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Abstract 

The half-diagonal two-body density matrix P2/i(ri,r2,ri ) plays a central role in 
most theoretical treatments of the propagation of ejected nucléons and their final 
state interactions (FSI) in the nuclear medium. In this work based on the analysis 
of Ristig and Clark, we present the results of a Fermi hypernetted-chain calculation 
°f P2h{*\ »1*2,rj ) for infinite symmetrical nuclear matter using a Jastrow-correlated 
model. The dependence of ρ-ìh on the variables involved has been investigated in de­
tail. Significant departures from ideal Fermi gas behavior in certain domains demon­
strate the importance of short-range correlations. A comparison of our results with 
the predictions of Silver's approximation to p^h·, which has been employed in some 
treatments of FSI, reveals certain shortcomings of this approximation. The Fermi 
hypernetted-chain results obtained here will serve as a key input to an approximate 
treatment of FSI in inclusive quasielastic electron scattering from nuclear matter. 

1 In troduct ion 

In this paper we describe numerical calculations of the half-diagonal two-body 
density matrix p2h ( r i , r2 , r̂  ) of the ground state of uniform, isospin symmet­
rical, spin-saturated nuclear matter. The calculations have been performed 
within the framework of the microscopic analysis of pih carried out by Ristig 
and Clark [1] for a uniform strongly interacting Fermi fluid. The Ristig-Clark 
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analysis implements oorrelated-basis-functions (CBF) theory at the variation­
al level and involves hypernetted-chain techniques. The Fourier-space coun­
terpart n(p, Q) of /E>2/I known as the generalized momentum distribution [1] 
has been the subject of a previous numerical study [2,3] based on the same 
analysis. 

For a unit-normalized ground-state vector |Φ), the half-diagonal two-body 
density matrix is denned by 

/>2/»(ri,r2,r;) = A{A - 1) J Φ * ( Γ Ι , Γ 2 , Γ 3 , . . . , rA) • 

$(r[, r 2, r 3 , . . . , ΓΛ )(IT3 ...drA (1) 

In writing this expression, we have suppressed spin/isospin labels and a sum 
over all spin/isospin variables. The system is considered to have uniform nuclé­
on density ρ with corresponding Fermi wave number kf = (6π2ρ/ι/)1/3, where 
ν = 4 is the level degeneracy of plane-wave single-particle states. Performing 
a Fourier transformation in the variables η — r'j and Γι — r2, we obtain the 
generalized momentum distribution 

n(p,Q) = l^Jp2h(rur2ìr
f
ì)e-tp^-<)e-tCi<Ti-^drìdr2dr'1 . (2) 

If we neglect dynamical correlations, the remaining kinematical correlations 
generated by the Pauli exclusion principle lead to the following half-diagonal 
two-body density matrix of the noninteracting system 

ρζ,(ri,r2,r'j) = ρρζ(τχ,r\)- -ρζ(ri,r2)ρζ(r\,r2) , (3) 

where pf (r,, r, ) is the one-body density matrix of the noninteracting Fermi 
gas, 

PÎ(n,Tj) = pl(kFrij) , (4) 

l(x) being the Slater exchange function. 

The half-diagonal two-body density matrix p2h (ri, r2, τ{ ) has several essential 
properties. First, it is a symmetric function of Γι and r'j. Second, with our 
normalization choice, its diagonal part is connected to the radial distribution 
function g(ru) = #(|ri - r 2 | ) by 

P2(ri,r 2,Pi) = P2g{r12) . (5) 

Third, p2h fulfills the sequential relation 

j p2h{v\,T2,v\)dv2 ={A-l)p1(rur'l) . (6) 
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Fourth, if the system is subject to strong, short-range interparticle repulsions 

we must have 

P2h (ΓΙ , Γι, ri ) = 0 . (7) 

Finally, p2k exhibits the following asymptotic properties: 

rf^
l

00P2h(rur2,T
f

l) - p p i ( r i , r i ) , (8) 

lim p2h ( r i , r 2 , ΓΊ ) = p2g{rv2 ) . (9) 
Γ[/ —+00 

Several simple approximations have been proposed for estimating the half-

diagonal two-body density matrix in uniform quantum fluids. In particular, 

Silver's approximation [4] expresses p2h as a product of the one-body density 

matrix and the radial distribution function, 

Ρ*(τι,*ί,*Ί) * PPi{*u*M\*i - r 2 l ) · ( 1 0 ) 

It should be noted that this approximation is not symmetric in the variables 

Γι and r j . Gersch's approximation [5] uses the same basic ingredients (namely 

p\ and g) in the form 

pl{rUT2,r>x)~pp,{rx,T>xM\TX - r2\)]^ü(\r[ - r2\)}^ , (11) 

which violates the sequential relation (6). Rinat [6] has advocated the approx­
imation 

p*(rl,r2,T'l)~ppl{ri,T>1)g(\±(r1+Tf
l)-T2\) , (12) 

which violates the short-range property (7). Except as noted, these approxi­

mations fulfill the other formal properties of p2h • 

The diagonal part of p2h, the two-particle distribution function p2g{ri2) of 

nuclear matter , is a fundamental descriptor of correlation structure that has 

been intensively studied in nuclear many-body theory [7]. Determination of 

the two-particle distribution function in finite nuclei is indirect, results being 

obtained recently for a few cases [8]. The 'full' half-diagonal two-body density 

matrix p2h carries much richer information on the correlations existing in the 

nuclear medium. As in Bose systems [9], this quantity is expected to enter 

fundamental sum rules that furnish insights into the nature of the elementary 

excitations of nuclear matter. Moreover, it arises naturally in the description 

of a number of processes occurring in finite nuclei, notably in the calculation 

of dispersive effects in inelastic electron scattering [10]. However, the growing 

interest in p2k has been driven by its appearance in quantitative 'post-mean-

field' t reatments of the propagation of ejected nucléons and their final state 

interactions (FSI). A proper treatment of FSI is critical to reliable extraction of 
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quantities like momentum distributions, spectral functions, and transparency 
from the results of experiments involving inclusive quasielastic (e, e') scattering 
[11], exclusive (eye'N) scattering [12], proton scattering [13], pion absorption 
[14], etc. 

Let us concentrate on inclusive quasielastic electron scattering at high ener­
gy E (several MeV to 1 GeV) and high momentum transfer q (on the order 
of several GeV/c) [11], for which empirical results exist for finite nuclei [15] 
and even for nuclear matter [16]. At low energy transfer u;, the cross sec­
tion is sensitive to high-momentum components of the wave function, i.e., to 
short-range correlations, and also to the FSI of the recoiling nucléon within 
a spatial region of dimension ~ \jq. The plane-wave impulse approximation 
generally underestimates the cross section at small ω [17]. FSI of the nucléon 
as it propagates within the correlated nuclear medium have been included in 
several theoretical approaches [18-24] to the quasielastic inclusive response of 
nuclear mat ter in the kinematic range under consideration. Specifically, two 
microscopic theories that have been used to calculate the relevant cross section 
are the correlated Glauber theory (CGT) [22,23], a generalization of Glauber 
theory that includes correlations, and the relativistic generalization of Ger-
sch's theory (RGT) [24]. The half-diagonal two-body density matrix enters 
both theories; in CGT, it is evaluated by Silver's approximation [eq. (10)], 
and in RGT, by Gersch's approximation [eq. (11)]. In the GCT treatment, the 
results are found to be sensitive to the radial distribution function g(r) em­
ployed. The two approaches overestimate the experimental cross section data 
at low ω by overestimating the FSI. Accordingly, these data have been taken 

as evidence for color transparency [25], a phenomenon predicted by pQCD 

that leads to a reduction of the FSI at high momentum transfer. Indeed, in­

clusion of this effect in the above treatments brings the derived results into 

good agreement with the data. However, such evidence for color transparency 

can be convincing only if the purely nucleonic FSI have been accurately evalu­

ated. Among other improvements on the existing calculations, one should use 

a microscopically determined pih (Γ Ί , r 2 , r̂  ) as input. 

The first microscopic analyses of n ( p , Q ) and p^ (i*i, r 2 , r^ ) in strongly cor­

related systems were carried out by Ristig and Clark at the variational level 

of correlated-basis-function (CBF) theory, for both Bose and Fermi statistics 

[26,1]. Starting from cluster-diagrammatic decompositions of these quantities, 

Ristig and Clark applied hypernetted-chain techniques to their evaluation. In 

the present work, we report results of a Fermi hypernetted-chain treatment 

of pih (ι*ι, Γ2, r7! ) in the leading approximation where elementary diagrams are 

omitted (FHNC/0) . Section 2 gives a brief description of our calculational 

scheme, hi Section 3, the numerical results for a simple nuclear matter model 

are presented and discussed. Finally, in Section 4, we state the main conclu­

sions of our investigation and indicate the directions that will be taken in 

future work. 
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2 Fermi Hypernetted-Chain Calculation 

The analysis, by Ristig and Clark [lj, of the half-diagonal two-body densi­
ty matrix p2h of a uniform Fermi system is based on a Jastrow-Slater wave 
function. Development of the generalized momentum distribution n(p,Q) in 
a factorized Iwamoto-Yamada (FIY) cluster expansion leads, in the thermo­
dynamic limit, to an infinite series whose addends are generally reducible, in 
that they are represented as products of cluster diagrams. Transformation to 
coordinate space yields the corresponding cluster series for p·^. Resummation 
of the latter is then carried out, using hypernetted-chain techniques and tak­
ing into account asymptotic behaviors and relations to the Bose problem [26]. 
The function pih is expressed as a sum of two portions, 

# Α ( Γ Ι , Γ 2 , Γ Ί ) = p{2h{rur2,r\) +p{$(rur2,r[) , (13) 

where /% contains all terms generated purely by two-point functions and p^ 
is a remainder whose terms depend also on irreducible three-point functions. 
('Two-point' and 'three-point' refer to the underlying graphical topology.) The 
first term, constructed from certain one-body density matrices and quantities 
given by solution of a set of FHNC equations, takes the explicit form 

P2h (ri, r 2, ΓΊ ) = ρρχ (Γι, ΓΊ )gQdd(r)gQdd(r') + 

+ PPID(*I , r[ )/(!-!, ΓΊ )[9Qdd(r)FQde(r') + 9Qdd(r')FQde{r)] -

-vppw{*uv\)[v-Xl{r) - Fç^Wu-Hir') - FQcc{r')) (14) 

The corresponding result for p^l may be found in ref. [1]. (The Q index appear­
ing in eq. (14) is introduced to make the necessary connection with Ristig's 
notation [27]; it should not be confused with the momentum variable Q). In 
formula (14), r = |ri — r2 | and r' = [r̂  — r2 |. Further, ^ ( Γ Ι , Γ ^ ) is the full one-
body density matrix, pxo (ri, r, ) is its direct-direct (dd) component, FQxy(r) 
(with xy = dd,de (direct-exchange), and cc (circular-circular)) aie two-point 
quantities that serve as form factors, and </ç</(/(

r) — * equals FQdd{r)· The 
FHNC result for p2h is obtained by using results from FHNC evaluation of 
the one-body density matrix [27,28] and of the radial distribution function [4]. 
For example, one has FQxy(r) = NQxy(r) + XQxy(r), where Nçxy and Xçxy 

are made up of the nodal (iV) and non-nodal (X) diagrams that arise in the 
FHNC analysis of the one body-density matrix. Here we implement the FHNC 
algorithm at the initial (Oth) level, where elementary diagrams aie omitted, 
resulting in an FHNC/0 approximation. Contribution from elementary dia­
grams are expected to become important at densities higher than ordinarily 
found in nuclei [29]. We also omit the three-point quantity p2 / l , since by similar 
reasoning it is expected to be small compared to the terms of p\^. It turns out 
that our calculational scheme (the FHNC/0 algorithm together with omission 
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of py}) obeys the property (7) and preserves the symmetry in Γι and r y , but 

is generally accompanied by (small) violations of the diagonal property (5) 

and the sequential relation (6). Henceforth, we shall refer to our calculational 

scheme as FHNC/0 for brevity. 

3 N u m e r i c a l r e s u l t s 

The numerical results for the half-diagonal two-body density matrix are based 

on a simple model of nuclear matter near its saturation density, namely the 

'Monte Carlo' (MC) model [30]. This model corresponds to the density value 

ρ = 0.182 fin-3 (or kp = 1.392 fin-1 ) and is defined by the correlation function 

f[r) = exp • C , e - ° * < 1 - ' , / * > (MC) (15) 

with parameter values C\ — 1.7 fin, C 2 = 1.6 fin-1, and C$ = 0.1 fin. The 

MC model originated in a variational Monte Carlo treatment of the ground 

state of symmetrical nuclear matter based on the υ 2 potential. The correlation 

function (15) describes the short-range correlations in a representative way and 

the intermediate and long-range correlations in an average way, but it misses 

the specific effects of the state dependence of the realistic nucléon-nucléon 

interaction, hi Fig. 1, the radial distribution function g(r) derived from our 

calculation with the MC model and FHNC/0 algorithm is compared with that 

obtained in ref. [22] for the Urbana νί4 two-body interaction and the three-

body force TNI. The MC model shows a 'larger' correlation hole than that 

produced by the v\4 interaction. The MC model has the value 0.297 for the 

wound parameter /c<jir = pj{f{r) — l ) 2 dr, which measures the strength of 

correlations. The MC model, along with the G2 model characterized by a κ^τ 

value of 0.111, have been used in our previous calculations of n ( p , Q ) [2,3]. 

We have studied the dependence of p2h on the variables ru>, r 1 2 and »γ 2 , 

considering the ranges [0 —10] fin for ru> and [0 — 5] fin for r 1 2 and τ γ 2 . In the 

two-dimensional plots of Figs. 2, 3, and 4, we present FHNC/0 results for the 

half-diagonal two-body density matrix at selected values of the three variables. 

For comparison, we include results for p2/i in the ideal Fermi gas and for p·^ 

derived from Silver's approximation (10), along with the FHNC/0 results for 

P\{r\\>) and g(ru) corresponding to the MC model. In Fig. 2, p·^(ri,r2,r^ ) is 

plotted as a function of r 1 2 for three values of rn> (0.10, 1.93 and 3.76 fin). 

For each value of rn>, three representative values of r v 2 (0.10, 1.32 and 4.97 

fin) have been chosen. In Fig. 3, p^ ( r i , r 2 , \!x ) is again displayed as a function 

of 7-12, but now the results for the three chosen values of rUi are shown for 

each of the aforesaid values of ? γ 2 . Finally, Fig. 4 displays F H N C / 0 results 

for /52/Ι(ΓΙ,Γ 2 ,ΓΊ ) as a function of rn> for three values of ri2 (0.10, 1.32 and 
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Fig. 1. Radial distribution function g(r) as a function of r: (v2) our calculation 

using MC model (eq. (15)) and the FHNC/0 algorithm, vi4 variational calculation 

in ref. [22] using the Urbana V\A potential at kp — 1.33 f m - 1 . 

4.97 fm). For each value of r 1 2 , the same three values of rV2 are adopted. 

Since p2k ( r i , r 2 , r̂  ) is symmetric under interchange of r 1 2 and rV2, further 

information on the behavior of this function may be inferred from the figures 

provided. 

Generally p2h{r\, r 2 , ^ ), viewed as a function of rX2 for fixed values of ru> (less 

than 4.16 fm) and fixed values of rV2 (but not small), increases rapidly with 

increasing r i 2 , tending to the corresponding asymptotes. (For rV2 = 0.10 fm 

this behavior cannot be distinguished for the scale employed in the figures.) 

Viewed as a function of rn< for fixed values of r 1 2 and rV2, the quantity pu 

shows oscillatory behavior (although this is not visible for r 1 2 or rV2 equal 

to 0.10 fm, again due to the scale chosen). It is found that these behaviors 

of p2h ( r i , r 2 , ri ) aie dictated mainly by the first term in the expression (14), 

namely pp\iv\, r{ )gQdd(r\2)gQdd{ri>2), which is the dominant contribution un­

der the stated conditions. 

The impact of the dynamical correlations is revealed by comparing, in Figs. 2, 

3, and 4, the curves derived from our FHNC/0 calculation with those corre­

sponding to the noninteracting Fermi gas. Generally, correlations tend to lower 

the values of ρ%ι, this effect being quite significant. The calculated departures 

from the Fermi gas limit are larger for a given value of ru> and small [large] 

values of r 1 2 , the larger [smaller] the values of ?y 2 are. For given values of rl2 

and ry2i a significant effect of correlations on p2h as a function of rn> is to 

shift the oscillations of p2h to smaller values of ru>. (Due to the scale used, 

this effect is not evident in Fig. 4 for r 1 2 = 0.10 fm and the three values of rV2 

considered, nor for r 1 2 — 1.32 fin or 4.97 fm and rV2 — 0.10 fm.) 
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Jl - I I I I I I I I l l I I I I I 
0.00 1.00 2.00 3.00 4.00 5.00 

r,2 ( fm) 

.00 UÓÓ 2.ÒÒ 3.ÓÒ 4Ό0 5Ό0 

r„ (fm) 

Fig. 2. Half-diagonal two-body density matrix p^h ( r i , r 2 , τ{ ) at nucléon density 
ρ - 0.182 fin-3 as a fonction of r 1 2 for constant values of rn> (equal to 0.10 fm, 

1.93 fm and 3.76 fin) and of rV2 (equal to 0.10 fm (curves (a), (d)), 1.32 fin (curves 

(b), (e)) and 4.97 fin (curves (c), (f)). Long-dashed line: ideal Fermi gas, continuous 

line: FHNC/0 calculation, and short-dashed line: Silver's approximation. The last 

two are calculated with MC correlations (eq. (15)). 
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Figs. 2, 3, and 4 provide for a comparison of our results (denoted by p^ ) 
with those obtained with Silver's approximation (denoted by pfh). It is to be 
noted that the approximation p^ does not depend on τγ 2 . At given rn», the 
difference between p^ and p2h , as a function of r 1 2 , depends on the value 

of T\<i considered. For small values of ri<2, there are large deviations for almost 
all values of r1 2 (except the small ones). For intermediate values of rv 2, the 
approximations p\h and p2h almost coincide at small r i 2 ; at intermediate 

values of r i 2 , the discrepancy is larger (and almost independent of rn>)', and 
at large r i 2 the two approximations are again almost coincident. For large 
values of ri/2, it is found that p2h and p2h nearly coincide at small r i 2 ; 
at intermediate values of r i 2 , they show significant differences (though to a 
smaller extent than in the preceding case); and at large r i 2 the two evalua­
tions aie again in agreement. A further assessment of the validity of Silver's 
approximation can be made using Fig. 5, in which the two approximations 
that are used to form p%h, specifically 

Pi(ni') « pw{r\v)l{rU'\ (16) 

FQdd{r\2 ) + FQde{ri2 ) « g{ru ) - 1 , (17) 

are plotted and compared with the respective left-hand sides computed via 
FHNC/0. The déficiences of Silver's estimate aie evident from these compar­
isons and speak for the advisability of using />2h rather than p2h (for 
example) in the treatment of FSI within correlated Glauber theory [22,23]. 
Thereby one may be able to draw more convincing conclusions from experi­
ment regarding the quantitative importance of nuclear and color transparency 
in inclusive quasielastic scattering of GeV electrons off nuclear matter at high 
momentum transfers, hi addition to Silver's estimate, Gersch's approximation 
P2h [ecl· ( υ ) ] n a s been applied in this problem [24]. We have found p\\ to 
provide a generally better approximation to p2/l than is given by p\\ [31]. 
It will be interesting to determine the quantitative effect of using p^ in 
the treatment of FSI developed in ref. [24]. 

4 Conclusions 

hi summary, we have presented a microscopic evaluation, within Fermi hyper-
netted-chain theory, of the half-diagonal two-body density matrix p-2h{^i, r 2, r̂  ) 
of nuclear matter, for the case of state-independent, central, two-body corre­
lations. The momentum-s pace transform rc(p,Q) of pih has been calculat­
ed previously within the same framework [2,3], Our results for p2h (i*i, r 2, r̂  ) 
demonstrate a rich sensitivity of this observable to short range-correlations. 
They also exhibit significant departures from the results given by Silver's ap­
proximation [4] in certain regions of the variables involved. These differences 
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Fig. 3. As in Kg. 2 but with the use of the constant values of rut and r ^ reversed. 
Curves (g), (h) and (i): Silver's approximation for rn» equal to 0.10 firn, 1.93 fai and 
3.76 fai respectively. 



r,2=0.10 fm 

ν· 
o.b.c.g S. 

< »- £. " 

ο.οό i!óò 4.'όό èióò B.'ÓÒ Ί'ο.οό' 
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-0.01 Ι ι ι ι ι ι ι ι ι ι 
0.00 2.00 4.00 6.00 8.00 10.00 

Γ«, (fm) 

Fig. 4. Half-diagonal two-body density matrix p-2h ( r i , Γ2, ΓΊ ) at nucléon density 
ρ = 0.182 f m - 3 as a function of r\\> for constant values of r1 2 and of r\>2 (e-

qual to 0.10 fin (curves (a), (d)), 1.32 fin (curves (b), (c)) and 4.97 fin (curves 

(c), (f)). Long-dashed line: ideal Fermi gas, continuous line: FHNC/0 calculation 

and short-dashed line: Silver's approximation. The last two aie calculated with MC 

correlations (eq. (15)). 

68 



Ι Ι Ι Ι Ι Μ Ι Ι Ι Ι Ι Ι Μ Ι Τ I M I I I ! I I I I 

FouM+F^r) 
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f(r):MC 
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10.00 15.00 20.00 
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Fig. 5. Comparison of FHNC/0 results for the quantities FQdd(r) + FQde{r) and 

g(r) — 1 as well as p\(rUt) and pw(rw)l(ru') computed for the MC f(r) and 

ρ = 0.182 fin-3. Here FQdd{f) and Fendei?) are form factors entering expression (14), 

P\{r\\i) and pw(rw) are the full one-body density matrix and its direct-direct part 

respectively and l{rn') the Slater exchange function. 

are expected to have significant repercussions within existing treatments of 

final-state interactions. The FHNC/0 results we have generated for p·^ will 

be employed as input to a description of FSI in inclusive quasielastic scat­

tering of GeV electrons from nuclear matter, based on correlated Glauber 

theory [23]. Further investigations of p2h (l'i, r 2 , r̂  ) in nuclear mat ter should 

extend the available analysis and the calculations to realistic, state-dependent 

correlations. There has recently been some progress toward this goal within 
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self-consistent Green's function theory [32]. However, it can be argued that our 

results obtained with central state-independent correlations should be reason­

able in the problem of (e,e') quasielastic scattering at high momentum and 

small energy transfers, where short-range repulsive correlations aie dominant. 

With regard to microscopic determination of p2h (i"i, 1*2, rj ) for finite nuclei, 

a local-density-approximation might be developed, as has been done for the 

one-body density matrix in refs. [33,34]. 
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