- Publishing

HNPS Advances in Nuclear Physics

Vol 6 (1995)

HNPS1995

Off-shell Nucleons in Intermediate Energy Physics

G. I. Poulis

doi: 10.12681/hnps.2928

ety Tetlenic

Syamposim

To cite this article:

Poulis, G. I. (2020). Off-shell Nucleons in Intermediate Energy Physics. HNPS Advances in Nuclear Physics, 6,
188-198. https://doi.org/10.12681/hnps.2928

https://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at: 09/01/2026 10:41:55



Off-shell Nucleons in Intermediate Energy
Physics

Grigorios 1. Poulis

National Institute for Nuclear Physics and High-Energy Physics (NIKHEF)
P.O. Box 41882, NL-1009 DB Amsterdam, the Netherlands

Abstract

I discuss some issues pertaining to vertices involving virtual (z.e. off-mass-shell)
mucleons, namely, in which processes off-shell vertices appear, their transformation
properties under field redefinitions, and the attempts that have been made to esti-
mate their effects in electromagnetic processes at intermediate energies.

1 Introduction

In the theoretical description of processes at mtermediate energies, the struc-
ture of hadrons is described by multiplying the point-like vertex operators by
form factors. It is common practice to assume that these vertices - s.e. their
operator structures and the associated form factors - are in all situations the
same as for a free, on-shell hadron. However, many of the processes that are
of interest in medium energy nuclear physics involve hadrons as intermediate,
and therefore off-mass-shell, particles. This is the case e.g. in electron-nucleus
scattering or in two-step reactions on a free nucleon, such as Compton scat-
tering or pion photoproduction. In these cases the vertices (electromagnetic
or strong) can have a much richer structure: there can be more mdependent
vertex operators and the form factors can depend on more than one scalar
variable. The common treatment of such “off-shell” effects is to presume them
small and to ignore them by using the free vertices. However, as much of the
present effort in intermediate energy physics focusses on delicate effects, such
as evidence of quark/gluon degrees of freedom or small components in the
hadronic wavefunction, it is mandatory to examine these issues in detail.

Consider, in particular, the most general pion-nucleon (strong) vertex, where
the incoming nucleon of mass m has momentum p,, the outgoing nucleon has



momentum p!, and the pion has momentum g, = pj, — p,. It can be written
as 1]
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By sandwiching I'* between on-shell spinors one obtains G (g%, m%, m?)a{p)ys u(p),
which shows the much richer structure of the off-shell vertex, in that there are
(a) more independent operators, (i.e. G2, G3, G4) and (b) each G; depends
not only on the four momentum transfer, ¢, but also on the other kinemat-
ical variables p? and p?. The electromagnetic vertex of the nucleon is more
complicated [2]. Its general form is

M= 3 Y [Aly + Adtorq, + A (B) 2)

7,k=0,1

where the 12 form factors, A¥, are again functions of three scalar variables,
usually taken to be ¢?, p?, and p”. By using the constraints provided by
the Ward-Takahashi identity, the number of independent form factors can be
shown to reduce to 8. Upon evaluating the vertex between two on-shell spinors,
one recovers the familiar form of the electromagnetic current of a free nucleon

. Fy(q?
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involving two independent contributions with their associated (Dirac and
Pauli) form factors.

2 The Off-Shell Nucleon vertex under field redefinitions

Off-shell vertices are described within the framework of the reduction formal-
ism [3] using interpolating (interacting) fields for the off-shell nucleon. The
choice of this interpolating field is not unique. It is well known that on-shell S-
matrix elements are oblivious to the choice of interpolating field: any reversible
field redefinition will leave the on-shell amplitudes unchanged [4]. However, d-
ifferent interpolating fields in general lead to different off-shell extrapolations
[5] and therefore off-shell form factors cannot be uniquely determined. This
general result can be illustrated by the following simple example for pion-
nucleon scattering. Consider the pseudoscalar meson-nucleon Lagrangian

1 ... 5 o e
Lpw = ((00)" = #26%) + (i @ —m)i — ighsoy | )

189



and perform the transformation

P — exp(ifrs o) - (5)

Then, up to and including order 3? terms, the new Lagrangian reads

L= Lys — 2imBepys i + Bys(P o)
+28(g + 2mB)pé*p + O(B%) . (6)

This transformed Lagrangian has both pseudoscalar (PS) and pseudovector
(PV) mNN interaction terms as well as a contact term. For our discussion
of the representation dependence we leave ( free and show that physical,
observable quantities are S-independent.

The meson-nucleon vertex at the tree level for both representations is readily
obtained (the dressed vertex at the one-loop level will is discussed in Ref. [6]).
From L,, we find for the vertex I*(p’, p),s = g7s, corresponding to the trivial
half-off-shell vertex function

K¢, +uw')=g. (7)
On the other hand L gives
K(g*,2w') = g+ B(m F v') , ®)

which is f-dependent and clearly has a different off-shell behavior. However,
the on-shell matrix element of the vertex operator is the same (i.e., indepen-
dent of 3) for both representations.

What happens if we consider a two-step process on a free nucleon, such as pion-
nucleon scattering, that involves the propagation of an intermediate off-shell
nucleon? Since this is an overall on-shell process, the 3-dependent contribu-
tions from the off-shell vertices in the pole terms, i.e. in the contributions
involving two /NN vertices connected by an intermediate nucleon propaga-
tor, must be compensated by some other -dependent contribution. To show
that, we consider the on-shell pion-nucleon scattering T-matrix at the tree
level. Using L,, it involves s- and u- channel pole terms only and reads

c 2=f 1 1 1
T = 680 g + 5o ) ©)

where p and p’ are the intial and final nucleon four-momenta, respectively,
and ¢ and ¢’ are the intial and final pion four-momenta, respectively. Using
the Dirac equation for the on-shell spinors, the pole term contribution to the
T-matrix for the mixed PS and PV Lagrangian can be cast in the form:

% . 1 1
o T
Toote = —ig™ulp ){[) + 4 —m * P - j' -m
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+4p(g + mB)ulp) | (10)

where the §-dependent term can be thought of as an “off-shell” effect. How-
ever, there is now also a contribution from the contact term in L, the term
proportional to ¥ $%y, which yields

Toontact = 10(p'){4B(g + mB)}u(p) . (11)

Clearly the (-dependent terms cancel and the total amplitude remains un-
changed,

7;33 = ~pole i Tcontact . (12)

This simple example illustrates not only that, as expected [5, 7], total on-shell
amplitudes for a given process are invariant under field redefinitions, but it
also shows the interplay between “off-shell” effects from vertices and contact
terms: representation-dependent “off-shell effects” in pole contributions in one
representation appear as contact terms [8] in another representation. This
makes it impossible to define “off-shell” effects in a unique, representation
independent fashion.

Our considerations above concerned only rather simple vertices and at the
tree level. The close connection between off-shell effects in a vertex and contact
terms also exists when one considers dressed vertices [6]. It can be made plau-
sible with the following example that concerns the dependence of the vertex
on the invariant mass p?. Consider, for simplicity, a scalar vertex for an ini-
tially on-shell particle together with the subsequent propagation. Expanding
the vertyx around the on-shell point

D(¢*,m* p?*) _ D(¢*,m*,m?) or
pz —m? - p2 — m? apz

(m?) + - (13)

the propagator gets cancelled in the second term. Off-shell effects in the pole
terms through the dependence of the vertex on the scalar variable p?, can
therefore also be seen as contact terms. Equation (10) is a specific example of
this. The above seems to suggest that it is possible to find a representation
for an amplitude where K (¢?,w) has no off-shell dependence, ie. no depen-
dence on w, by keeping enough terms terms in Eq. (13) and introducing the
cOrresponding contact terms. However, the Taylor expansion implicit in Eq.
(13) is valid only up to the first branch cut, ve. the pion threshold. Thus, this
procedure is, for example, not valid in calculations of pion electroproduction
on a nucleon. In this case, the form factors are complex and, as shown in
Ref. [6] there is not only a representation dependent change in the real, but
also be a concomittant change in the imaginary part of the form factors to be
consistent with unitarity.
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The above example also showed how a unitary transformation adds one power
of the nucleon four-momentum to the asymptotic behavior of original vertex
Eq. (7). Higher powers in the nucleon momenta can be obtained by using
transformations involving higher derivatives [6]. Of course, one can perform
transformations acting on the nucleon field that induce not just p? but also a
combined p'? and ¢? dependence of the half-off-shell vertex, I'*. For example,
the transformation ¥ — exp(i37s9%¢ )y induces a new term B(p' —m)g*vsu(p).
Observations similar to those made for the strong form factor can be made for
the electromagnetic vertex in QED by starting with the QED Lagrangian and
transforming the electron field. The electromagnetic vertex obtained at tree
level from the QED Lagrangian is simply —tey* for on and off shell electrons.
Applying the transformation 1) — exp(89?4)) changes for example the half-
off-shell vertex to —ile + B¢*(p’ —m)y*Ju(p). The B-dependent part of this
vertex vanishes on-shell, as expected.

3 Prescriptions and Model Calculations

The remarks made i Sec. II made do not mean that one does not have to
worry about the off-shell contributions, only that these contributions are not
uniquely defined. In fact, several approaches have been considered for taking
off-shell effects into account in two-step electromagnetic processes. They may
be divided in attempts to calculate the off-shell vertex functions on the basis
of some microscopic model and m purely phenomenological prescriptions.

An example of the latter are the prescriptions introduced by de Forest [9] for
the half-off-shell (p”> = m?, p* # m?) electromagnetic vertex. They allow one
to use the free current by changing its kinematical variables according to the
off-shell situation. Specifically, one defines a four-vector p* = (/p? + m?,p)
corresponding to an on-shell particle with the same three-momentum as the
off-shell nucleon. However, p® # #°. The nucleon is described by a free spinor
u(p) and the vertex by one of the two forms

By,

Iy = F17" +22ﬁo“ 9 (14)
B o

Thy = (F + By = s 20+ 7). (15)

In the on-shell case the second vertex is obtained from the first using the
Gordon decomposition and they give identical matrix elements. The difference
between results obtained using these two vertex functions can be viewed as
a measure of the importance of off-shell effects {9, 10]. Moreover, since the
one-body current matrix elements corresponding to Eq. (14) and Eq. (15) are

192



not conserved,

qu a(p' T u(@) ~ (p° — P°)a(p’ )y ou(@) # 0, (16)

a wider range of results may be obtained by choosing to enforce current con-
servation by hand, e.g. by eliminating @(p')[°u(p) in favor of @(p’)[®u(p) or
vce versa. Using the vertices 15 and 14 with this last option results in the
so called ccl and cc2 prescriptions, which are widely used in the analysis of
electron scattering experiments. However, caution must be exercised when in-
terpreting coincidence A(e, e’ N)B measurements with a nucleon N detected
with large momentum compared to the typical Fermi momentum scale since,
at such (rather extreme) kinematics, the electromagnetic response functions
using the different prescriptions may differ by a factor of 2 or 3 [10].

Another often used prescription for the nucleon vertex operator was introduced
by Gross and Riska [11] and is given by

F(q*) .

o (17)

T.(¢*) = nFr(g*) + q;—f [1- A®)] + owme’
It also only involves on-shell information, the free Dirac and Pauli form fac-
tors, I} and F%, but has a more general Dirac structure. The second term on
the right-hand side of Eq. (17) vanishes when the vertex is evaluated between
on-shell spinors, but contributes when one or both are off-shell. It is easily
seen that this vertex satisfies the Ward-Takahashi identity when free Feyn-
man propagators are used for the nucleon. In pion electroproduction, this
prescription amounts to adding a contact term to the Born amplitude which
is needed to restore gauge imvariance [12].

The validity of these and other recipes can only be assessed on the basis of
a realistic microscopic calculation and will depend on the kinematics of the
process. Studies in the context of meson loop models have been performed e.g.
in Refs. [13-15]. In these studies the nucleon is “dressed” with a meson cloud
using pseudoscalar or pseudovector pion-nucleon coupling and computing the
half-off-shell vertex Iy yu(p) to one pion-loop level, that is, to O(eg?). Of
course, such a simplified model is not able to predict even the on-shell form
factors. However, it is reasonable to expect that the relative importance of
off-shell effects in this simple model is a good measure of what would happen
in a more realistic model. Typically effects of the order of 5 — 15% are found
for the dependence of the form factors on the variable p’.

Recently, off-shell form factors have been calculated using chiral perturbation
theory which is the effective theory of QCD at low energies. The nucleon elec-
tromagnetic form factor was calculated by Bos and Koch [15] and the pion
electromagnetic vertex was computed by Rudy et al. [16]. Scherer and Fear-
ing [8] have performed the pion form factor computation using two different
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chiral Lagrangians, related through a unitary transformation of the fields,
which leaves the observables unchanged. It was shown explicitly how in the
description of Compton scattering off a pion the off-shell form factors are not
the same while the observable on-shell form factor and the amplitude are the
same in the two representations. The investigations in Sec. II have in fact been
triggered by the findings of Ref. [8].

4 Sidewise Dispersion relations

A different approach for learning something about the off-shell vertex functions
was suggested by Bincer [2]. He showed, using the reduction formalism that
one may analytically continue both the electromagnetic and the strong nucleon
form factor K (g%, w) not only as a function of ¢* but also of the invariant mass
of the off-shell nucleon w = /p?. He showed that it is a real analytic function
of w with cuts along the real axis, starting at w = £(m + p.) and extending
to +oo. Furthermore, K (¢?,w) is purely real along the real axis in the interval
—(m+pr) <w < (Mm+py ). Thus, K (g%, w) satisfies dispersion relations, termed
“sidewise” to emphasize that the dispersion variable is now the nucleon four
momentum, w = /p?. Consider again the strong (i.e. pion-nucleon) vertex
with the pion on its mass shell, i.e. n K(m2,w). Assuming that |K(¢?,w)|
approaches a constant as |w| — oo, the once-subtracted sidewise dispersion
relation for K (g%, w) can be cast in the form [2]

|K(m2,w)| (w — m) /°° .
| K (m?2,m)| =&k ™ P J dw
Mm+tpn

[( $(w') L ¢(=w) ]} (18)

w —m)(w —w) (w+m)(w +w)

where ¢(fw) is the phase of A'(m?,w) along the positive (+) or negative (-)
cut. Thus, K (m?,w) can be determined if these phases are known. If | K (¢?, w)|
grows like |w|™ (n an integer) as w — oo, n+1 subtractions must be performed
which introduce the same number of a priori unknown subtraction constants
into the dispersion relation. The role of subtractions in the sidewise dispersion
method is important: since we only know K '(g%,w) at the on-shell point, w =
m, a need for more than omne subtraction will spoil any possible predictive
power. In cases where the vertex function is not known at the on shell point,
as e.g. in the case of the o electromaguetic vertex of the nucleon, even one
subtraction will destroy predictive power.

So far, dispersion relations just reflect amalyticity properties of Greens func-

tions and are void of any predictive power. This changes when one makes
use of unitarity constraints that provide additional relations between the real
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and imaginary parts of the Green’s function and therefore on ¢. The conse-
quences of unitarity for K (m2,w) may be obtained by looking at its absorptive
part which receives contributions from physical on-shell intermediate states.
Unitarity provides for K, which is now a vector.in the space of the different
reaction channels, the constraint [2, 17, 18].

ImK = FT'TFK* (19)

where F~! and F are phase space factors [6]. For the NN form factor, this
constraint can be written as

Im K (m3, w) = 0(jw] —m — pie)Tex (w) K7 (m3, w)
+0(lw| — wr)A(w) , (20)

where wr is the threshold energy of the first inleastic channel. The first term on
the right-hand-side of Eq. (20) arises from the intermediate pion-nucleon two-
body state and the second term represents contributions from intermediate
states with higher mass, e.g. 77N, N, KA, etc.

For w < wr, the last term in Eq. (20) does not contribute and one sees from
the above equation that the phase of the form factor for the 7 NN vertex, ¢,
= Arg(K,), is determined by the elastic 7N phase shift

2ReTrx )

_a_ 1 —1(
<151r—§"—-2t&m 1 —-2ImT,,

(21)
Thus, for w < wr, the experimental 7N phase shift allows one in principle
to calculate the vertex function, K(m2,w) from Eq.(18); since the phase shift
is a representation independent observable quantity, both the real and imag-
inary parts of the representation dependent off-shell form factor, ReK, and
ImK,, must change under a field transformation such that the phase, ¢, =
arctan (Im K, /Re Kz ), remains unchanged.

Above this threshold some assumptions must be made for the phase [2, 19, 17]
which may lead to quite different predictions for the half-off-shell form factor.
In Ref. [6] two such assumptions have been tested using a unitary model. It is
found that the validity of either approximation is model dependent and there-
fore neither may be trusted. Even in the hypothetical case of a single channel
system with no open channels, though, one faces the following puzzle: it seem-
s to be possible to determine the phase ¢ and thus also the function K(w)
for the off-shell vertex in a model independent fashion using the observable
phase shift of the on-shell T-matrix. This appears to be in contradiction with
the observation in Section II that the off-shell form factor changes when we
carry out field transformations. How can this be reconciled with the sidewise
dispersion relations that express K(w) in terms of observable quantities?

The answer lies in the fact that in the sidewise dispersion relation approach
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the number of necessary subtractions is a priori unknown. Indeed, differen-
t choices of the nucleon interpolating field will in general lead to different
asymptotic behaviors of the off-shell form factor. The examples given in Sec-
t. II illustrate this point. From Eq. (7) we see that K(w) is of order O(1)
as w — 00. On the other hand, the vertex function, Eq. (8), obtained from
the transformed Lagrangian, is of order O(w) at infinity. Thus, the “represen-
tation dependence” in sidewise dispersion relations shows up in the a prior:
unknown needed number of subtractions. As previously remarked, any predic-
tive power of the sidewise dispersion relations method will be lost if two (or
more) subtractions are necessary since we only know the form factor at the
physical point w = m.

As dispersion relations do not depend on a particular Lagrangian, it is useful
to look at the above discussion for the vertex function K in a different way
and to contrast it with the dispersion relations in ¢? for the pion—nucleon
scattering amplitude. Consider the unitarity constraint, Eq. (19): evidently,
it remains valid under the replacement K — f(w)K, where f(w) is a real
function of w, reflecting a different off-shell behavior. If f(w) is a polynomial
in w and one has f(m) =1, then the analytic properties of K are not changed
and K still satisfies a dispersion relation. However, in general (additional)
subtractions will be needed, and these subtractions have to be done at an un-
physical points, w # m, and therefore cannot be done model independently.
When using the dispersion relation approach for the T-matrix, we also may
need subtractions to make the integrals converge. However, for this purpose
we can do these subtractions at different energies where we have experimental
information about the T-matrix. In some cases, this makes it possible to de-
termine the pion-nucleon T matrix at an unphysical point through dispersion
relations, while the off-shell form factors can never be uniquely determined.
Notice also that our discussion does not imply that dispersion relations for
the electromagnetic form factor, with the momentum transfer ¢ as the dis-
persion variable, show any representation dependence. In this case the form
factor F'(¢?) can be measured for a number of values of the four momentum
transfer, ¢%.

5 Summary

In many interesting nuclear physics processes such as electron-nucleus scatter-
ing, Compton scattering, pion photoproduction etc., nucleons may also appear
as intermediate, virtual particles, off the mass shell. The operator structure, as
well as the functional dependence of the vertex function on the available kine-
matical variables are much richer for vertices involving such off-shell hadrons.
Generic field theoretical arguments suggest that these off-shell vertices cannot
be uniquely determined. We have elaborated on this point using simple pion
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nucleon Lagrangians and transforming the nucleon field. We have mentioned
some of the attempts that have been made to mclude off-shell effects in theo-
retical calculations. Unfortunately, simple meson-loop models are inadequate
for obtaining a realistic description of vertex functions. Thusly, one has to re-
sort to phenomenological prescriptions that are supposed to give an estimate
of the systematic uncertainties that off-shell effects introduce in the interpeta-
tion of experiments in medium energy physics. However, the non-uniqueness
of off-shell effects renders this approach dubious. A different aproach pursued
in the literature is to use sidewise dispersion relations that relate the off-shell
vertex functions to observable quantities such as pion-nucleon phase shifts.
Apart from shortcomings related to the influence of inelastic channels, there
is a more fundamental problem with this method, which has been overlooked
in the past: if off-shell vertex functions are not unique, how is it possible
that using sidewise dispersion relations they may be obtained from observable
(and therefore uniquely defined) quantities? We have shown that the answer
lies in the fact that under field redefinitions the number of required subtrac-
tions changes and the predictive power of sidewise dispersion relations is lost.
Based on our discussion, we conclude that in practice sidewise dispersion re-
lations cannot provide reliable and unique information about the structure of
off-shell nucleons. The off-shell vertex, which has a much more complicated
structure than the free vertex, thus cannot be extracted from experimental
data, but should instead be consistently calculated within the framework of a
microscopic theory. Such a calculation will yield the dressed off shell vertices
and the concommitant contact terms. The proper interpretation of future high
precision measurements of intermediate energy processes depends crucially on
our ability to carry out such consistent calculations in realistic microscopic
models.
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