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Abstract

The nucleon momentum and density distribution of the 4H e nucleus are calculat-
ed by using the Morse single-particle potential. The parameters for the momentum
distribution n(k) are determined by fitting either the charge form factor to the avail-
able experimental data of the elastic eectron scattering by 4He or the momentum
distribution to the corresponding "experimental” values. The calculations can be
performed partly analytically and the results show a considerable overall improve-
ment with respect to those obtained with the oscillator shell model. The r.m.s radius
of the charge density distribution determined by fitting the charge form factor is
in very good agreement with the values obtained by means of model independent
analysis.

1 Introduction

The nucleon momentum distribution 7(k) in *He [1-3] has received consid-
erable attention by quite a number of authors who used various theoretical
approaches. One of the main reasons is the simplicity of this nucleus. More-
over, *He is one of the very few nuclei for which ”experimental” values of 7(k)
are available [4] so that there is a means of checking out each method.

Among the methods which have been used in calculations of the momentum
distribution of nuclei, those based on many-body techniques are usually the
most satisfactory ones. They are, however, more complex than those hased on



single particle models. As is well known, the disadvantage of the latter is that,
one cannot fit with such a model both the form factor and the momentum
distribution. Thus, if the parameters are determined by fitting the theoretical
charge form factor to the corresponding experimental results, the values of
the momentum distribution are not expected to agree well with the experi-
mental values of n(k). Nevertheless, the choice of the single particle potential
seems to play an important role in improving the results and diminishing the
above mentioned discrepancy between the calculated and experimental val-
ues of n(k). This is clear if a strong short range repulsion is included in the
potential. If for example a potential of the form [5]

1, B
V(T)=~V0+§I\.T +r—2, 0$T<DO (1)

k>0, B >0is used, then a considerable improvement is mostly observed
not only for the form factor but also for the momentum distribution.

A characteristic of potential (1) is that it has an ”infinite soft core” near
the origin, which seems to be an extreme. It is more natural to expect that
there is a repulsion in the single particle potential near the origin, as for
example relativistic Hartree calculations indicate, but not with an infinite
behaviour near the origin. Thus, a potential of the Morse type [6-12 | which,
as is well known, has many applications in Physics, might be appropriate
as a first approximation to the single-particle potential of a light nucleus.
The disadvantage is that the Schrodinger eigenvalue problem can be solved
analytically only for the s-states for this potential. Therefore, it is not so
convenient to use for heavier nuclei if one wishes to take advantage of its
analytic properties.

In the next section the notation is specified and basic formulae regarding the
Schrodinger eigenvalue problem with the Morse potential are given. In section
3, the expressions of the density distribution and its m.s. radius, the form

factor and momentum distribution are given. The final section is devoted to
the numerical results, comments and conclusions.

2 The exact and approximate single-particle s-state wave func-
tions

The well-known Morse potential is given by the following expression [6]:

V(r) = D[e—zu(r—ro) _ 2e~a(r—ro)] =-D+D[1- e—u(-r—ro)]Z’
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0<Lr<oo. (2)

It has its minimum value (—D) at r = ro, tends assymptotically to zero as
r — oo and is repulsive near the origin taking the value De?0 (1 — 2e7%70) at
r = 0. The corresponding radial Schrondinger equation for the s-state wave
functions @no(r) = rRyo(r), may be written in the form [7,8]

d*,, dd,, B2 1
Pt et Ty e =0, @)
where
gt = _;,_/:E’ 7= %D =d%* and y= 2—76—0&_"’)’ (4)
a

The differential equation (3) has singularities at y = 0 and y = oo. By setting
(in view of the asymptotic behaviour at the boundaries):

buo(y) = y*"e VF(y), ()
one obtains a differential equation for F(y)

yF'"+(c—y)F' —AF =0, (6)
where
c=%+l, A:lc—l. (7)
a 2 a

Eq. (6) is of the standard form of the confluent hypergeometric differential
equation with the exact solution

F(y) = Ano - 1F1(X;69) + Buo - ¥y 1 Fi(A —c+ 1,2 — ¢ ). (8)
To satisfy the boundary condition ¢,o = 0 for r — oo or y = 0, the constant

B, is bound to vanish since the exponent of y is negative. So, the exact wave
function becomes:

bruo(y) = Anoy®e V2 Fi(A; ¢ y). (9)
The constant A, is to be fixed by the normalization condition.

The second boundary condition, ¢,o =0at r =0, or y = yo = %}e‘"U leads to
the following transcendental equation for the energy eigenvalues:
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1F1(A;¢;,90) = 0. (10)
Equation (10) has to be solved numerically in order to determine the bound
s-state energies and subsequently the corresponding eigenfunctions.

An approximate analytic expression for the energy eigenvalues E,o may be
obtained [7,8] from (10) if yo turns out to be sufficiently large so that one
can use the asymptotic expression of ; F;. Such a condition is reasonably well
satisfied for the numerical values of the parameters of the Morse potential,
typical for the *He nucleus, when these are determined by fitting the charge
form factor (see last section). It should be also noted that the case of very
large yo(yo — o0) leads to the same eigenvalues which result if the boundary
condition was not ¢,(0) = 0 but ¢n(—o0) = 0. Therefore the condition
that yo be very large leads to eigenvalues E,, which are the same as those
appearing in the corresponding one-dimensional eigenvalue problem. In view
of the previous remarks we may write

I'(c
1Fi(X, 6 90) ( )e""yé"’ =0 (11)

Therefore I'(A\) = 0o and A = —n, n =0,1,2,... Consequently, the approx-
imate energy eigenvalues are given by the expression: (derived originally by
Morse [6]):

i? h? 1, hwd

NS - PR 1 2 _ =l T _:!'_2
Ey= g% = 8ﬂa(2d 1-2n)" = —D+hwo(nt3)— 7 (n+2) (12)

where the integer n is in the interval 0 < n < (3‘%'-1) and wp is the angular
frequency of the classical small vibrations around rg:

2D
wo = a(=—)!/? (13).
%
In the present case the analytic expression of the corresponding eigenfunctions

is simplified since the confluent hypergeometric function in (9) becomes a
polynomial. Thus we obtain

¢no(1') - Nnoe_,de-n(r—ro)e—%(2d—l-—2n)('r—ro) . L:d—l—?n(zde—a(r—-ro)) (14)’

where the normalization factor Ny is given by

Npo = [Ano(2d) 5412011 (2d — 2n)/T'(2d — n)]
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and the gemeralized Laguerre Polynomials L’(y) are defined by Li(y) =
e“’%%e“’y“*s It should be noted that this definition of L, which is the
more commonly used, differs somewhat from that used by Morse [6].

The approximate ground-state radial wave function in which we are interested
here is given by the expression:

foolr) = Nepe=e~ 0= 34-Drr0) (15)

where the normalization constant Ny is expressed in terms of the parameters
a and d as follows:

a(zd)2d -1 l_

 =[fa =1 (16)

In the present calculations we are using both, the exact and the approximate
solutions of eq. (3).

3 Expressions for the density distribution, the form factor and
the nucleon momentum distribution in *He.

In this section we give the expressions of the density distribution, its m.s.
radius, the form factor and the momentum distribution of ‘He.

The normalized to unity (f p(r)d®r = 1) density distribution in the single
particle model is given by the general expression [1]

) = gz s 23 + DIRus )P an.

Thus, in the case of the *He we have simply (Roo1/2 — Roo)

1
(r) = 5| Roo(r) (18)
The point-proton form factor in the Born approximation and for spherically
symmetric p(r) is:

smqr

F@) =t o)y dr (19)

In the case of *He we have
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singr

F@) = [ 1B (Zo e (20)

The proton form factor is introduced using the Chandra and Sauer parametriza-
tion [13]

2

3 _a";vq
fole) =3 Ape™ ¢ (21)
where
Ay, = 0.506373, A, = 0.327922, A,, = 0.165705
and

a2 =0.431566 fm* a2 = 0.139140fm’ a2 = 1.52554fm’

The center of mass correction in the Form Factor of * He is taken into account,
using the "fixed center of mass correction” of Radhakant-Khadkikar-Banerjee
[14]. Thus, the expression of the form factor corrected for the center of mass
motion is:

by = JPWF(F+ @) ()

Therefore the theoretical expression for the charge form factor is:
Fen(q) = f(g) - (q) (23)

The normalized to unity nucleon momentum distribution [n(k)d*k = 1, for a
nucleus, in the single particle model is given by the general expression [1] :

1(8) = 7 T (25 + 1)l R (B (24)
where
By (B) = () P2(=i) [ (k) B () (25)

Thus, in the case of the * He we have simply:
- Ym e
oK) = | Rn(8) (20)

92



where

Roo(k) = (%)1/2 / :odrrzjo(kr)Roo(r) - (27).

The m.s. radius of the density distribution is calculated from the formula

f&rip(r)d3r

<ri>= =
I3p(r)dr

(28)

The above formulae if the approximate wave-function of the Morse potential
is used, read as follows for *He

1 1 .a(2d)*1  pematr—ro) _q2a 1)(r=ro)
_ L Llaled) e a(2d-1)(r—r 9
o(r) 4r r2 T(2d — 1)16 ¢ #9)

2d-1 0o
F(g) = 3[‘383) 1)]/ %drsz’n(qr)e‘“"'“""”e"“‘”“’("”’ (30)
- 0
1 a Zd 2d-1 ] . —de—alr—r —a(d— LY (r—-r,
108) = s o [ drsinlr)emt " emsu-Re o

The integrations in (30) and (31) are performed numerically.

4 Numerical results, comments and conclusions

Calculations of the form factor, the nucleon momentum distribution, the point-
proton (or body) and charge density distributions and their root mean square
radii were performed for *He using the exact as well as the approximate so-
lutions of the Schrodinger equation. In these calculations the center of mass
correction was taken into account either by using the Radhakant-Khadkikar-
Banerjee (RKB) correction, in which case in the formulae the ordinary nu-
cleon mass m is used or by using simply the reduced mass u. The potential
parameters were determined by the least-squares method either by fitting the
theoretical expression of the charge form factor to the experimental data or
by fitting the theoretical expression of the momentum distribution to the cor-
responding "experimental” data. We note that some preliminary results by
fitting the charge form factor of *He (calculated with the Morse potential) to
older experimental data have also been reported in ref. [9].
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In fitting the charge form factor the following cases were considered which
led to the corresponding best fit values for the potential parameters (given in
brackets):

Case I: The exact wave function was used in calculating the form factor and
the RKB method for the center of mass correction (a = 1.5501fm~!, d =
1.2262 (D = T4.9MeV), ro = 0.9216 fm).

Case II: The approximate wave function was used and the RKB method
for the centre of mass correction (¢ = 1.6897fm~!, d = 1.113¢ (D =
73.4MeV), ro = 0.9095fm).

Case III: The approximate wave function was used with the reduced mass,
while in the previous cases the nucleon mass m was used instead of p (a =
1.5476fm=!, d=1.4785 (D = 144.TMeV), ro = 0.8822fm).

In fitting the momentum distribution the following cases were considered (us-
ing the reduced mass):

Case a): The exact wave function was used in calculating the momentum dis-
tribution (a = 2.2563fm™!, d =1.0215 (D = 146.9MeV), ro = 0.3195fm).

Case b): The approximate wave function was used (¢ = 2.1427fm"!, d =
0.8928 (D = 101.2MeV), ro = 0.5321fm).

It is seen from the above results that usually the best fit values of the param-
eters a and ry do not differ very much in each set of the above cases. There
is, however, a more pronounced difference if the comparison is made between
‘the corresponding best fit values of the first and the second set. It should be
also noted that the value of 1 (see section 2) is considerably smaller in case
a) than in case L
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Fig 1.The charge form factor of *He for various cases (see text)

In figure 1, the variation of log|F.4(¢)| with ¢? for He is plotted for the cases
I, II, and III, mentioned above. The corresponding curves are, FFE, FFA and
FFRM, respectively. In the same figure the experimental data are shown by
crosses. We notice that all three curves fit the experimental data well. In the
same figure the results obtained calculating the form factor by using the best
fit values of the potential parameters determined by fitting the momentum
distribution are also shown. Thus, using the best fit values given in case a)
above, the curve MDE is obtained. Using the best fit values given in case b),
the curve MDA is obtained. We notice that the results are not good. This is
a manifestation of the statement that one cannot fit simultaneously with a
single-particle model, the form factor and the momentum distribution. Also,
in the same figure we give the results obtained using the harmonic oscillator
potential with potential parameter b = 1.432 fm determined by fitting the F,
(curve HO). This is in fairly good agreement with the experimental data at
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the small values of the momentum transfer, as is well known.

k(fm™)

0.0 4.0 8.0 12.0 16.0
0.0 rTrrrrrrryrrrrrrrrrr T rrr T T T T r T rrTo

-4.0

logn(k)
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-12.0

[rrrrororrT TTTrTrrrrrrrrrrrrrr T rrrTorrTroryg

-16.0

Fig 2.The nucleon momentum distribution of “He for various cases (see text)

In figure 2, the variation of the logn(k) with k in *He is plotted for the cases
a) and b), mentioned above. The corresponding curves are MDE and MDA,
respectively. In the same figure the "experimental” points are shown by aster-
iscs. We see that both curves are in good agreement with the "experimental”
data in the region where these results are known. The theoretical curves de-
viate from each other for the higher k£ values as one should expect. In the
same figure, the results obtained calculating the momentum distribution, by
using the best fit values of the potential parameters determined by fitting the
charge form factor, are also shown. Thus, using the best fit values given in case
I above the curve FFE is obtained, while using the best fit values given in case
IT above the curve FFA. Also, in the same figure we give the results obtained
using the harmonic oscillator potential with b = 1.432fm (curve HO(a)). It is
seen that for the lower values of the momentum the agreement with the "ex-
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perimental” data is not bad, but for the larger values there is the well known
unrealistically steep decrease of #{k). The situation is considerably improved
if bis determined by fitting the n(k) (see curve HO(b)) but the overall fit is
still less satisfactory than that of MDE.

The body and charge density distributions of *He were also calculated using
the exact and the approximate wavefunctions with the potential parameters
indicated in cases I and II. The corresponding curves are shown in figure
3. In this figure pp.(r) is the body density distribution obtained using the
exact wavefunction with potential parameters given in case I, while pp,(r) is
the body density distribution using the approximate one with the potential
parameters given in case II. p.(r)(e) is the charge density distribution using
the exact wave function with potential parameters given in case I and p.(r)(a)
is the charge density distribution using the approximate wavefunction with
potential parameters given in case II.

0.06
: pCh(r) (esa)
— ]
¢ C
g I
- -
8 =
X 0.04
L
0.02
-
i
0.00—llII\\\V(LIJL‘JI‘\IL]LI]I|| I I R O (R U |
0.0 1.0 2.0 3.0 4.0
r(fm)

Fig 3.The charge p., point-proton (body) pp density distributions of *He ob-
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tained with the exact (e) and the approximate (a) wave functions.

It is seen that the analytic approximate expression for pp,(r) is in good agree-
ment with the exact one except for a small region near the origin r < 0.2fm.
The pronounced dip of the point-proton density at small r is expected. It is
due to the short range repulsion of the Morse potential. This is largely smeared
out in the charge density because of the proton charge density.

The root mean square radii of these distributions are respectively :
<r? >Y% (pp.(r)) = 1.651 fm

< r? >Y? (pg,(r)) = 1.665fm
<12 >Y% (p(r)(e)) = 1.668fm
<2 Y% (p(r)(a)) = 1.678 fm

In conclusion, let us summarize the main results of the present investigation:

1) The Morse approximate analytic ground state single-particle wave function
of the *He nucleus, when the parameters are determined by fitting the Fi.,(q),
agrees fairly well with the corresponding (semi-analytic) exact one, except
for a small region near the origin. This has the effect that certain quantities
calculated with the approximate wavefunction such as pg(r) and n(k) differ
substantially, at small r and large k, respectively, from the corresponding
values obtained by means of the exact wavefunction. However, this is not the
case for the p.(r) and the log|F.1(q)|.

2) Although we can not fit simultaneously the form factor and the momentum
distribution, because as is well known a single-particle wave function can not
achieve this, considerable overall improvement is observed in comparison with
the results obtained with the harmonic oscillator wave function.

3) The < r? >1/2 of the charge density distribution is compared favourably

with the values 1.671 fm and 1.696 fm obtained with model independent anal-
ysis [15].
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