, is an example where the use of q-deformation 
allows the solution of an otherwise intractable problem." 

In ref. [2] the deformed anharmonic oscillator with SU g ( l , l ) symmetry has 
been proved appropriate for the description of vibrational spectra of diatomic 
molecules. An extension to vibrational spectra of highly symmetric polyatomic 
molecules has been given in [9]. The construction of QESPs related to realistic 
vibrational spectra is receiving attention. 
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