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of Nuclear 

Form Factors and the Folding with the LSP 
Velocity. 

T. S. Kosmas a and J. D. Vergados b * 
a Theoretical Physics Division, University of Ioannina, GR-451 10 Ioannina, 

Greece 
b Department of Natural Sciences, University of Cyprus, 1678 Nicosia, Cyprus 

Abstract 

The momentum transfer dependence of the total cross section for elastic scattering 
of cold dark matter candidates, i.e. lightest supersymmetric particle (LSP), with nu­
clei is examined. We find that even though the energy transfer is small (< lOOKeV ) 
the momentum transfer can be quite big for large mass of the LSP and heavy nu­
clei. The total cross section can in such instances be reduced by a factor of about 
five. The spin induced cross section for odd-A nuclei is less reduced since the high 
multipoles tend to enhance the cross section as the momentum transfer increases 
(for LSP mass < 200 GeV). We present calculations of the event rates for a number 
of nuclear targets in a relatively wide phenomenologically allowed SUSY parameter 
space. These event rates are folded with a Maxwellian velocity distribution of the 
LSP consistent with its density hi the halos. We thus find that the event rates due 
to the Earth's revolution around the sun can change by 25%. This factor seems to 
be quite independent of the other parameters of the theory. Event rates up to 80 
KQ~XV~^ can be obtained in the parameter space considered. 

1 I n t r o d u c t i o n 

There is ample evidence that about 90% of the mat ter in the universe is non-
luminous and non-baryonic of unknown nature [l]-[3]. Furthermore, in order 
to accommodate large scale structure of the universe, one is forced to assume 
the existence of two kinds of dark matter [3]. One kind is composed of 
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particles which were relativistic at the time of the structure formation. This 
is called Hot Dark Matter (HDM). The other kind is composed of particles 
which were non-relativistic at the time of stucture formation. These constitute 
the Cold Dark Matter (CDM) component of the universe. The COBE data [4] 
by examining the inisotropy on background radiation suggest that the ratio of 
CDM to HDM most likely is 2:1. Since about 10% of the matter of the universe 
is known to be baryonic, we know that we have 60% CDM, 30% HDM and 
10% baryonic matter. 

The most natural candidates for HDM are the neutrinos provided that they 
have a mass greater than leV/c2. The situation is less clear in the case of CDM. 
The most appealing possibility, linked closely with Supersymmetry (SUSY), 
is the LSP i.e. the Lightest Supersymmetric Particle [5]-[7] (see ref. [7] for a 
recent review). 

In recent years, the phenomenological implications of Supersymmetry aie be­
ing taken very seriously [5,6]. More or less, accurate predictions at low ener­
gies are now feasible in terms of few input parameters in the context of SUSY 
models. Such predictions do not appear to depend on arbitrary choices of the 
relevant parameters or untested assumptions. In any case the SUSY parameter 
space is somewhat restricted [5]-[7]. 

In such theories derived from Supergravity the LSP is expected to be a neutral 
Majorana fermion with mass in the 10 — 500GeV/c2 region travelling with non-
relativistic velocities (< β > « 10~3), i.e. with energies in the KeV region. In 
practice, however, one expects a velocity distribution which is supposed to be 
Maxwellian (see sect. 4). In the absence of R-parity violating interactions this 
particle is absolutely stable. But, even in the presence of R-parity violation. 
it may live long enough to be a CDM candidate. 

The detection of the LSP, which is going to be denoted by \\, is extremely 
difficult, since this particle interacts with matter extremely weakly. One possi­
bility is the detection of secondary high energy neutrinos which are produced 
by pair annihilation in the sun where this particle is trapped. Such high energy 
neutrinos can be detected via neutrino telescopes. 

The other possibility, to be examined in the present work, is the detection of 

the energy of the recoiling nucleus in the reaction 

Xl + (AyZ)^Xl + (AZ)* (1) 

This energy can be converted into phonon energy and detected by a tempera­
ture rise in cryostatic detector with sufficiently high Debye temperature [3,8,9]. 
The detector should be large enough to allow a sufficient number of counts 
but not too large to permit anticoincidence shielding to reduce background. 
A compromise of about IK g is achieved. 
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Another possibility is the use of superconducting granules suspended in a 
magnetic field. The heat produced will destroy the superconductor and one 
can detect the resulting magnetic flux. Again a target of about lKg is favored. 

There are many targets which can be employed. The most popular ones contain 
the nuclei \He, \9F, fxNa, ?4Si, $Ca, ra.gGe, gAs, g * / , £ 4 * e and ™Pb. 

In order to be able to calculate the event rate for the process (1) the following 
ingredients are necessary. 

1) One must be able to construct the effective Lagrangian at the elementary 
particle level in the framework of Supersymmetry [10]-[16]. We will follow the 
procedure adopted in ref. [16]. For the readers convenience we will provide the 
important elements in sect. 2. 

2) One must make the transition from the quark to the nucléon level [17]-
[23]. This is not straightforward for the scalar couplings, which dominate the 
coherent part of the cross-section, and the isoscalar axial current which is 
important for the incoherent cross section for odd targets. 

3) One must properly treat the nucleus. Admittedly, the uncertainties here are 
smaller than those of even the most restricted SUSY parameter space. One, 
however, would like to put as accurate nuclear physics input as possible in 
order to constrain the SUSY parameters as much as possible when the data 
become available. 

For the coherent production, if one ignores the momentum transfer depen­
dence, the procedure is straightforward. The spin matr ix element, however, is 
another story. For its evaluation practically every known nuclear model has 
been employed. 

At first, the Independent Single Particle Shell Model (ISPSM) had been em­
ployed [10,12,24,25]. Subsequent calculations using the Odd Group Method 
(OGM) and the Extended Odd Group Method (EOGM), utilizing magnet­
ic moments and mirror /^-decays, by Engel and Vogel [26], showed that the 
ISPSM was inadequate (see also ref. [12]). Eventually, however, by performing 
shell model calculations [27], this model was also found lacking (see ref. [28]). 
Iachello, Krauss and Maino [29] employed the Interacting Boson Fermion Mod­
el (IBFM) and Nikolaev and Klapdor- Kleingrothaiis [13,30] the finite fermion 
theory in order to reliably evaluate the spin matrix elements. 

One additional complication arise from the fact that the LSP appears to be 
quite massive, perhaps heavier than lOOGeV. For such heavy LSP and suf­
ficiently heavy nuclei, the dependence of the nuclear matr ix elements on the 
momentum transfer cannot be ignored even if the LSP has energies as low as 
lOOA'eV) [11,24,25]. This affects both the coherent and the spin matrix ele-
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ments. For the coherent mode the essential new features can be absorbed in 
the nuclear form factor. The evaluation of the spin matrix elements is quite a 
bit more complicated. Quite a number of high multipoles can now contribute, 
some of them getting contributions from components of the wave function 
which do not contribute in the static limit (i.e. at q=0, see sect. 3). Thus, in 
general, sophisticated Shell Model calculations aie needed to account both for 
the observed retardation of the static spin matrix element and its correct q-
dependence. For the experimentally interesting nuclear systems ™Si and ^Ge 
very elaborate calculations have been performed by Ressell et al. [31]. In the 
case of &Ge a further improved calculation by Dimitrov, Engel and Pittel has 
recently been performed [32] by suitably mixing variationally determined tri-
axial Slatter determinants. Indeed, for this complex nucleus many multipoles 
contribute and the needed calculations involve techniques which are extremely 
sophisticated. 

In the present paper we will report the results of LSP-nucleus scattering cross 
section using some representative input in the restricted SUSY parameter 
space as outlined above. The coherent matrix elements will be computed 
throughout the periodic table. The needed form factors were obtained us­
ing the method of ref. [33], which are in good agreement with experiment. 
For the spin matrix elements we have chosen fSj1Pb as target. This target, in 
addition to its experimental qualifications, has the advantage of simple nu­
clear structure [34] (see sect. 3). Thus, only two multipoles can contribute. 
We may be able to draw some conclusions this way, which may reveal some 
physics obscured in the complexities of the calculations involving &Ge. Final­
ly, the obtained counting rate will be convoluted with a reasonable velocity 
distribution [7] (see sect. 4). 

2 Brief description of the operators 

It has recently been shown that process (1) can be described by a four fermion 
interaction [10]-[15] of the type [16] 

Us s = - - 4 [Λχι7 λ7 5Χι + 3%\X\\ (2) 

where 

Λ = # 7 λ [ / ? + fvrs + (f°A + Λτ 3 ) 7 5 Vf (3) 

and 

J = N(f0

s + fsT3)N (4) 
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We have neglected the uninteresting pseudoscalar and tensor currents. Note 
that, due to the Majorana nature of the LSP, Χι7ΛΧι — 0 (identically). The 
vector and axial vector form factors can arise out of Z-exchange and s-quark 
exchange [10]-[16] (s-quarks are the SUSY partners of quarks with spin zero). 
They have uncertainties in them (for three choices in the allowed parameter 
space of ref. [5] see ref. [16]). In our choice of the parameters the LSP is mostly a 
gaugino. Thus, the Z- contribution is small. It may become dominant in models 
in which the LSP happens to be primarily a Higgsino. Such a possibility will 
be examined elsewhere. The transition from the quark to the nucléon level is 
pretty straightforward in this case. This is in general the case of vector current 
contribution. We will see later that, due to the Majorana nature of the LSP, 
the contribution of the vector current, which can lead to a coherent effect of 
all nucléons, is suppressed [10-16]. The vector current is effectively multiplied 
by a factor of β = v/c, ν is the velocity of LSP (see table 1). Thus, the axial 
current, especially in the case of light and medium mass nuclei, cannot be 
ignored. 

For the isovector axial current one is pretty confident about how to go from 
the quark to the nucléon level. We know from ordinary weak decays that the 
coupling merely gets renormalized from g& = 1 to g& = 1.24. For the isoscalar 
axial current the situation is not completely clear. The naive quark model 
(NQM) would give a renormalization parameter of unity (the same as the 
isovector vector current). This point of view has, however, changed in recent 
years due to the so-called spin crisis, i.e. the fact that in the EMC data [17] it 
appears that only a small fraction of the proton spin arises from the quarks. 
Thus, one may have to renormalize fA by gA — 0.28, for u and d quarks, 
and gA = —0.16 for the strange quarks [18], i.e. a total factor of .12. These 
two possibilities, labeled as NQM and EMC, are listed in table 1. One cannot 
completely rule out the possibility that the actual value maybe anywhere in 
the above mentioned region [19]. 

The scalar form factors arise out of the Higgs exchange or via s-quark exchange 
when there is mixing between s-quarks ÇL and qn [10]-[12] (the partners of the 
left-handed and right-handed quarks). They have two types of uncertainties 
in them. One, which is the most important, at the quark level due to the 
uncertainties in the Higgs sector. The other in going from the quark to the 
nucléon level [14,15]. Such couplings are proportional to the quark masses, and 
hence sensitive to the small admixtures of qq (q other than u and d) present in 
the nucléon. Again values of f® and /$ in the allowed SUSY parameter space 
are considered [16]. 

The actual values of the parameters f§ and / ] . used here, arising mainly from 
Higgs exchange, were obtained by considering 1-loop corrections in the Higgs 
sector. As a result, the lightest Higgs mass is now a bit higher, i.e. more 
massive than the value of the Z-boson [20,21]. The thus obtained values of 
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Table 1 : The parameters ßßiß,ß,f\ and ft/β, β/ß f o r t h r e e S U S Y ***' 
tions (see ref. [16]). The value of β = IO - 3 was used. For the definition of β and β 
(models A, Β and C) see ref. [16] and for the values of m^, mjj and mA employed 
see ref. [5]. 

Quantity 

ßft(Z) 

Mz)lß{z) 
ß/Πϋ 
fUq)/ft(î) 
m)lßft{q){™odelA) 

mq)/ßfUq)(modeiB) 

ßft 
ftlß 
LS Ρ mass(GeV) 

tan2a 

mh,rriH,mA 

ß(H) (model A) 

ß/ß (model A) 

β(Η) (model Β) 

β(Η) (model C) 

fìiZ) 
Û(Z) 

ß(q)(NQM) 

ß{q){EMC) 

um 
f°A(NQM) 

ß(EMC) 

f\ 

Solution # 1 

0.475 X KT 5 

-1.153 

1.271 X KT 5 

0.222 

6.3 X IO"3 

0.140 

1.746 X n r 5 

-0.153 

126 

0.245 

116,346,345 

1.31 x IO"5 

-0.275 

5.29 X IO"4 

7.57 X 10~4 

-

1.27 X KT2 

0.510 X IO"2 

0.612 X KT 3 

0.277 x IO""2 

0.510 x IO"2 

0.612 X IO"3 

1.55 X 10"2 

Solution # 2 

1.916 X 10"5 

-1.153 

0.798 χ IO" 5 

2.727 

3.6 χ 10~3 

3.5 X IO" 2 

2.617 χ IO" 5 

-0.113 

27 

6.265 

110,327,305 

1.30 X 10~4 

-0.107 

7.84 X 10" 3 

7.44 χ 10" 3 

-

5.17 χ IO" 2 

3.55 X 10" 2 

0.426 χ 10" 2 

0.144 χ 10" 2 

3.55 χ IO" 2 

0.426 X 10" 2 

5.31 x 10" 2 

Solution # 3 

0.966 χ IO" 5 

-1.153 

1.898 χ IO" 5 

0.217 

2.4 X 10~3 

5.8 X 10" 2 

2.864 X 10" 5 

-0.251 

102 

0.528 

113,326,324 

1.38 X 10" 5 

-0.246 

6.28 X 10~4 

7.94 X 10~4 

-

2.58 x 10~2 

.704 x IO" 2 

.844 x IO" 3 

0.423 χ 10" 2 

.704 χ 10" 2 

.844 X 10" 3 

3.00 X 10" 2 

the parameters β and fg are smaller than those of ref. [16] (see table 1). 

The next source of ambiquities involves the step of going from the quark to 

the nucléon level for the scalar and isoscalar couplings. Here we adopt the 

procedure described in ref. [16] as a result of the analysis of ref. [14,22,23]. 
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3 Total cross section 

The invariant amplitude in the case of non-relativistic LSP takes the form [16] 

|m| 2 = EfEi-mi + PfPf | J o | 2 + |J|2 + |JJ2 
ΤΪΪΛ 

- ^ | J o | 2 + | J | 2 + | J | 2 (5) 

where \J0\ and |J | indicate the matrix elements of the time and space com­
ponents of the current J χ of eq. (3), respectively, and J represents the matrix 
element of the scalar current J of eq. (4). Notice that | J 0 | 2 is multiplied by β2 

(the suppression due to the Majorana nature of LSP mentioned above). It is 
straightforward to show that 

|j„l' = ^ ( q 2 ) l 2 ( / ? - / i ^ 5 i ^ ) 2 (6) 

J* = ^ | F ( q 2 ) | 2 (ft - S i ^ ~ ) (7) 

|JP = jjpjTjl < Jill l/2fio(q) + /i«i(q)] IIJ. > I2 (») 

with F(q2) the nuclear form factor and 

A A 

«o(q) = Σ ' O V * 1 * ' , Ωι (q) = Σ ^ 0 ) r 3 0 ) e - * q ^ (9) 
j=i j = i 

where σ^'), r 3 ( j), Xj are the spin, third component of isospin (τ^\ρ >= \p >) 
and coordinate of the j-th nucléon and q is the momentum transferred to the 
nucleus. 

The differential cross section in the laboratory frame takes the form [16] 

where η = πΐ\/πιρΑ ( mp = proton mass), rri\ is the mass of LSP, ξ = ρ; q > 0 
(forward scattering) and 

σ0 = _ L ( G F m p ) 2 ~ 0.77 χ IO" 3 8cm 2 (11) 
Ζ7Γ 

The momentum transfer q is given by 

ι ι * i 2 m i c 

|q| = <?o£, <7o = β ~ (12) 
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Table 2 : The quantity ç0 (forward momentum transfer) in units of fm 1 for three 
values of mi and three typical nuclei. 

Nucleus 

2 Q C C [ 

%Ge 

E8Pb 

<7o {MeV/c2) 

mi = 30GeV 

.174 

.215 

.267 

mi = lOOGeV 

.290 

.425 

.685 . 

mi = 150GeV 

.321 

.494 

.885 

Some values of go (forward momentum transfer) for some characteristic values 
of mi and representative nuclear systems (light, intermediate and heavy) aie 
given in table 2. It is clear that the momentum transfer can be sizable for 
large mi and heavy nuclei. 

The total cross section can be cast in the form 

mi.2 1 

mp (1 + ηψ 
μ2[ί/?2(/?-Λ^-#)2 

Hfl- fl^^f ]/.») - Y^r^ifv - fv^-^-fhicil)] 
+ (ΛΩο(0)) 2/ω(^) + 2Α/ΐΩο(0)Ωι(0)/οι(%

2) 

+ (ΛΩι(0)) 2 /ιι( %

2 )} (13) 

where 

1 

Wo) = 2(p + 1) je+2p \F(qU2)\2 # , μ = 0,1 (14) 

In evaluating the integrals /<» (<7o )•> ο̂ι(<7ο) an^ Αι(ίο), which contain the mo­
mentum dependence of the spin matrix elements, we follow the standard pro­
cedure of the multipole expansion of the e - , q r . Thus, we can write 

WHti?) n^M*1) 
.(ο) Ωρ.(0) 

/>,/>' = 0,1 (15) 

We warn the reader that our normalization is different than that found in the 
previous literature. Our integrals are normalized to unity as q becomes zero. 
We have also made the identification 

^ 0 , 1 ) = ttp{qie) = (2Ji + !)-"< J/H EMqotrjMMMJi > (16) 
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where ρ = Ο,1 and u;o(j) = 1 and u>i(j) = r3(j). In general, 

n^ = (2Ji + lyìVte < j/ii Σ [YA(*>) ® TO)]KÌA(?O^K{Ì)||J,· > (i7) 
3=1 

where ρ = 0,1. With the above expressions we have managed to separate the 
elementary parameters f% and f\ from the nuclear parameters. The latter 
were so parametrized that in the static limit (qo = 0) Ipp'{0) = 1. The static 
spin matrix element then takes the simple expression 

|J|2 = |Ä"o(o) + /i^(o)|2 

In a previous paper [33] we have shown that the nuclear form factor F(q2 ) can 
be adequately described within the harmonic oscillator model as follows 

F(q2) = [ |φ(<7&, Z) + ^*(qb, N)} e-^l* (18) 

where Φ is a polynomial of the form 

Nmax{a) 

${qb,a)= £ W(qb)2\ a = Z,N (19) 
λ=ο 

Nmax{Z) and Nmax(N) depend on the major harmonic oscillator shell occupied 
by protons and neutrons [33], respectively. The integral /p(<7o) cajl be written 
as 

u 

IMI) - Ip{u) = (1 + ,)u-<1+'> / x1+p \F(2x/b*)\2 dx, (20) 
ο 

where 

u = q2b2/2, b=l.0A1/3fm (21) 

With the use of eqs. (14), (20) we obtain 

IM = \2{ Z2I$ì(u) + 2NZltfz(u) + N*I$M} (22) 

where 

Nmas(a) Nmax{ß) n(a) g{ß) 9X+u+p (\ ι . . ι „\| λ+f+P κ 

«(«) = Σ Σ V V ? £ ^ ^ x -e~" Σ j](23) 

with α,β = Ν, Z. The coefficients 0^*' for light and medium nuclei have been 
computed in ref. [33]. In table 3 we present them by including in addition 
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Table 3. The coefficients θ\ determining the proton and neutron form factors for 
all closed (sub)shell nuclei. Ih a harmonic oscillator basis they are rational numbers. 
The coeflcients for λ = 0 are equal to Ζ (or N). 

nlj 

0*1/2 

0P3/2 

OPl/2 

0d5/2 

1*1/2 

Odz/2 

0/7/2 

l/>3/2 

Ο/5/2 

lpl/2 

009/2 

007/2 

1^5/2 

14/2 

2*1/2 

O/in/2 

O/I9/2 

I/7/2 

ΙΑ/2 

.2^3/2 

2pi/2 

0*13/2 

λ = 0 

2 

6 

8 

14 

16 

20 

28 

32 

38 

40 

50 

58 

64 

68 

70 

82 

92 

100 

106 

110 

112 

126 

λ = 1 

-2/3 

-1 

-3 

-11/3 

-5 

-9 

-11 

-14 

-15 

-65/3 

-27 

-31 

-101/3 

-35 

-45 

-160/3 

-60 

-65 

-205/3 

-70 

-84 

λ = 2 

1/10 

11/60 

1/4 

13/20 

61/60 

79/60 

3/2 

5/2 

33/10 

17/4 

293/60 

21/4 

29/4 

107/12 

217/20 

123/10 

403/30 

14 

35/2 

λ = 3 

-1/105 

-11/420 

-1/30 

-1/24 

-5/56 

-107/840 

-173/840 

-31/120 

-7/24 

-73/168 

-31/56 

-653/840 

-397/420 

-153/140 

-7/6 

-3/2 

λ = 4 

1/1512 

1/840 

1/336 

1/240 

1/192 

37/4032 

151/12096 

449/20160 

199/6720 

253/6720 

1/24 

1/18 

λ = 5 

-1/27720 

-1/15120 

-1/5040 

-1/3360 

-1/2240 

-1/1920 

-49/63360 

λ = 6 

1/617760 

those for heavy nuclei. The integrals Ip(u) for three typical nuclei i^Ca, HGe 
and ^&Pb ) a r e presented in fig. 1 as a function of m\. We see that, for light 
nuclei the modification of the cross section by the inclusion of the form factor 
is small. For heavy nuclei and massive mi the form factor has a dramatic effect 
on the cross section and may decrease it by a factor of about five. The integral 
I\(u) is even more suppressed but it is less important. 

The spin matrix elements unfortunately depend, in general, rather sensitively 
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on the details of the nuclear structure. As we mentioned in the introduction, 
the first attempt for quantitative description was based on the Odd Group 
Method [26]. Subsequent shell model calculations demonstrated that the OG-
M was not adequate and showed that more elaborate calculations were needed 
[31,32]. Furthermore, since the matrix elements at q = 0 are often quenched, 
the momentum dependence of the matrix elements was more important than 
it was naively expected. As a matter of fact, one has to include a lot of con­
figurations to accommodate all multipoles, which in complex nuclei like ^Si 
and ™Ge, result in very large Hilbert spaces. It will be therefore, a very hard 
task to substantially improve those calculations. 

Among the targets which have been considered for LSP detection, w7Pb stands 
out as an important candidate. The spin matrix element of this nucleus has not 
been evaluated, since one expects the relative importance of the spin versus 
the coherent mode to be more important on light nuclei. But, as we have 
mentioned, the spin matrix element in the light systems is quenched. On the 
other hand, the spin matrix element of 2 0 7 P6, especially the isoscalar one, does 
not suffer from unusually large quenching, as is known from the study of the 
magnetic moment. Thus, we view it as a good theoretical laboratory since: 
i) It is believed to have simple structure, one 2pl/2 neutron hole outside the 
doubly magic nucleus 708Pb. ii) Because of its low angular momentum, only 
two multipoles λ = 0 and λ = 2 with a J-rank of k = 1 can contribute even at 
large momentum transfers. One can thus view the information obtained from 
this nucleus as complementary to that of ^ G e . 

1.2 

1 

0.8 
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0.4 

0.2 

0 

) 50 

- \ 

100 

ι r • 

. 

150 200 
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Ca 
Ge 
Pb 

250 3( X) 

1.2 

1 

I i 

0.8 
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0.4 

0.2 
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"*?>*. 

;V x 

-

\ 

\ 

Ca — 
Ge — 
Pb —• -'-

_ 

-

. 

mi ( GeV ) 

Figure 1: The integrals Io and I\, which describe the coherent contribution of 

the total cross section as a function of the LSP mass (mi), for three typical 

nuclei: gGa, gGe and g»P&. 

To a good approximation [34] the ground state of the j^7Pb nucleus can be 

described as a 2pi/2 neutron hole in the &8Pb closed shell. Then for A = 0 one 
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finds 

fìo(q) = - ( l / ^ ) F 2 p ( q 2 ) , Ω,(ς) = ( l/x/3> 2 p (q 2 ) (24) 

and 

ι 

/co = hi = hi = 2 J ξ [F2p(q2)}2 άξ (25) 
ο 

Even though the probability of finding a pure 2pi/2 neutron hole in the | 
ground state of %% Pb is greater than 95%, the ground state magnetic moment 
is quenched due to the 1"*" p-h excitation involving the spin orbit partners. 
Hence, we expect a similar suppression of the isovector spin matrix elements. 
Thus we write 

1(1/2)" >93 = Co\(2Pi/2)-1 > [ l + C 1 | [0i„ / 2 (n)(0i 1 3 / 2 )- 1 (n)]l + > 

+ C 2 |[0^ 9 / 2(/ ))(0/i 1 1 / 2)- 1(p)]l+ > +...] (26) 

Due to angular momentum and parity selection rules, we have k = 1 and 
λ = 0,2. Retaining terms which are at most linear in the coefficients C\, C 2 

we obtain 

i) λ = 0 

tto(q) = CiiF^yVs-S^/lSY^CFoiiq2) + ( S / l l ^ C Ä ^ 2 ) ] }(27) 

«i(q) = -C2{F2p(q
2)/V3-S[(7/13)^CiFoi(q2) - ( δ / Π ) 1 ' * ^ ^ 2 ) ] }(28) 

where 

Νmax 

Fni(q2) = e " ' 2 6 2 ' 4 Σ Ί{;1)(Φ)2μ (29) 
μ=0 

The coefficients η^ are given in table 4. 

The coefficients Co, C\ and C2 were obtained by diagonalizing the Kuo-Brown 
G-matrix [35,36] in a model space of 2h-lp configurations. Thus, we find 

Co = 0.973350, Cx = 0.005295, C 2 = -0.006984 

We also find 

Ωο(0) = -(l/>/3)(0.95659), (small quenching) (30) 

Ω^Ο) = (1/Λ/3)(0.83296), (sizable quenching) (31) 
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Table 4. The coefficients η μ ' , entering the polynomial of eq. (29) describing the 

form factor of a single particle harmonic oscillator wave function up to 6tuo, i.e. 

throughout the periodic table. 

nl 

00 

0 1 

10 

02 

1 1 

0 3 

20 

1 2 

04 

2 1 

13 

05 

30 

22 

14 

06 

μ = 0 μ = 1 

1 -1/6 

1 -1/3 

1 -1/3 

1
 :

l/2 

1 -1/2 

1 -2/3 

1 -2/3 

1 -2/3 

1 -5/6 

1 -5/6 

1 -5/6 

1 -1 

1 -1 

1 -1 

1 -1 

μ = 2 

1/24 

1/60 

11/120 

1/20 

11/60 

19/120 

1/10 

17/60 

29/120 

1/6 

17/40 

2/5 

41/120 

1/4 

μ — 3 

-1/240 

-1/840 

-1/60 

-11/840 

-1/210 

-31/840 

-47/1680 

-1/84 

-31/420 

-1/15 

-1/20 

-1/42 

μ = 4 

1/1920 

1/3360 

1/15120 

9/4480 

37/30240 

1/3024 

27/4480 

41/8064 

1/315 

1/1008 

μ = 5 μ = 6 

-1/26880 

-1/60480 

-1/332640 

-1/4480 1/322560 

-1/5760 1/483840 

-1/11880 1/1330560 

-1/55440 1/8648640 

The amount of retardation of the total matr ix element depends on the values 

of /J and f\. 

ii) λ = 2. 

In this case, in addition to the leading ( 2 p l / 2 ) - 1 configuration, the first leading 

correction to the nuclear matr ix element is linear in the mixing coefficients 

CjtJ2 appearing in the expression: 

ΐ φ " 1 >= Co{|(2p1/2)-1(n) > +EQii»l(2Pi/2)-1(n);Ur1Ì2W2 = 1; 5 > }(32) 

i.e. 

Ω*2·1* = J ^ — { 2 ΣCh»G(juh,p) < ni/i|ia(ftWI»2/a > (33) 
v2J,· + 1 j l h 

+(-iy<(2pi/2r\\Tk\\(2Pl/2)-i>} 
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Table 5. The coefficients ε ^ η χ / ι , ^ ^ ^ ) , which describe the matrix elements < 
n i 1̂ |j2(?r)ITC2 '2 > (see apendix ), for harmonic oscillator wave function. 

ftl/l 

2 1 

0 5 

0 6 

0 6 

0 7 

n-ih 

2 1 

0 5 

0 6 

0 4 

0 5 

κ = 0 

26 
15 

26 
15 

2 

±VÜ3 

2 ^ 

κ = 1 

64 
21 

'208 
105 

20 
7 

105 V J - ' " 

4 /Üf 

-lyT 

κ = 2 

40 
21 

208 
315 

80 
63 

— \ / l 4 3 
3 1 5 V J / t 0 

16 [β5 
63V 3 

Κ ss 3 

16 
"35 

832 
10395 

160 
"693 

64 /Ϊ3~ 
"945 V H 

32 /êÊF 
"693 V 3 

Κ = 4 

4 
105 

32 
10395 

160 
9009 

32 ΓΤ~ 
945 V 143 

32 f~T 
693 V 39 

κ = 5 

64 
135135 

64 / Τ ~ 
10395 V 195 

where G(j\,J2,p) are isospin dependent geometrical factors which can be e-

valuated by standard techniques. Notice, however, that unlike the λ = 0 case, 

many amplitudes can contribute if the quadrupole modes coupled to the single 

hole wavefunction are admixed in the ground state of the system. 

In the simple model of ref. [34], in addition to the Ci, C<i encountered above, 
one needs the amplitudes of the two additional configurations, 0ji3/20jii/2(«) 
and 0i11/20^9/2(p), which are C 3 = 0.000239 and C4 = -0.000642. Obviously, 
this is a simplification, since one should consider the spin Giant Quadrupole 
Resonance (GQR), which may have a small admixture in the ground state 
of the nucleus but a very large transition matrix element. Such a detailed 
calculation including all 2%ω excitations is in progress and it will be reported 
elsewhere. 

The radial integrals < fti/i|J2(<Zo£Oln2^2 > can be cast in the form of eq. (29), 
but they depend on two single particle quantum numbers (see appendix). The 
relevant coefficients needed for the present work aie listed in table 5. 

Using eqs. (15), (27),(28) and (33), we can evaluate the integrals /oo, 0̂1 and 

Too- The results are presented in fig. 2. We see that for a heavy nucleus and 

high LSP mass the momentum transfer dependence of the spin matrix elements 

cannot be ignored. 

36 



For orientation purposes we have estimated the spin matrix element of the 
light nucleus fF. Assuming that its ground state wave function is a pure 
57/(3) state with the largest symmetry, i.e / = [3],(λμ) = (60), which may 
be a very crude approximation, we obtain [37,38] the expression 

gjsf-iiWHfW) (34) 

There is only isovector component contribution (the isoscalar matrix element 
vanishes). As expected that the effect of the nuclear form factor on the cross 
section for light nuclei is insignificant [39]. 

250 300 150 200 250 300 

mi ( GeV ) mi ( GeV 

Figure 2: The integrals Toi and In which give the spin contribution to the 
cross section for %?'Pb in the model described in sect. 3. For their definition 
see eqs. (20) and (22) in the text. 

4 Convolution of the cross section with the velocity distribution 

Let us assume that the LS Ρ is moving with velocity vz with respect to the 

detecting apparatus. Then the detection rate is 

dN p{0) 

dt mi 
ν2σ(ν), vz>0 (35) 

where p(0) the LSP density in our vicinity. This density has to be consistent 

with the LSP velocity distribution. Such a consistent choise can be a Maxwell 

distribution 

f(v) = (Vtv0)-3e-v7M 

provided that [30] 

(36) 
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Vo = y/(2ß) <υ2> = 220Κmls, ρ(0) = 0.3GeV/cm2 

For our purposes it is convenient to express the above distribution in the 
laboratory frame, i.e. 

/(•,•*) = ( ν ^ ο Γ ν ^ ^ ο (37) 

where VB is the velocity of the earth with respect to the center of the distri­
bution. Thus, 

® = ̂  J n*>VB)»MvMW)<Py (38) 

or 

where 

·/ V < V2 > 

and 

θ(ν,) = < 
0, υ 2 < 0 

or 

OO g 

J(v£,Vo) = (v^vo)- 3 / . V

 n e-V+tortajvyv (40) 

J V < υ 2 > 

π/2 fcr 

x J cos0sined6 Ι ε2νΎΕ^άφ 

In order to perform the angular integration, we expand the exponential in 
terms of spherical harmonics in a fashion which is familiar from the plane 
wave expansion, i.e. 

oo I 

e * " " Η = 47Γ Σ i,(2vvE/vl) £ Yi($, φ)Υ^(αί 7 ) (41) 
1=0 m=-/ 
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where (α, 7) are the two angles needed to specify the earth's velocity. ii(x) is 
the modified spherical Bessel function, which is finite at the origin, given by 

i,(x) - *' (;s) 
sinhx . v 

— — (42) 

Then, the φ angular integration is trivial due to axial symmetry (only the 
m=0 contributes, i.e. the result is independent of the angle 7). Furthermore, 
it is ea^y to show that 

r δη /3, / = odd 
fi=Jmm = { (43) 

0 [fin, l = 2n = even 

with 

/ f c = ±r<-y ( 4 " - 2 « > ! (44) 

2 2 n t^o κ!(2η - κ)!(2η - 2/c)!(2n - 2« + 2) V ' 

We thus get 

0 0 3 

*/(νΒ,νο) = 27Γ(ν^νοΓ3 fdv . V e-<*+*Ma{v) (45) 
J V< v2 > 

00 

x 5^(2/ + l)t,(2t;vE/vJ)/ifl(coea) 
/=o 

Introducing 

8= , φ = - 46 
v0 i'o 

and noting that the quantity u entering the nuclear form factors eq. (20) can 
be written as 

u = uoV»2 (47) 

with 

Uo = I iTTT^fiij ' A = 7 (48) 

we see that the integral <7(v£,Vo) depends on the parameters 6,cosa and Î/.O, 
i.e. 

1 °° 
•7(v*,v0) -» J(6,cosa,w0) = - y = = D 2 / + l)2/ifl(coee)/f|(i,«o) (49) 

V 07Γ , = 0 
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with 

oo 

Ki{Syuo) = 2e-*i/4 ίφ3ε-φίΐι{δφ)σ{η0φ
2)άφ (50) 

ο 

The dependence on the nuclear j>arameters is implicit in the cross section 
σ(υ,0φ

2). The factor l/\/6x is a consequence of the fact that 

< νζΘ{νζ) >= -r=V< v2 > (51) 
v6x 

It has been customary to use \/< v2 > in the expression for the flux (see 
eq. (39)). With this factor absent the counting rate has been exaggerated. 
To proceed further, we must disentangle the nuclear physics dependence in 
σ(η0φ

2). We begin with eq. (13) and take note of the extra velocity dependence 
of the coherent vector contribution. Then, using eqs. (12) and (49), we can 
write the counting rate with a target of mass m as follows: 

/dN\ p{0) m j — „ 
x at ' m\ Amp 

with 

(ß - A^-fh) + 
(/Siîo(0)),J'oo + 2/3/\iîo(0)fli(0)Jbi + (ÄOi(0))Vu} 

The quantities J0? Jp, JPa, with ρ, σ = 0,1, depend on u 0, δ and cosa. If J œ = 
JQ\ — Jiii as seems to be the case for 207P6, the spin dependent expression is 
reduced to the familiar expression /jj Ω0 (0)+/JiiM0) Joo, where the quantity 

in the bracket represents the spin matrix element at q = 0 

The integrals J 0 , Jp are obtained from the corresponding «7^, J^ via eq. (22) 

for α,β = Ν, Ζ. The integrals J ^ , J ^ and 3ρσ are given by eqs. (15), (49) 
with the obvious modification of Κι, namely 

oo 

k\0) = 2e~5 2 / 4 J φ36-^ΐι(δφ)Ιο(ηοφ2)άφ (53) 
ο 

R2 °° 
K\p) = 2 e - 5 2 / 4 ^ ^ J φ^-^ζ^δφ^ηοφ^άφ ρ = 0,1 (54) 
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oo 

Κ\ρσ = 2e~82lA Jφζε-^ίι{8φ)Ιρσ{η0φ
2)άφ, ρ,σ = 0,1 (55) 

ο 

The parameters Ip and Ιρσ have been defined in the previous section. The 
integrals (53)-(55) can only be done numerically. Since, however, the velocity 
of the earth around the sun is small, ν E ~ 30Km/s, the parameter δ is small 
(δ « 0.27). Thus, to a good approximation 

διΦι 

and one can limit oneself to the first two leading multipoles, / = 0 and / = 1. 

The integrals of eqs. (53) and (54) for these multipoles are shown in fig. 3. 

For the integrals of eq. (54) see ref. [39]. In order to have some idea of the 

dependence of the counting rate on the earth's position, we will consider cases 

in which the dependence of the matrix elements on the nuclear form factor 

can be neglected, i.e. let Ip = Ιρσ — 1 and utilize eq. (56) to get 

K^ = ΑΌ^ = 1, At> = 2 ^ ^ - j , for 1 = 0 (57) 

Âf> = K u . = &SKP = ψ^^6, for 1 = 1 (58) 

Furthermore, since 

2/o = 1, 2/, = 2/3 (59) 

we obtain 

J 0 = Ji = 2 — ^ — ( 1 + ^ δ cos a)/y/te (60) 

— -( 1 Η———δ cos a)Iv67r 
3 V 8 " 

Jo = Joo = Jai = J\\ = (1 + — ό cos a)/V&K (61) 
Zi 

We notice that, the amplitude of the oscillatory term of the leading contribu­

tion (eq. (60) is 

amplitude of oscillation = ——δ Ä* 0.24 

i.e. 

<f> = ( f U + °.24<-,)/^ 
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where (dN/dt)^ represents the previous estimates for the counting rate (ig­
noring the form factor dependence). 

The corresponding amplitude of oscillation in eq. (61) is a bit bigger ( % 
0.30). However, this coherent vector contribution is suppressed due to the 
Majorana nature of LS Ρ (through the factor < β2 >). The folding improves 
this contribution by a factor of 4/3. 

The folding procedure can be applied in the differential rate (by convoluting 
the relevant expression before the angular integration of the differential cross 
section άσ/diì) . The resulting expressions are, however, a bit more compli­
cated and they will not be given here. 

5 Results and discussion 

In this paper we have calculated the event rate for LSP-nucleus scattering for a 
number of experimentally interesting spin zero nuclear targets (coherent scat­
tering) as well as the spin such contribution in the case of 207Pb. The coherent 
scattering depends on the isoscalar scalar, / J , and vector, fv, patameters. The 

latter is effectively multiplied by the average velocity (β2) of the LSP due 
to its Majorana nature. These parameters were evaluated in the allowed SUSY 
paremeter space of Kane et al. [5]. The construction of the scalar parameters 
suffers from additional uncertainties, which involve the step of going from the 
quark to the nucléon level. In other words, the results are very sensitive to 
the presence of quarks other than u and d in the nucléon. Three such choices 
indicated by A, B, C are presented in table 1. 

The second ingredient is the nuclear structure input. The coherent scattering 
does not depend on the details of the nuclear wave function. It does, however, 
depend on the nuclear density, i.e. the assumed form factor, for fairly massive 
LSP and correspondingly heavy nuclei. This is because the momentum transfer 
in such cases can be quite high (by nuclear standards) even though the energy 
transfer is small. The used form factors were as realistic as possible (see tables 
3 and 4). The inclusion of the form factor results in sizable retardation of 
the cross-section which can be up to 40% for Ge and 85% for Pb. The above 
results were folded with the velocity distribution, which was assumed to be 
Maxwellian relative to its center. This folding tends to reduce the form factor 
retardation. We find that 

where the angle a describes the Earth's annual motion. The parameters ( ^ ) 

42 



Table β : The quantity ^£- in y~1Kg and the parameter h (oscillation due to the 
earth's motion around the sun) for the coherent vector and scalar contributions. 
For the definition of A, B, C, see text. NFM and WNFM stand for Nuclear Form 
Factor and Without Nuclear Form Factor respectively. 

Pb 

Ge 

Case 

Model 

#1{NFM) 

#1(WNFM) 

#2{NFM) 

#2{WNFM) 

#3{NFM) 

#3(WNFM) 

#1(NFM) 

#\{WNFM) 

#2(NFM) 

#2(WNFM) 

#3{NFM) 

#3(WNFM) 

Vector 

dN 
dt 

0.958 X IO" 3 

0.747 X IO" 4 

0.804 X IO" 3 

0.497 X IO" 3 

0.244 X IO" 2 

0.245 χ IO" 4 

0.115 X IO" 3 

0.417 X IO" 4 

0.192 X IO" 2 

0.148 X IO" 3 

0.342 X IO" 3 

0.126 X IO" 3 

h 

0.30 

0.24 

0.30 

0.27 

0.30 

0.24 

0.30 

0.28 

0.30 

0.27 

0.30 

0.32 

Scalar 

dN 
dt 

A Β C 

0.597 X IO" 3 0.880 1.802 

0.817 Χ I O - 4 0.121 0.247 

0.238 χ IO" 1 82.9 74.6 

0.143 Χ IO" 1 44.9 40.4 

0.556 Χ IO" 3 12.1 19.1 

0.978 χ IO" 4 2.30 3.36 

0.715 χ IO" 4 0.106 0.216 

0.350 χ IO" 4 0.052 0.106 

0.570 χ IO" 2 19.9 17.9 

0.470 Χ IO" 2 16.5 14.9 

0.818 Χ IO" 4 1.69 2.67 

0.437 χ IO" 4 0.900 1.43 

h 

0.24 

0.18 

0.24 

0.25 

0.24 

0.18 

0.24 

0.20 

0.24 

0.23 

0.24 

0.21 

and h are shown in table 6 for two typical and experimentally interesting nu­
clei, ^Ge and 2 0 7Pb. From this table we see that, the event rate is highest when 
the LSP is lightest (mi = 27CeV, case #2) . We notice that, even within the 
allowed parameter space, the event rate may vary by two orders of magnitude. 
We also notice that, with the possible exception of the not so realistic model 
A, the vector contribution is negligible, i.e. the Higgs contribution becomes 
dominant. This is even more so in models where quarks other than u and d 
are present in the nucleus with appreciable probabilities, due to their large 
masses. In the most favorable cases, one may have more than 80 events per 
year per kilogram of target. We notice that, the amplitude due to the Earth's 
annual motion can change by 20-25%. Finally, we should mention that, for 
cases #1 and # 3 (massive LSP), the rate due to the nuclear form factor can 
be reduced by a factor of approximately 6. Because the form factor depen­
dence is more pronounced in heavy nuclei, there is no advantage in going to 
the heavier targets if the LSP turns out to be massive. 

Next we come to the discussion of the spin matrix contribution. As we have 

mentioned in the introduction, the relative importance of the spin matrix 
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element is expected to decrease as one goes to the heavier systems vis a vis 
the coherent scattering. We have seen, however, that the increase due to the 
mass number in the coherent scattering is offset by the decline due to form 
factor. Similarly, m7Pb can be adequately described as a single neutron hole 
in the doubly magic closed shell 208Pb nucleus. Thus, the retardation of the 
static spin matrix element may be less dramatic than in the light systems. 
Furthermore, because of the fact that more than one multipole may contribute, 
the retardation due to the form factor may be less dramatic. 

We find that indeed the 2 0 7Pb ground state, in a lh and 2h-lp model space 
is more than 95% a 2pi/2 neutron configuration. We have evaluated the spin 
matrix elements up to terms linear in the small amplitudes. Out of the 250 
components, only two of them contribute to the λ = 0 multipole while two 
more contribute to the λ = 2 multipole. Thus, we find that, the isoscalar static 
matrix element suffers from very little retardation, while the isovector matrix 
element is reduced by 17%. Since, in the parameter space we are using, the 
isovector coupling f\ is larger this results in a similar retardation of the total 
matrix element. The isoscalar axial coupling f\ has more uncertainties. In 
passing from the quark to the nucléon level the amplitude must be multiplied 
by a factor g A which ranges from 1, in the Naive Quark Model (NQM), to 
.12, if extracted from the EMC data. In our calculations we considered both 
of these extremes. Also, since the dominant configuration is of the neutron 
variety, the isoscalar tends to subtract from the isovector, but this is not so 
dramatic in our case since the isoscalar is smaller in absolute value, especially 
in the EMC case. 

The momentum dependence can be described in terms of three integrals Too, 
Ι(Ά·> hi-, where the subscripts indicate the isospin channels. In our case, these 
integrals receive contributions from two multipoles, λ = 0 (spin monopole) 
and λ = 2 (spin-quadrupole). They were judiciously normalized to their static 
value (unity). When so normalized these integrals are approximately equal (see 
fig. 3 and also ref. [39]). We notice that, the monopole contribution falls with 
momentum transfer, as expected, quite fast in fact for large LSP mass. On the 
contrary, the quadrupole contribution starts out at zero and keeps increasing 
up to about 90 GeV. As a result its contribution in this mass regime is crucial 
since it tends to partly compensate for the supression of the monopole term. 
We expect these trends to persist even in the most elaborate calculations which 
include the Giant Quadrupole Resonance (GQR) and are currently under way. 
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Table 7 : The quantity ^ in y~lKg and the parameter h (oscillation due to 
the earth's motion around the sun) for the spin contribution in the LS Ρ nucleus 
scattering in 707 Pb. NFM and WNFM stand for nuclear Form Factor and Without 
Nuclear Form Factor respectively. 

Case 

#1(JVFM) 

#1(WNFM) 

#2(iVFM) 

#2{WNFM) 

#3(NFM) 

#3(WNFM) 

dN h dN h 
dt n dt n 

EMC EMC NQM NQM 

0.365 X H T 2 0.24 0.158 χ 10~2 0.24 

0.120 χ 10" 2 0.27 0.523 χ 10~3 0.19 

0.168 X IO" 1 0.24 0.110 Χ 10~2 0.24 

0.728 X 10" 1 0.22 0.800 Χ 10~3 0.23 

0.135 X IO" 1 0.24 0.646 χ IO" 2 0.24 

0.540 Χ 10~3 0.20 0.253 X IO" 2 0.21 

réf. [5], barring unforseen lack of retardation of the spin matrix element in a 
light nucleus, the spin induced LSP-nucleus scattering may not be detectable. 
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Figure 3: The quantities K\ and K\p' (for 1=0 and 1=1) entering the event 
rates due to earth's revolution around the sun. For their definition see sect. 4, 
eqs. (53) and (54), in the text. 

6 Conclusions 

In the present work we have performed calculations of the event rate for LSP-
nucleus scattering for two typical experimentally interesting nuclei, i.e. Pb 
and Ge. The three basic ingredients of our calculation were the input SUSY 
parameters, a quark model for the nucléon and the structure of the nuclei 
involved. The input SUSY parameters were calculated in a phenomenologically 
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allowed parameter space (cases # 1 , #2 , # 3 of table 1) as explained in the text. 
In going from the quark to the nucléon level the quark structure of the nucléon 
was essential. In particular its content in quarks other than u and d. For the 
scalar interaction we considered three models (labeled A, B, C in table 1) as 
described in the text. For the isovector axial coupling one encounters the so-
called nucléon spin crisis. Again we considered two possibilities depending on 
the assumed portion of the nucléon spin which is due to the quarks (indicated 
by EMC and NQM in table 1) as described in the text. As regards nuclear 
stucture we employed as detailed as feasible nuclear wave functions. For the 
coherent part (scalar and vector) we used realistic nuclear form factors. For 
the 207P6 system we also computed the spin matrix element. The ground state 
wave function was obtained by a diagonalizing the nuclear Hamiltonian in a 
2h-lp space which is standard for this doubly magic nucleus. The momentum 
dependence of the matrix elements was taken into account and all relevant 
multipoles were retained (in this system one encounters only two, / = 0 and 
1 = 2 due to selection rules). Finally, the obtained results were convoluted 
with a suitable Maxwell-Boltzmann velocity distribution of the LSP's. This 
convolution was necessary to partially neutralize the form factor retardation, 
but mainly to compute the modulation of the event rate due to the Earth's 
motion. We find that in almost all cases the event rate due to the Earth's 
revolution around the sun can change from -25% to +25% around its average 
value. Given enough counts this is a significant effect which can be used to 
discriminate against background. The event rates thus obtained are listed in 
tables 6 and 7. Unfortunately, the obtained results are sensitive to the input 
parameters. The inclusion of the nuclear form factor significantly retards the 
event rates for heavy nuclei (A > 100) and fairly massive LSP (mi > lOOGeV). 
However, this retardation does not outweight completely the advantages of 
using a heavy target. For the spin matrix elements the form factor retardation 
of the usual / = 0 multipole is partially neutralized by the higher multipoles. 
From the data of tables 6 and 7 we see that it is possible to have detectable 
rates ( > 20 per kilogramme per year) for case # 2 and the realistic nucléon 
models Β and C, resulting from the scalar Higgs exchange term. In all other 
cases, including the spin contribution, the calculated event rates are too small. 
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• Appendix 

In the case when λ = 2, the operator is written as 

T* = Vtojx{qr) [y*(q) <g> σ]" (63) 

For 207 Pb we are interested in calculated the matrix elements of this operator 
in the case κ = 1 and λ = 0,2 for the states 

| ( 2 P l / 2 ) - 1 >, c ,

J l i 2 | [ 2 p 1 / 2 ) - 1 i r 1 ] ^ ; j 2 ; i / 2 > (64) 

or the matrix elements 

ME = Cl[± < ( 2 Ρ ι / 2 ) - 1 | | Γ ' ί | | ( 2 ρ 1 / 2 ) - 1 > + (65) 

± 2 £ Chh < (2p1/2)-1||T' t||(2p1/2)-1[7T1Ì2]/c;l/2 > 
h h 

where the + sign is for isoscalar and the — for isovector matrix elements. 

The reduced matrix elements < ji | |TK | | j2 > are given in ref. [40]. The relevant 
radial matrix elements < rci/i|j/(çr)|n2/2 > for harmonic oscillator basis can 
be witten in the compact way 

< ruhljtiqr^nth > = Χψ e " x Σ eK χ*, χ = (qb)2/4 (66) 

where 

Kmax = ni + n 2 + m, m = (h + l2 - l)/2 

The coefficients eÄ(ni/i,n2/2,/) are given by 

c " = 4IYn 4 - / I C . , Τ ,ν ' Σ Σ nìKAnih^M^inW) ι 4Γ(ηι + h + 2 )Γ(π 2 + /2 + g)J

 κι=ζφ Κ2=σ 

where η = κ\ + «2 + w and 

m — η 2 < 0 

m — η 2 > 0 

m — «ι < 0 

m — «χ > 0 

0, κ 

κ — m — η 2 , κ 

σ = 
0, 

κ — πι — «χ, κ 
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For some spacial cases used in the present work see table 5. 
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