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Abstract 

The effect of short range correlations on the Ca and 0 isotopes has been studied 
by using an isospin dependence of the harmonic oscillator spacing, %ω and of the 
correlation parameter. The analysis indicates that short range correlations as well 
as the isospin dependence of the parameters are important to explain the behavior 
of the differences of the MS charge radii and the differences of the charge densities 
between the Ca and the Ο isotopes. 

1 Introduction 

The Calcium isotopes are of special interest as they are the first long chain of 
experimentally accessible isotopes in the periodic table and they are bounded 
by two nuclei, mCa and ^Ca, with closed-shell configurations that are suitable 
for theoretical calculations. The RMS charge radii aie very irregular compared 
with the global A1/3 variations. The isotopie shift is characterized by the fact 
that the two double magic nuclei have almost the same RMS charge radii while 
electron scattering experiments have revealed that the charge distributions are 
not identical [1,2]. It has been observed also that the charge radii of the even 
Ca isotopes increases with the addition of neutrons up to the first half of 
the neutron I/7/2 shell and then decreases while the odd Ca isotopes have 
always smaller radii than neighboring even ones [3,4]. Although the η — ρ 
interaction is behind the modulation, it is not clear how the interaction affects 
the systematics of the observed isotopie shifts. For the above reasons the study 
of the Ca isotopes is an important test of nuclear theories to see whether this 
microscopic structure can be understood. 



Hartree - Fock calculations which reproduce the average variation of RMS 
charge radii against A cannot reproduce the variation beyond shell closures 
[5]. Brown et al. [6] calculated the charge distribution of the Ca isotopes using 
a Woods-Saxon state dependent potential with a density dependent symmetry 
potential which was determined in a self consistent way and using non integer 
occupation probabilities for the lo?3/2, 1/7/2» and 2p3/2 states. Bhattacharya 
et al. [7] using an average one-body potential of Woods-Saxon type and ex
perimental occupation probabilities, have reproduced the parabolic variation 
of the charge radii of the Ca isotopes. Barranco and Broglia [6] were able to 
explain the parabolic variation of the MS charge radii introducing collective 
zero-point motion. Finally, Zamick [9] and Talmi [10], in analogy with the 
binding energies, assumed that the effective radius operator has a two body 
part as well as one-body part. They were able to explain the odd-even stag
gering effect observed in Ca isotopes assuming that a mechanism which gives 
rise to this odd-even variation is the polarization of the core by the valence 
neutrons. 

Similar behavior with that of Ca isotopes has been observed in the Ο isotopes: 
1 6 0 , 1 7 0 , 1 8 0 [11]. Brown et al. have studied these nuclei in the same way as 
the Ca isotopes using various occupation probabilities for the 1̂ 5/2 and 2si/2 
neutron and proton particle states. 

From many theoretical works [6,7,12,13,14] it is clear that the occupancies of 
the single particle states play a crucial role in determining the charge distri
butions of the Ca and Ο isotopes. On the other hand it is known that short 
range correlations (SRC) due to hard collisions between nucléons at relative 
distances smaller than about 0.5/ra may result in a scattering of the nuclé
ons into states of higher energy up to 1 GeV. Calculations for nuclear matter 
including SRC have shown [15,16] that the depletion of the otherwise filled 
orbital is 10 — 20%. The effect of SRC on the occupation numbers of the shell 
model orbits in light nuclei have been studied in ref. [17,18]. 

In a series of papers [19,20,21], correlated charge form factors, Fch(q), and 
densities of s-p and s-d shell nuclei were calculated by using correlated wave 
functions of the relative motion and the factor cluster expansion of Ristig, 
Ter Low, and Clark [22,23]. The parameters of the method were calculated 
by fitting the theoretical values of Fch(q) to the experimental ones for the 
corresponding nuclei. 

The aim of the present work is to examine whether SRC can reproduce the 
behavior of the charge distributions of the Ca and Ο isotopes. That is to 
see the importance of the SRC on the isotopie shifts, even if it is known 
that other effects, in particular ground state correlations [8], contribute to the 
charge dencities. In the present approach these effects are hide (in a way) in 
the values of the parameters of the model as they are determined from the 
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systematic of the MS charge radii of the isotopes. In other words, by choosing 
the SRC parameter in order to reproduce the systematic of MS charge radii of 
these isotopes [3,11], we examine if the difference of the charge distributions 
between the isotopes agree with the experimental data [1,2,11]. 

In Sec.2 the relevant formalism of SRC is presented and an approximate ex
pression of the MS radius as well as the dependence of it on the extra neutron 
number of the isotopes are given. In Sec.3 an isospin dependence of the correla
tion parameter is found using an isospin dependence of the harmonic oscillator 
(HO) energy spacing [24], Λω, as well as the experimental difference of the M-
S charge radii between the isotopes. In Sec.4 the results of the method are 
presented and discussed. Finally Sec.5 summarizes the conclusions. 

2 Correlated charge form factor, densities and MS radii for the 
Ca isotopes 

An expression for the charge form factor Fch(q) of 1 β 0 and 40Cct nuclei was 
derived [19,20] using the factor cluster expansion of Ristig, Ter Low and Clark 
[22,23] and considering normalized correlated wave functions of the relative 
motion which were parameterized through a Jastrow type wave function of 
the form: 

^nis(r) = Nnls[l - exp(-Ar2/62)]^n /(r) (1) 

where Nnis are the normalization factors, b = y/2b\ (b\ = Jîi/τηω) and </>n/(r) 
are thé HO parameter and wave functions of the relative motion. The expres
sion for F(q) is of the form: 

F(q) = F,(i) + F2(q) (2) 

Fi(q) is the contribution of the one-body term to F(q), which for nuclei up to 
\d2s shell is written: 

ί'.(«) = ί « ρ [ - ^ ΐ Σ ^ ( ι 2 ) " (3) 

where 

No = 2(ι/!, + r/25 + 3τ/1ρ + 5Vu) , N2 = - f ( 2 ^ + 3η1ρ + 10T/1C/) 

(4) 

iV4 = !(47?2e + 87/l£i) 

ηηι is the occupation probability (0 or 1 in the present case) of the nl state. 
F2(q) is the contribution of the two-body term to F(q) and is a function of q2 
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through the matrix elements: 

A$sS'(jk) = < Vws|jfc(çr/2)|VVi'S' > 

It consists of simple polynomials and exponential functions of q2 [19,20,21,25]. 

The correlation parameter λ and the HO parameter b\ were determined by 
fitting to the experimental data of Fch(q). From (2) the charge density, pch{r), 
of the closed shell nuclei 4He,i60 and ^Ca can be found by Fourier trans
forming of Fch{q) = fp{q)fcNf(q)F(q)· fP{q), fcM{q) are the corrections due 
to the finite proton size [19] and the centre of mass motion [27] respectively. 

The correlated proton density and the k moments of the density are separated 
out into two parts: 

P{r) =pi{r) + p2{r) (5) 

< r

k > = < rk >i + < rk > 2 (6) 

where p\(r) and P2(r) are the Fourier transforms of F\(q) and Fi(q) respec
tively and < rk >i and < rk > 2 are the contributions of pi(r) and P2{r) to 
the various moments of the density. 

An advantage of using HO wave functions and Jastrow wave functions of type 
(1) is that many calculations can be made analytically and also approximate 
expressions of the two body term of various quantities can be found if we 
expand the expression of the form factor in powers of λ and keep powers of 
λ up to —3/2. The approximate expression for the MS charge radius for the 
above mentioned nuclei is [17]: 

< r 2 > c f c « C„o(l - j)b2 + CsRcb\\-W + r 2 + ^r\ (7) 

where CHo = 3, CSRC = 12.4673 for *>Ca and CHo = 2.25, CSRC = 7.1775 
for 1 6 0 . r 2 , r 2 are the proton and neutron MS charge radii respectively. In 
what follows, the simplified notation r 2 is used instead of < r 2 >c/» . 

If the correlation parameter: 

is used, then expression (7) is written: 

r 2 « CHO(l - \)b\ + CSRC^ + r 2 + ^ r 2 (9) 

As the isotopes of an element have the same number of protons we assume 
that the correlated form factors, densities and moments of these isotopes are 
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described by the same formulae (2), (5), and (6). The only difference will 
be the different values of the parameters b\ and μ for each isotope. These 
parameters could be found if the experimental form factors for all the isotopes 
were known (for large values of the momentum transfer). As these are not 
known we will try to find an isospin dependence of the parameters b\ and μ 
in order to reproduce the known experimental data of the differences of the 
charge MS radii [3,11] and the available differences of the charge densities 
between the various Ca and Ο isotopes [1,2,11]. 

Expression (9) can be written in the following way: 

r2(Ac + n) « CHO(1 - ~A~)fo (A<) + 6bMc + n)]2 + 
Ac -j- η 

\μ(Α„) + iß{Ac + ηψ Λ Α„-Ζ + η_2 

CsRcb,(Ac) + SbMc + n) +"' + Ζ Γ» ( 1 0 ) 

where η is the number of extra neutrons in the Ac + η isotope and Ac is the 
mass number of the core nucleus. 

Expanding this expression in powers of 8b\ and δ μ and keeping up to first 
power of 8b\ and δ μ, we have: 

<5r2(Ac + n) = r2(Ac + n) - r2(Ac) « 

Cb6bi(Ac + η) + Ομδμ(Αΰ + η) + 

Ac + n 

where 

+ yn (m 

Cb = 2CHob\{Ac) — CSRC ,o/ Α ι ι Ομ = 3CsRCT~rrT O-ty 
0\{AC) oi{Ac) 

The term in brackets in the right hand side of expression (11) comes from 
the correction of the center of mass motion while for the MS charge radius 
of the neutron the value: r\ = — 0.116/m2 [26] has been used. The values of 
the coefficients Cb and (7μ for the Ca and Ο isotopes will be found from the 
values: &i(40) = 1.860/m, μ(40) = 0.499/m and 6i(16) = 1.679/m, μ(16) = 
(X470/m which are known from the fit of Fch{q) of *>Ca [20] and 1 6 0 [19] to 
the experimental data. 

Because the isotopie shifts come from the different number of the neutrons 
above the core-nucleus, <S6i(Ac + n) and δμ(Α0 + η) should depend on this 
number. In the next section we will try to find an isospin dependence of these 
quantities using an isospin dependence of Άω from a recent work of Lalazissis 
and Panos [24] and from the experimental values of 6r2(Ac + n) for Ca [3] 
and Ο [11] isotopes. E these expressions of 6b\{Ac + n) and δμ(Αα + η) can 
be found, then the parameters b\ (Ac + n) and μ(Ac + n) will be determined 
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from the known values of b\ (Ac) and μ(Αα). In the end, the form factor and 
the densities of the Ca and Ο isotopes will be calculated from (2) and (5) 
respectively. 

In the above procedure there is only one parameter for each isotope, the cor
relation parameter μ(Α€ + η) (or δμ(Α€ + η)) which is determined from the 
known values of 6r2(Ac + n). The other parameters bi(Ac) and μ{Α0) (for 
Ac = 40 and 16) are known from the fit of Fch(q) to the experimental data, 
while the parameter bi(Ac + n) is determined in sections 3 and 4 from known 
expressions of Κω. 

3 Isospin dependence of the parameters b\ and μ. 

An interesting problem of nuclear physics has been the dependence of the HO 
energy spacing, %ω, with the mass number. This parameter gives an estimate 
of the lowest energy level spacing and its variation with the number of neutrons 
and protons. It represents also the average trend in the variation of the shape 
of the self consistent nucleon-nucleus potential as function of Ν and Z. There 
are various expressions for %ω as function of A. See for example references 
[28,29,30]. Lalazissis and Panos [24] have recently determined %ω as function 
of Ν and Ζ based on a formula for the nucléon charge radius, which was 
proposed in ref. [31,32], reproducing well the experimentally available RMS 
charge radii and the isotopie shifts of even-even nuclei. Their expression of %ω 
is: 

%ω = 38.6/Γ 1 / 3 [l + 1.646Λ-1 - 0.191(JV - Z)A _ 1 ]~ 2 (13) 

From (13) an expression of the HO parameter b\ = yÄ/moj, depending on iV 
and Z, can be found straight forwardly: 

6i = J—-jL=Ai/e [l + 1.646Λ"1 - 0.191(iV - Z)A~X] (14) 

This expression, in the region of the isotopes of an element with mass number 
A = Ac + η is written as follows: 

6^ + ">=Ê&/e 

(1 + τΟ 
n \l/6 

1 + ̂ ( 1 + | . Γ ΐ _ ο . 1 9 1 Α ( 1 + » φ ) 
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Expanding this in powers of n/Ac and keeping the first three powers of it, we 
have: 

6bx(Ac + n) = bi(Ac + n) - 61 (Ac) ~ βχη + ßw2 + ß3n
3 (16) 

The values of the coefficients βχ, βι and βζ for Ac = 40 and Ac = 16 are given 
in table 1. 

If we substitute equation (16) into (11) an η dependence of δμ(Α0 + n) can be 
found. This is: 

δμ(Α0 + η) = μ(Α0 + η) - μ(Α0) 

1 

Cu 

6r2(Ac + η) - CrfbxiAc + η)-

6l(Ac) / 72 

^TTÌÌÌ"^-26"^^^^ (17) 

From the known experimental values of 8r2(Ac +n) the correlation parameter 
μ{Α0 +n) can be obtained from the above expression of δμ(Αα +«) · δμ(Α0 +n) 
depends on the parameter μ(Α0) through the coefficients Cb and Cß given by 
expressions (12). 

The same analysis can be made using various expressions of %ω which are given 
in literature. This would be a check for the validity of the given expression 
of Ηω in the region of nuclei we examined. Also, the Zamick-Talmi expression 
[9,10] for 6r2(40 + n), which reproduced the experimental differences of MS 
charge radii, can be used for the Ca isotopes. This expression is: 

£r2(40 + n) = nCz + " ( " l ) Az + Bz 
(18) 

where the coefficients C 2, Az and Bz and the quantity | | | are given in ref. 

[10]. 

If we substitute equations (18) and (16) into (17) the expression of δμ(40 + η) 

becomes: 

£μ(40 + η) = μ(40 + η) — μ(40) ~ μχη + μ 2 η 2 + /«3«3 + μ* (19) 

The values of the coefficients μι (i = 1,2,3) for the Ca isotopes, which are de
pended on the coefficients of the Zamick-Talmi expression and the coefficients 
Cb and Cßi are given in table 1, while the coefficient μ4 = 0.0468/m. 
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4 Numerical results and discussion 

The method described in section 3 has been used to find the isospin depen
dence of the correlation parameter μ in the Ca and Ο isotopes using various 
expressions of Κω. Some of the expressions of Κω, we have used, aie the one 
given by expression (13) as well as the following: 

Κω = 35.6A1/3 

Κω = 45A-1 '3 - 25Λ-2 '3 (21) 

Κω = 38.87Λ"1/3 - 23.24Λ"1 (22) 

from réf. [24,30,29] respectively. The last two expressions are isospin indepen
dent. 

The values of the coefficients /?,· (i = 1,2,3) of equation (16) (for the Ca and 
Ο isotopes) and μ, (i = 1,2,3) of equations (19) (for the Ca isotopes) using 
the above expressions of Κω are given in table 1. In this table, the various 
expressions of Κω are marked Cases 1 to 4 in the order they have mentioned 
before. 

The parameters bi(Ac + n) and μ(Α0 + η) for the Ca and Ο isotopes can be 
found from equations (16), and (17) using the coefficients ßi from table 1, 
the experimental 6r2(Ac + n) [3,11] and the known values of the parameters 
b\(Ac) and μ(Α0) of the core nuclei ^Ca and 1 6 0 . The values of 6χ(Λ0 + n) 
and μ(Α0 + η) for the Ca and Ο isotopes and for three cases are given in 
table 2. From these values of the parameters 6i and μ, the charge densities 
and the MS charge radii as well as the difference between these quantities can 
be found through equation (5) taking into account the corrections due to the 
finite proton size and the centre of mass motion. 

The calculated differences of the MS charge radii for the Ca isotopes and for 
Cases 1 and 3 of Κω, using expression (11) and the experimental values of 
6r2(40 + n) in expression (17), are shown in Fig.l. All the used expressions of 
Κω give the correct behavior of 6r2(40 + n). The better results, that is the 
better χ 2 , correspond to Case 1 where the isospin dependence of Κω is used. 
The results of cases 2 and 4 which are not included in the figure are almost 
the same with the results of Cases 1 and 3 respectively. The same is true when 
the Zamick-Talmi expression is used for £r2(40 + n) in expression (17). 

Even if the correct behavior of f>r2

heory(4Q + n) is expected, as the correlation 
parameter μ(40+η) is found from the values of Κω(40-\-η) and the experimental 

5.31 + 0.6 (1.217Λ1/3 - Η 5 Ϊ - 1 . 0 4 7 ^ ^ ) 
— 1 

(20) 
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Table 1 

The values of the coefficients ßi(i = 1,2,3) of equation (15) for the Ca and 0 isotopes 

and μι{ί = 1,2,3) of equation (18) for the Ca isotopes calculated for various expressions 

of hw. The coefficients in Cases 1 to 6 correspond to the expressions of ΐιω (12), and 

(19) to (23) respectively. In Case 7 the values of the coefficients /?,· are the mean values 

of the Cases 6 and 7. ßi and μ; in fm. 

Isotopes Case β\ ßl ßz μι μι μ* 

Ca 

0 

1 

2 

3 

4 

5 

6 

7 

1 

2 

3 

4 

-0.0028 

-0.0033 

0.0073 

0.0065 

-0.0043 

-0.0108 

-0.0075 

-0.0113 

-0.0133 

0.0142 

0.0129 

0.00015 

0.00019 

-0.00007 

-0.00006 

0.00030 

0.00071 

0.00050 

0.00108 

0.00119 

-0.00030 

-0.00029 

-0.000004 

-0.000006 

0.000001 

0.000001 

-0.000012 

-0.000033 

-0.000023 

-0.000071 

-0.000185 

0.000009 

0.000030 

0.0086 -0.00357 0.000007 

0.0096 -0.00366 0.000010 

-0.0125 -0.00313 0.000000 

-0.0108 -0.00315 -0.000002 

0.0119 -0.00388 0.000023 

0.0252 -0.00473 0.000066 

0.0185 -0.00431 0.000044 

0.5 -

0.-3 -

0.1 -

-η ι • 

'Τ 
fi 
ι! 
/.' 
/.' 
*' 
Ι 
Ι 

ι 

i 

Case 1 
Case 3 
Case 5 
Case 7 

~^i 

/ 

Λ. 

£i 
v.. 

Fig. 1. The differences of the MS charge radii 

of the 0 and Ca isotopes. The various cases 

are as in table 1. The experimental data for 

the Ο isotopes are from ref. [11], while those 

for Ca isotopes are from ref. [3]. 

Fig. 2. The difference of the charge distribu
tions of i2Ca - 40Ca multiplied by r 2 . The 
experimental data are from ref. [1]. The var
ious cases are as in table 1. 
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Table 2 
The values of the HO parameter 61 (in fm) and the SRC parameter μ (in fm) for the Ca 

and Ο isotopes when the Cases 1, 3 and 7 and the experimental values of differences 

of the MS charge radii are used. 

Case 1 Case 3 Case 7 

Nucleus 

^Ca 

41 Ca 

42 Ca 

*>Ca 

«Ca 

45 Ca 

^Ca 

"Ca 

*Ca 

h 

1.8600 

1.8573 

1.8549 

1.8528 

1.8508 

1.8491 

1.8475 

1.8461 

1.8448 

μ 

0.4990 

0.5038 

0.5533 

0.5370 

0.5763 

0.5471 

0.5506 

0.5296 

0.5312 

6ι 

1.8600 

1.8672 

1.8743 

1.8812 

1.8880 

1.8947 

1.9012 

1.9076 

1.9139 

μ 

0.4990 

0.4832 

0.5128 

0.4775 

0.4985 

0.4516 

0.4381 

0.4007 

0.3864 

h 

1.8600 

1.8529 

1.8468 

1.8413 

1.8365 

1.8322 

1.8282 

1.8244 

1.8207 

μ 

0.4990 

0.5135 

0.5703 

0.5609 

0.6063 

0.5825 

0.5911 

0.5750 

0.5816 

ιβΟ 1.6790 0.4700 1.6790 0.4700 

170 1.6687 0.4763 1.6929 0.4177 

1 8 0 1.6601 0.6545 1.7063 0.5424 

differences of MS charge radii, the values of χ2 indicate which expression of 

%ω is better in this region of nuclei. The discrepancies that are noted for large 

values of η and for the isospin independent expressions of %ω should come 

from the fact that the truncation made in obtaining expression (11) is not 

very good and probably higher powers of 6b\ and δμ should be included for 

these cases. 

In Figures 2, 3 and 4 the calculated Δ/>(40 + n)r2 = (/>(40 + n) - /?(40))r2 

(for charge or point distribution) for η = 2, 4 and 8 and for various cases are 

shown and are compared with the experimental data. From these figures it is 

seen that for Case 1 (and also for Case 2 which is not included in the figures) 

the calculated Apch (40 + n)r2 have the correct behavior. That is the charge 

must flow from the center (and the outer skin in ^Ca) into a region around 

the half-density radius. 

For Case 3 (and also for Case 4 which is not included in the figures) the correct 

behavior of Apch(42)r2 and A/>cji(44)r2 is reproduced while for Δ/>(48)Γ 2 a 

wrong behavior is obtained. Also, for these two cases, as can be seen from 
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Fig.l, £r2

f t e o r y(40 + η) is compared very well with 6»·* (40 4- n) for η < 4 
but the comperison is not good for η > 5 (especially for η = 8). hi Cases 3 
and 4, hu> is isospin independent. The results could be better, for Δ/?(48)Γ 2 , if 
another expression of %ω is used. This expression should lead to a value of the 
correlation parameter μ(48) « 0.58/m. Quite good results for A/>(48)r2, can 
be obtained if we use the following two asymptotic expression for ΐιω given in 
ref. [24]: 

haj = 38.6Λ"1/3 - 127A~4/3 + 14.75(ΛΓ - Z)A~'i/3 (23) 

%ω = 40.0Λ-1/3 - 56.0Λ"1 - 208.8Λ"5/3 + 68.8(JV - Ζ)Λ" 5 / 3 (24) 

The values of the coefficients /?,· for these two cases, marked 5 and 6, are given 
in table 1 while Ap(4S)r2 for case 5 are shown in Fig.4. These two cases could 
lead us to the conclusion, that an expression for %ω with values /?,· between 
the corresponding values of Cases 5 and 6 would give very good Ap(48)r2. 
For this reason in Figures 1 and 4 as well as in table 1 the Case marked 7, 
where the parameters ßi aie the mean values of the corresponding parameters 
of Cases 5 and 6, has been included. For this Case, as can be seen from Fig.4, 
Ap(48)r2 is very well compared with the experimental data. 

The results for 0 isotopes aie shown in Figures 1, 5 and 6. For the various 
cases of ftw, it is noted that, the calculated ór2(16 + 1) is very close to the 
experimental ones when cases 1 and 2 are used, while this is true for 67*2(16 + 2) 
when cases 3 and 4 are used. This is shown in Fig.l where the calculated values 
of 6r2(l6+n) for cases 1 and 3 aie plotted and compared with the experimental 
ones. The results for cases 2 and 4 are similar to the corresponding results of 
cases 1 and 3 respectively. The above behavior of 6r2(16 + n) is reflected in 
the behavior of Apch(l$ + n) which have been calculated for various cases. 
That is the calculated Apch{16 + 1) compares better with the corresponding 
experimental values when the isospin dependent expression of %ω are used, 
while for A/)c/l(16+2) better results are obtained when the isospin independent 
expressions of %ω are used. These are shown in Figures 5 and 6 where the 
calculated 4πΔ/>ύ/ι(16 -f η), η = 1,2 for Cases 1 and 3 are displayed and 
compared with the experimental data [11]. The results for Cases 2 and 4 are 
similar to those for Cases 1 and 3 respectively. 

82 



I 

Fig. 3. The difference of the charge distribu- Fig. 4. The difference of the point proton dis-
tions of 44Ca - *°Ca multiplied by r 2 . The tributions of **Ca - *°Ca multiplied by r 2 . 
experimental data are from ref. [1]. The var- The experimental data are from ref. [2j. The 
ious cases are as in table 1. various cases are as in table 1. 

The above results of Apch(lQ + n) can become better if the correlation param
eter μ given by (17) will be calculated taking into account the corresponding 
experimental errors. For Apch(l6 + 1) better results are obtained if instead of 
ÄrLp(16 + 1) we use ^ ( 1 6 + 1) + error(16 + 1) (see Rg.5 Case 1+). For 
Apch(16 + 2) better results are obtained if instead of ÄrJrp(16 + 2) we use 
^Lp(16 + 2) - error(16 + 2) (see Fig.6 Case 3~). 

5 Conclusion 

In the present work the dependence of the SRC on the neutron number of the 
I/7/2 orbital of the Ca isotopes has been studied. From the above analysis it 
becomes clear that the isospin dependence of the HO parameter 61 and the 
correlation parameter μ is important in explaining not only the behavior of 
the differences of the MS charge radii but also to give information for the 
differences of the charge densities between the Ca isotopes. 

An isospin dependence of the parameters fri and μ can be given (see table 1, 
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Case 7) which reproduce very well both the systematic of the MS charge radii 
as well as the differences of the charge densities between the Ca isotopes. It 
is observed also that when the isospin dependence expression of Κω is used, 
the variation of the HO parameter 61 is a decreasing function of η while the 
correlation parameter μ follows somehow the variation of ór2 (40 + n). See for 
example the values of the parameters 61 (40 + n) and μ(40 + η) for Cases 1 
and 7 in table 2. From this behavior of the correlation parameter μ it could be 
concluded that the polarization of the core by the valence I/7/2 neutrons in 
the Ca isotopes effect the strength of the SRC while this parameter remains 
almost constant (or it is not changed very much) for (closed shell) nuclei 4He to 
* C a [19,20,18]. For the isospin independent expressions of Ηω the parameter 
61 is an increasing function of η while the parameter μ follows the variation 
of ir 2 (40 + τι) only up to η = 5. After this nucleus, the calculated values of 
£r 2 (40+n) are quite far from the experimental data. This should be the reason 
that the calculated Δρ(48)τ·2 is not good in Cases 3 and 4. 

0.03 

Exp 
Caee 1 
Caee 3 
Caee 1 

-0.20 

-0.30 J 

/ Exp 
Case 1 
Case 3 

' Case 3" 

F ig . 5. The difference of the charge distri

butions of 1 7 0 - 160 multiplied by 4π. The 

experimental data are from ref. [11]. The 

Cases 1 and 3 are as in table 1 while in 

Case 1 + the calculations have been made us

ing £ r ^ p ( 1 6 + 1) + error(16 + 1) instead of 

fo"L (16 + 1). For Case 1 + the parameters 

h(i7) and μ(17) have the values: δι(17) = 

1.6687/m and μ(Π) = 0.4940/m 

F i g . 6. The difference of the charge distri

butions of 1 8 0 - 1 6 0 multiplied by 4?r. The 

experimental data are from ref. [11]. The 

Cases 1 and 3 are as in table 1 while in 

Case 3~ the calculations have been made us-

error( 18 + 1) instead of 

For Case 3~ the parameters 

61 (Ì8) and μ(18) have the values: />i(18) = 

1.7063/m and μ(18) = 0.5283/m 

i n g i r ^ l S + l) 
^LP(18 + 1) 

Similar behavior for the parameter μ has been observed for the 0 isotopes. 
There is a difference that the isospin dependence of the correlation parameter 
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is not very clear as we have examined only two isotopes. Nevertheless, the 

obtained results for Apch{16 + 1) which compared quite well with the experi

mental data could lead to the conclusion that SRC and the isospin dependent 

of the parameters 61 and μ might be important in understanding the odd-even 

staggering. Certainly, this conclusion would be more clear if experimental data 

for the charge densities of the odd Ca isotopes were available. 

The simplicity of the present analysis makes the method attractive enough 

to apply to other isotopie sequences and also examine what the effect of the 

SRC is on the relative depletion of the Fermi sea of the isotopes. Also, it could 

be used to predict the differences of the charge densities of the isotopes when 

6r2(Ac + n) are known from experiment while Apch(Ac + n) are not known. 
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