- Publishing

HNPS Advances in Nuclear Physics

Vol 6 (1995)

HNPS1995

Study of the Half-Diagonal Two-Body Density
Matrix of Model Nuclear Matter

M. Petraki, E. Mavrommatis, J. W. Clark

doi: 10.12681/hnps.2916

ety Tetlenic
Swmposinm

To cite this article:

Petraki, M., Mavrommatis, E., & Clark, J. W. (2020). Study of the Half-Diagonal Two-Body Density Matrix of Model
Nuclear Matter. HNPS Advances in Nuclear Physics, 6, 58-71. https://doi.org/10.12681/hnps.2916

https://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at: 16/01/2026 14:09:24



Study of the Half-Diagonal Two-Body Density
Matrix of
Model Nuclear Matter

M. Petraki ?, E. Mavrommatis ®!, and J. W. Clark?

& Physics Department, Division of Nuclear and Particle Physics, University of
' Athens, Panepistimiopoli, 15771 Athens, Greece

b McDonnel Center for the Space Sciences and Department of Physics,
Washington University, St. Louis, Mo 63130, USA

Abstract

The half-diagonal two-body density matrix pg(ri,rz,r;) plays a central role in
most theoretical treatments of the propagation of ejected micleons and their final
state interactions (FSI) in the muclear medium. In this work based on the analysis
of Ristig and Clark, we present the results of a Fermi hypernetted-chain calculation
of pon(r1,re, 1) for infinite symmetrical miclear matter using a Jastrow-correlated
model. The dependence of py, an the variables involved has been investigated m de-
tail. Significant departures from ideal Fermi gas behavior in certain domains demon-
strate the importance of short-range correlations. A comparison of our results with
the predictions of Silver’s approximation to pg,, which has been employed in some
treatments of FSI, reveals certain shortcomings of this approximation. The Fermi
hypernetted-chain results obtained here will serve as a key input to an approximate
treatment of FSI in inclusive quasielastic electron scattering from nuclear matter.

1 Introduction

In this paper we describe numerical calculations of the half-diagonal two-body
density matrix pop(r;,re,r}) of the ground state of uniform, isospin symmet-
rical, spin-saturated nuclear matter. The calculations have been performed
within the framework of the microscopic analysis of py, carried out by Ristig
and Clark [1] for a uniform strongly interacting Fermi fluid. The Ristig-Clark
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analysis implements correlated-basis-functions (CBF) theory at the variation-
al level and involves hypernetted-chain techniques. The Fourier-space coun-
terpart n(p, Q) of p, known as the generalized momentum distribution [1]
has been the subject of a previous numerical study [2,3] based on the same
analysis.

For a unit-normalized ground-state vector |¥), the half-diagonal two-body
density matrix is defined by

pon(r1, T2, 1)) = A(A — 1)/‘1"(1'1,1'2,1'3,--- 1 Ta) "
‘I’(I’;,l‘z,!‘;;,... ; I‘A)dl‘a ...dl‘A (1)

In writing this expression, we have suppressed spin/isospin labels and a sum
over all spin/isospin variables. The system is considered to have uniform nucle-
on density p with corresponding Fermi wave number kr = (67%p/v)!/3, where
v = 4 is the level degeneracy of plane-wave single-particle states. Performing
a Fourier transformation in the variables r; — rj and r; — ry, we obtain the
generalized momentum distribution

1 ; ;
n(p,Q)=;% / pon (L1, Ty, ¥, ) e P M) —iQE =) g gyt . (2)

If we neglect dynamical correlations, the remaining kinematical correlations
generated by the Pauli exclusion principle lead to the following half-diagonal
two-body density matrix of the noninteracting system

1
po(r1, T2, 14) = ppi (11, 1)) — ;pf(rurz)pf(r'nrz) » 3)

where pf’(r;,r;) is the one-body density matrix of the noninteracting Fermi
gas,

pr (vit5) = pl(krry) (4)
[(z) being the Slater exchange function.
The half-diagonal two-body density matrix pa,(r;,rs, r}) has several essential
properties. First, it is a symmetric function of r; and rj. Second, with our
normalization choice, its diagonal part is connected to the radial distribution
function g(r12) = g(|r; — r2|) by

pa(ry,r2, 1) = pPg(riz) . (5)
Third, py, fulfills the sequential relation

[omerm, ) dn = (A = Dpr(r6) (6)
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Fourth, if the system is subject to strong, short-range mterparticle repulsions
we must have

pgh(rl,rl,r'l)zo ¥ (7)

Finally, py, exhibits the following asymptotic properties:

r}i_lfloo pu(r1, 1y, 1) = ppu(ry,ry) ®)
i pan (e, w2, 1) = pPg(ri) )

Several simple approximations have been proposed for estimating the half-
diagonal two-body density matrix in uniform quantum fluids. In particular,
Silver’s approximation [4] expresses py, as a product of the one-body density
matrix and the radial distribution function,

P (r1,12,1,) = ppi(r1, 1) )g(|rs — r2) . (10)

It should be noted that this approximation is not symmetric in the variables
r; and r}. Gersch’s approximation [5] uses the same basic ingredients (namely
p1 and g) in the form

P51, 12, 1) = ppu (e, 1)lg(Im — 2 )]V2[g(Ir) — w2 (11)

which violates the sequential relation (6). Rinat [6] has advocated the approx-
imation

1
Pﬁ(rl’l"z,!"])1‘/’/’1(1'1»1"1)9(|§(r1 +1))-r]) , (12)

which violates the short-range property (7). Except as noted, these approxi-
mations fulfill the other formal properties of pa.

The diagonal part of py,, the two-particle distribution function p?g(riz) of
nuclear matter, is a fundamental descriptor of correlation structure that has
been intensively studied in nuclear many-body theory [7]. Determination of
the two-particle distribution function in finite nuclei is mdirect, results being
obtained recently for a few cases [8]. The ‘full’ half-diagonal two-body density
matrix pg, carries much richer information on the correlations existing in the
nuclear medium. As in Bose systems [9], this quantity is expected to enter
fundamental sum rules that furnish insights into the nature of the elementary
excitations of nuclear matter. Moreover, it arises naturally in the description
of a number of processes occurring in finite nuclei, notably in the calculation
of dispersive effects in inelastic electron scattering [10]. However, the growing
interest in py, has been driven by its appearance in quantitative ‘post-mean-
field’ treatments of the propagation of ejected nucleons and their final state
interactions (FSI). A proper treatment of FSI is critical to reliable extraction of
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quantities like momentum distributions, spectral functions, and transparency
from the results of experiments involving inclusive quasielastic (e, e’) scattering
[11], exclusive (e, e’ N) scattering [12], proton scattering [13], pion absorption
[14], etc.

Let us concentrate on inclusive quasielastic electron scattering at high ener-
gy E (several MeV to 1 GeV) and high momentum transfer ¢ (on the order
of several GeV/c) [11], for which empirical results exist for finite nuclei [15]
and even for nuclear matter [16]. At low emergy transfer w, the cross sec-
tion is sensitive to high-momentum components of the wave function, ie., to
short-range correlations, and also to the FSI of the recoiling nucleon within
a spatial region of dimension ~ 1/¢. The plane-wave impulse approximation
generally underestimates the cross section at small w [17]. FSI of the nucleon
as it propagates within the correlated nuclear medium have been included in
several theoretical approaches [18-24] to the quasielastic inclusive response of
nuclear matter in the kinematic range under consideration. Specifically, two
microscopic theories that have been used to calculate the relevant cross section
are the correlated Glauber theory (CGT) [22,23], a generalization of Glauber
theory that includes correlations, and the relativistic generalization of Ger-
sch’s theory (RGT) [24]. The half-diagonal two-body density matrix enters
both theories; in CGT, it is evaluated by Silver’s approximation [eq. (10)],
and in RGT, by Gersch’s approximation [eq. (11)]. In the GCT treatment, the
results are found to be sensitive to the radial distribution function g¢(r) em-
ployed. The two approaches overestimate the experimental cross section data
at low w by overestimating the FSI. Accordingly, these data have been taken
as evidence for color transparency [25], a phenomenon predicted by pQCD
that leads to a reduction of the FSI at high momentum transfer. Indeed, in-
clusion of this effect in the above treatments brings the derived results into
good agreement with the data. However, such evidence for color transparency
can be convincing only if the purely nucleonic FSI have been accurately evalu-
ated. Among other improvements on the existing calculations, one should use
a microscopically determined py (r;,r2, 1)) as input.

The first microscopic analyses of n(p,Q) and py,(r1,ry,r]) in strongly cor-
related systems were carried out by Ristig and Clark at the variational level
of correlated-basis-function (CBF) theory, for both Bose and Fermi statistics
[26,1]. Starting from cluster-diagrammatic decompositions of these quantities,
Ristig and Clark applied hypernetted-chain techniques to their evaluation. In
the present work, we report results of a Fermi hypernetted-chain treatment
of pon(ri,r2,1)) in the leading approximation where elementary diagrams are
omitted (FHNC/0). Section 2 gives a brief description of our calculational
scheme. In Section 3, the numerical results for a simple nuclear matter model
are presented and discussed. Finally, in Section 4, we state the main conclu-
sions of our investigation and indicate the directions that will be taken in
future work.
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2 Fermi Hypernetted-Chain Calculation

The analysis, by Ristig and Clark [1], of the half-diagonal two-body densi-
ty matrix py; of a uniform Fermi system is based on a Jastrow-Slater wave
function. Development of the generalized momentum distribution n(p, Q) in
a factorized Iwamoto-Yamada (FIY) cluster expansion leads, in the thermo-
dynamic limit, to an infinite series whose addends are generally reducible, in
that they are represented as products of cluster diagrams. Transformation to
ooordinate space yields the corresponding cluster series for py,. Resummation
of the latter is then carried out, using hypernetted-chain techniques and tak-
ing into account asymptotic behaviors and relations to the Bose problem [26].
The function ps, is expressed as a sum of two portions,

pzh(l‘l,l‘z,l'l‘) = pgi)(rl,rz,r'l) + P(zi)(rl,h,r']) ) (13)

where pgi) contains all terms generated purely by two-point functions and pg,?
is a remainder whose terms depend also on irreducible three-point functions.
(“Two-point’ and ‘three-point’ refer to the underlying graphical topology.) The
first term, constructed from certain one-body density matrices and quantities
given by solution of a set of FHNC equations, takes the explicit form

pan (T, T2, 1)) = ppi1(r1, ¥, )9Qaa(r)9qaa(r") +
+ ppio vy, 1 )(r1, 1) )9Qaa () Foae (') + 9Qaa(r’ ) FQae (r)] —
—vppip(ry, 1} ) H(r) — Foe(r)lv™H(r") — Fae(r')] (14)

The corresponding result for pg,? may be found in ref. [1]. (The Q index appear-
ing in eq. (14) is introduced to make the necessary connection with Ristig’s
notation [27]; it should not be confused with the momentum variable Q). In
formula (14), r = |r; —ry| and " = |1} — r;|. Further, p(r,,r}) is the full one-
body density matrix, pip(r;,r;) is its direct-direct (dd) component, Fgz(r)
(with zy = dd, de (direct-exchange), and cc (circular-circular)) are two-point
quantities that serve as form factors, and ggu(r) — 1 equals Fga4(r). The
FHNC result for p, is obtained by using results from FHNC evaluation of
the one-body density matrix [27,28] and of the radial distribution function [4].
For example, one has Fg(r) = Nozy(r) + Xouy(r), where Ngg, and Xgg,
are made up of the nodal (V) and non-nodal (X) diagrams that arise in the
FHNC analysis of the one body-density matrix. Here we implement the FHNC
algorithm at the initial (Oth) level, where elementary diagrams are omitted,
resulting in an FHNC/0 approximation. Contribution from elementary dia-
grams are expected to become important at densities higher than ordinarily
found in nuclei {29]. We also omit the three-point quantity P(z:z) , since by similar
reasoning it is expected to be small compared to the terms of pgi). It turns out
that our calculational scheme (the FHNC/0 algorithm together with omission
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of pgl’) obeys the property (7) and preserves the symmetry in r; and ry/, but
is generally accompanied by (small) violations of the diagonal property (5)
and the sequential relation (6). Henceforth, we shall refer to our calculational
scheme as FHNC/0 for brevity.

3 Numerical results

The numerical results for the half-diagonal two-body density matrix are based
on a simple model of nuclear matter near its saturation density, namely the
‘Monte Carlo’ (MC) model [30]. This model corresponds to the density value
p=0.182 fm~3 (or kr = 1.392 fm~!) and is defined by the correlation function

fr) = exp |=Cy e

=) e (15)

4

with parameter values '} = 1.7 fm, C, = 1.6 fm™!, and C3 = 0.1 fm. The
MC model originated in a variational Monte Carlo treatment of the ground
state of symmetrical nuclear matter based on the v, potential. The correlation
function (15) describes the short-range correlations in a representative way and
the intermediate and long-range correlations in an average way, but it misses
the specific effects of the state dependence of the realistic nucleon-nucleon
interaction. In Fig. 1, the radial distribution function g(r) derived from our
calculation with the MC model and FHNC/0 algorithm is compared with that
obtained in ref. [22] for the Urbana vi4 two-body interaction and the three-
body force TNI. The MC model shows a ‘larger’ correlation hole than that
produced by the vy, mteraction. The MC model has the value 0.297 for the
wound parameter kg, = p [(f(r) — 1)? dr, which measures the strength of
correlations. The MC model, along with the G2 model characterized by a kg,
value of 0.111, have been used in our previous calculations of n(p, Q) [2,3].

We have studied the dependence of py, on the variables ry., r13 and ryg,
considering the ranges [0 — 10] fm for ry;- and [0 — 5] fm for r;; and 5. In the
" two-dimensional plots of Figs. 2, 3, and 4, we present FHNC/0 results for the
half-diagonal two-body density matrix at selected values of the three variables.
For comparison, we include results for py, in the ideal Fermi gas and for po,
derived from Silver’s approximation (10), along with the FHNC/0 results for
p1(ri1-) and g(ry3) corresponding to the MC model. In Fig. 2, po(ry,r2,1)) is
plotted as a function of ry; for three values of ry;» (0.10, 1.93 and 3.76 fin).
For each value of 7/, three representative values of ry, (0.10, 1.32 and 4.97
fm) have been chosen. In Fig. 3, pa (ri,r2, 1)) is again displayed as a function
of ry2, but now the results for the three chosen values of ry;» are shown for
each of the aforesaid values of ry,. Finally, Fig. 4 displays FHNC/0 results
for pon(ri,ra,r)) as a function of ry;» for three values of 7y, (0.10, 1.32 and
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Fig. 1. Radial distribution function g(r) as a function of 7: (vz) our calculation
using MC model (eq. (15)) and the FHNC/0 algorithm, vi4 variational calculation
in ref. [22) using the Urbana vy4 potential at kp = 1.33 fm™!.

4.97 fm). For each value of 713, the same three values of 7y are adopted.
Since pou(ry,ra2,r,) is symmetric under interchange of ri; and ry9, further
information on the behavior of this function may be inferred from the figures
provided.

Generally p (1), 12,1, ), viewed as a function of 7y, for fixed values of rqy/ (less
than 4.16 fm) and fixed values of ry; (but not small), increases rapidly with
increasing i, tending to the corresponding asymptotes. (For 712 = 0.10 fm
this behavior cannot be distinguished for the scale employed in the figures.)
Viewed as a function of riy for fixed values of 5 and 715, the quantity pop,
shows oscillatory behavior (although this is not visible for ri; or ry; equal
to 0.10 fm, again due to the scale chosen). It is found that these behaviors
of py(ry,ry,1,) are dictated mainly by the first term in the expression (14),
namely pp;(T1, 1, )90dd(T12)90dd (r172), Which is the dominant contribution un-
der the stated conditions.

The impact of the dynamical correlations is revealed by comparing, n Figs. 2,
3, and 4, the curves derived from our FHNC/0 calculation with those corre-
sponding to the noninteracting Fermi gas. Generally, correlations tend to lower
the values of py,, this effect being quite significant. The calculated departures
from the Fermi gas limit are larger for a given value of ry; and small [large]
values of 1y, the larger [smaller] the values of 7, are. For given values of 7,
and 719, a significant effect of correlations on py, as a function of 7y is to
shift the oscillations of py, to smaller values of ry;:. (Due to the scale used,
this effect is not evident in Fig. 4 for 72 = 0.10 fm and the three values of i/,
considered, nor for 75 = 1.32 fm or 4.97 fm and 7y = 0.10 fm.)
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Fig. 2. Half-diagonal two-body density matrix pon(r1,r2,77) at mucleon density
p = 0.182 fm™3 as a function of 7y for constant values of m1» (equal to 0.10 fn,
1.93 fm and 3.76 fm) and of 715 (equal to 0.10 fm (curves (a), (d)), 1.32 fm (curves
(b), (e)) and 4.97 fm (curves (c), (f)). Long-dashed line: ideal Fermi gas, continuous
line: FHNC/0 calculation, and short-dashed line: Silver’s approximation. The last
two are calculated with MC correlations (eq. (15)).
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Figs. 2, 3, and 4 provide for a comparison of our results (denoted by p;HNC/ %

with those obtained with Silver’s approximation (denoted by p3,). It is to be
noted that the approximation p3, does not depend on ry5. At given ry/, the
difference between g3, and pthNC/ ° as a function of ry5, depends on the value
of 713 considered. For small values of ry 5, there are large deviations for almost
all values of ry, (except the small ones). For intermediate values of ryo, the
approximations pj, and pthNC/ ¢ almost coincide at small ry5; at mtermediate
values of ry;, the discrepancy is larger (and almost independent of ry/); and
at large 2 the two approximations are a%ain almost coincident. For large
values of ryg, it is found that pfh and p,FhH c/o nearly coincide at small rip;
at intermediate values of ry2, they show significant differences (though to a
smaller extent than in the preceding case); and at large ri; the two evalua-
tions are again in agreement. A further assessment of the validity of Silver’s
approximation can be made using Fig. 5, m which the two approximations

that are used to form p3, , specifically
pi(ri) = pip (7‘11')1(7‘11'), (16}
Foada(ri2) + Fgae(ri2) = g(ri2) — 1 (17)

are plotted and compared with the respective left-hand sides computed via
FHNC/0. The deficiences of Silver’s estimate are evident from these compar-
isons and speak for the advisability of using pSIHNC/ ? rather than p, (for
example) in the treatment of FSI within correlated Glauber theory [22,23].
Thereby one may be able to draw more convincing conclusions from experi-
ment regarding the quantitative importance of nuclear and color transparency
in inclusive quasielastic scattering of GeV electrons off nuclear matter at high
momentum transfers. In addition to Silver’s estimate, Gersch’s approximation
pS [eq. (11)] has been applied in this problem [24]. We have found pg, to

provide a generally better approximation to pthNC/ % than is given by p5, [31].
It will be interesting to determine the quantitative effect of using p;HNC/O n

the treatment of FSI developed m ref. [24].

4 Conclusions

In summary, we have presented a microscopic evaluation, within Fermi hyper-
netted-chain theory, of the half-diagonal two-body density matrix pa,(r;,rz, 1))
of nuclear matter, for the case of state-independent, central, two-body corre-
lations. The momentum-space transform n(p,Q) of py, has been calculat-
ed previously within the same framework [2,3]. Our results for pa,(ri,rs2, 1))
demonstrate a rich sensitivity of this observable to short range-correlations.
They also exhibit significant departures from the results given by Silver’s ap-
proximation [4] in certain regions of the variables involved. These differences
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p1(r117) and p1p(r11) are the full one-body density matrix and its direct-direct part
respectively and I(r11r) the Slater exchange function.

are expected to have significant repercussions within existing treatments of
final-state mteractions. The FHNC/0 results we have generated for py, will
be employed as input to a description of FSI in inclusive quasielastic scat-
tering of GeV electrons from nuclear matter, based on correlated Glauber
theory [23]. Further mvestigations of po(r;,r;,r}) in nuclear matter should
extend the available analysis and the calculations to realistic, state-dependent
correlations. There has recently been some progress toward this goal within
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self-consistent Green’s function theory [32]. However, it can be argued that our
results obtained with central state-independent correlations should be reason-
able in the problem of (e,e€’) quasielastic scattering at high momentum and
small energy transfers, where short-range repulsive correlations are dominant.
With regard to microscopic determination of pg(r;,r2,ry) for finite nuclei,
a local-density-approximation might be developed, as has been done for the
one-body density matrix in refs. [33,34].
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