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Abstract

The momentum transfer dependence of the total cross section for elastic scattering
of cold dark matter candidates, i.e. lightest supersymmetric particle (LSP), with nu-
clei is examined. We find that even though the energy transfer is small (< 100KeV')
the momentum transfer can be quite big for large mass of the LSP and heavy nu-
clei. The total cross section can in such instances be reduced by a factor of about
five. The spin induced cross section for odd-A nuclei is less reduced since the high
multipoles tend to enhance the cross section as the momentum transfer increases
(for LSP mass < 200 GeV'). We present calculations of the event rates for a number
of nuclear targets in a relatively wide phenomenologically allowed SUSY parameter
space. These event rates are folded with a Maxwellian velocity distribution of the
LSP consistent with its density in the halos. We thus find that the event rates due
to the Earth’s revolution around the sun can change by 25%. This factor seems to
be quite independent of the other parameters of the theory. Event rates up to 80
Kg~1y~! can be obtained in the parameter space considered.

1 Introduction

There is ample evidence that about 90% of the matter in the universe is non-
luminous and non-baryonic of unknown nature [1]-[3]. Furthermore, in order
to accommodate large scale structure of the universe, one is forced to assume
the existence of two kinds of dark matter [3]. One kind is composed of
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particles which were relativistic at the time of the structure formation. This
is called Hot Dark Matter (HDM). The other kind is composed of particles
which were non-relativistic at the time of stucture formation. These constitute
the Cold Dark Matter (CDM) component of the universe. The COBE data [4]
by examining the inisotropy on background radiation suggest that the ratio of
CDM to HDM most likely is 2:1. Since about 10% of the matter of the universe
is known to be baryonic, we know that we have 60% CDM, 30% HDM and
10% baryonic matter.

The most natural candidates for HDM are the neutrinos provided that they
have a mass greater than 1eV/c?. The situation is less clear in the case of CDM.
The most appealing possibility, linked closely with Supersymmetry (SUSY),
is the LSP ie. the Lightest Supersymmetric Particle [5]-[7] (see ref. [7] for a
recent review).

In recent years, the phenomenological implications of Supersymmetry are be-
ing taken very seriously [5,6]. More or less, accurate predictions at low ener-
gies are now feasible in terms of few input parameters in the context of SUSY
models. Such predictions do not appear to depend on arbitrary choices of the
relevant parameters or untested assumptions. In any case the SUSY parameter
space is somewhat restricted [5)-[7].

In such theories derived from Supergravity the LSP is expected to be a neutral
Majorana fermion with mass in the 10—500GeV/c? region travelling with non-
relativistic velocities (< 8 >~ 10723), i.e. with energies in the KeV region. In
practice, however, one expects a velocity distribution which is supposed to be
Maxwellian (see sect. 4). In the absence of R-parity violating interactions this
particle is absolutely stable. But, even in the presence of R-parity violation.
it may live long enough to be a CDM candidate.

The detection of the LSP, which is going to be denoted by x;, is extremely
difficult, since this particle interacts with matter extremely weakly. One possi-
bility is the detection of secondary high energy neutrinos which are produced
by pair annihilation in the sun where this particle is trapped. Such high energy
neutrinos can be detected via neutrino telescopes.

The other possibility, to be examined in the present work, is the detection of
the energy of the recoiling nucleus in the reaction

x1+(A,Z) = x1+ (A Z) Bty

This energy can be converted into phonon energy and detected by a tempera-
ture rise in cryostatic detector with sufficiently high Debye temperature [3,8,9].
The detector should be large enough to allow a sufficient number of counts
but not too large to permit anticoincidence shielding to reduce background.
A compromise of about 1K g is achieved.
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Another possibility is the use of superconducting granules suspended in a
magnetic field. The heat produced will destroy the superconductor and one
can detect the resulting magnetic flux. Again a target of about 1Kg is favored.

There are many targets which can be employed. The most popular ones contain
the nuclei 3He, °F, BNa, BSi, 8Ca, ®1Ge, B As, 1371, 134 Xe and 27 Pb.

In order to be able to calculate the event rate for the process (1) the following
ingredients are necessary.

1) One must be able to construct the effective Lagrangian at the elementary
particle level in the framework of Supersymmetry [10]-[16]. We will follow the
procedure adopted in ref. [16]. For the readers convenience we will provide the
important elements in sect. 2.

2) One must make the transition from the quark to the nucleon .level [L7]-
[23]. This is not straightforward for the scalar couplings, which dominate the
coherent part of the cross-section, and the isoscalar axial current which is
important for the incoherent cross section for odd targets.

3) One must properly treat the nucleus. Admittedly, the uncertainties here are
smaller than those of even the most restricted SUSY parameter space. One,
however, would like to put as accurate nuclear physics input as possible in
order to constrain the SUSY parameters as much as possible when the data
become available.

For the coherent production, if one ignores the momentum transfer depen-
dence, the procedure is straightforward. The spin matrix element, however, is
another story. For its evaluation practically every known nuclear model has
been employed.

At first, the Independent Single Particle Shell Model (ISPSM) had been em-
ployed [10,12,24,25]. Subsequent calculations using the Odd Group Method
(OGM) and the Extended Odd Group Method (EOGM), utilizing magnet-
ic moments and mirror (3-decays, by Engel and Vogel [26], showed that the
ISPSM was inadequate (see also ref. [12]). Eventually, however, by performing
shell model calculations [27], this model was also found lacking (see ref. [28]).
Tachello, Krauss and Maino [29] employed the Interacting Boson Fermion Mod-
el (IBFM) and Nikolaev and Klapdor- Kleingrothaus [13,30] the finite fermion
theory in order to reliably evaluate the spin matrix elements.

One additional complication arise from the fact that the LSP appears to be
quite massive, perhaps heavier than 100GeV. For such heavy LSP and suf-
ficiently heavy nuclei, the dependence of the nuclear matrix elements on the
momentum transfer cannot be ignored even if the LSP has energies as low as
100K eV) [11,24,25]. This affects both the coherent and the spin matrix ele-
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ments. For the coherent mode the essential new features can be absorbed in
the nuclear form factor. The evaluation of the spin matrix elements is quite a
bit more complicated. Quite a number of high multipoles can now contribute,
some of them getting contributions from components of the wave function
which do not contribute in the static limit (i.e. at q=0, see sect. 3). Thus, in
general, sophisticated Shell Model calculations are needed to account both for
the observed retardation of the static spin matrix element and its correct g-
dependence. For the experimentally interesting nuclear systems #3.5¢ and 33Ge
very elaborate calculations have been performed by Ressell et al. [31]. In the
case of 3Ge a further improved calculation by Dimitrov, Engel and Pittel has
recently been performed [32] by suitably mixing variationally determined tri-
axial Slatter determinants. Indeed, for this complex nucleus many multipoles
contribute and the needed calculations involve techniques which are extremely
sophisticated.

In the present paper we will report the results of LSP-nucleus scattering cross
section using some representative input in the restricted SUSY parameter
space as outlined above. The coherent matrix elements will be computed
throughout the periodic table. The needed form factors were obtained us-
ing the method of ref. [33], which are in good agreement with experiment.
For the spin matrix elements we have chosen 27 Pb as target. This target, in
addition to its experimental qualifications, has the advantage of simple nu-
clear structure [34] (see sect. 3). Thus, only two multipoles can contribute.
We may be able to draw some conclusions this way, which may reveal some
physics obscured in the complexities of the calculations involving 3 Ge. Final-
ly, the obtained counting rate will be convoluted with a reasonable velocity
distribution [7] (see sect. 4).

2 Brief description of the operators

It has recently been shown that process (1) can be described by a four fermion
interaction [10]-[15] of the type [16]

Less = _9’_% [y xa + Jxaxal (2)
where

= Nnlfo + fors+ (f4 + fams)rs IN ®3)
and

J = N(f3+ firs)N (4)
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We have neglected the uninteresting pseudoscalar and tensor currents. Note
that, due to the Majorana nature of the LSP, ¥;v*x; = 0 (identically). The
vector and axial vector form factors can arise out of Z-exchange and s-quark
exchange [10]-[16] (s-quarks are the SUSY partners of quarks with spin zero).
They have uncertainties in them (for three choices in the allowed parameter
space of ref. [5] see ref. [16]). In our choice of the parameters the LSP is mostly a
gaugino. Thus, the Z- contribution is small. It may become dominant in models
in which the LSP happens to be primarily a Higgsino. Such a possibility will
be examined elsewhere. The transition from the quark to the nucleon level is
pretty straightforward in this case. This is in general the case of vector current
contribution. We will see later that, due to the Majorana nature of the LSP,
the contribution of the vector current, which can lead to a coherent effect of
all nucleons, is suppressed [10-16]. The vector current is effectively multiplied
by a factor of 8 = v/c, v is the velocity of LSP (see table 1). Thus, the axial
current, especially in the case of light and medium mass nuclei, cannot be
ignored.

For the isovector axial current one is pretty confident about how to go from
the quark to the nucleon level. We know from ordinary weak decays that the
coupling merely gets renormalized from g4 = 1 to g4 = 1.24. For the isoscalar
axial current the situation is not completely clear. The naive quark model
(NQM) would give a renormalization parameter of unity (the same as the
isovector vector current). This point of view has, however, changed in recent
years due to the so-called spin crisis, i.e. the fact that in the EMC data [17] it
appears that only a small fraction of the proton spin arises from the quarks.
Thus, one may have to renormalize f§ by ¢4 = 0.28, for u and d quarks,
and ¢% = —0.16 for the strange quarks [18], i.e. a total factor of .12. These
two possibilities, labeled as NQM and EMC, are listed in table 1. One cannot
completely rule out the possibility that the actual value maybe anywhere in
the above mentioned region [19].

The scalar form factors arise out of the Higgs exchange or via s-quark exchange
when there is mixing between s-quarks ¢z, and gg [10]-[12] (the partners of the
left-handed and right-handed quarks). They have two types of uncertainties
in them. One, which is the most important, at the quark level due to the
uncertainties in the Higgs sector. The other in going from the quark to the
nucleon level [14,15]. Such couplings are proportional to the quark masses, and
hence sensitive to the small admixtures of ¢ (q other than u and d) present in
the nucleon. Again values of f2 and f} in the allowed SUSY parameter space
are considered [16].

The actual values of the parameters f3 and f1 used here, arising mainly from
Higgs exchange, were obtained by considering 1-loop corrections in the Higgs
sector. As a result, the lightest Higgs mass is now a bit higher, i.e. more
massive than the value of the Z-boson [20,21]. The thus obtained values of
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Table 1 : The parameters 817, f2, 9, f} and fi,/f9, f5/f2 for three SUSY solu-
tions (see ref. [16]). The value of # = 10~3 was used. For the definition of fJ and f}
(models A, B and C) see ref. [16] and for the values of mp, my and m, employed

see ref. [5].

Quantity Solution #1 | Solution #2 | Solution #3
Bfo(Z) 0.475 x 10~° | 1.916 x 10~5 | 0.966 x 10~°
A2 91(2) -1.153 -1.153 -1.153
B2d) 1.271 x 1075 | 0.798 x 105 | 1.898 x 10~
F@)/ 2(@) 0.222 2.727 0.217
£2(4)/8f2(§)(modelA) | 6.3 x107% | 36x1073 | 24x1073
9(§)/8 f%(§)(model B) 0.140 3.5 x 1072 5.8 x 1072
B 1.746 x 1075 | 2.617 x 10~° | 2.864 x 10~°
Fidhi -0.153 -0.113 -0.251
LSP mass(GeV') 126 27 102
tan2a 0.245 6.265 0.528
Mh, ME, MA 116,346,345 | 110,327,305 | 113,326,324
f(H) (model A) 1.31 x 10~% | 1.30 x 10~* | 1.38 x 10~5
f&/ 72 (model A) -0.275 -0.107 -0.246
f2(H) (model B) 529 x 107* | 7.84 x 1073 | 6.28 x 10~*
f2(H) (model C) 757 x 1074 | 7.44 x 1073 | 7.94 x 10~*
fi(2) = « .
@ 1.27 x 10°% | 5.17 x 102 | 2.58'x 10~2
fRENQM) 0.510 x 1072 | 3.55 x 1072 | .704 x 10~2
fAEGEMC) 0.612 x 1073 | 0.426 x 1072 | .844 x 10~3
£i@) 0.277 x 1072 | 0.144 x 10~2 | 0.423 x 10~2
RNQM) 0.510 x 102 | 3.55 x 10~2 | .704 x 10~2
fAUEMC) 0.612 x 1073 | 0.426 x 10~2 | .844 x 10~3
fi 1.55 x 1072 | 531 x 10~2 | 3.00 x 102

the parameters f2 and f} are smaller than those of ref. [16] (see table 1).
The next source of ambiquities involves the step of going from the quark to
the nucleon level for the scalar and isoscalar couplings. Here we adopt the
procedure described in ref. [16] as a result of the analysis of ref. [14,22,23).
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3 Total cross section

The invariant amplitude in the case of non-relativistic LSP takes the form [16]

EjE; —m}+p;i-
|m|2= b 7:;2 P: - Py |Jo|2+|J|‘2_I_|J|2
1
= B2 Jo|* + [I* + |2 (5)

where |Jo| and |J| indicate the matrix elements of the time and space com-
ponents of the current J of eq. (3), respectively, and J represents the matrix
element of the scalar current J of eq. (4). Notice that |Jp|? is multiplied by 32
(the suppression due to the Majorana nature of LSP mentioned above). It is
straightforward to show that

ot = @) (13- A=) ©
7= apa (- n2=22) )
3P = 51 < U30(@ + @Il > P ®

with F(q?) the nuclear form factor and
Q) = oj)e 9, Qu(a) = jz:a(j)rs(j)e-‘q-*f o)

where o(j), 73(j), X; are the spin, third component of isospin (m3|p >= |p >)
and coordinate of the j-th nucleon and q is the momentum transferred to the
nucleus.

The differential cross section in the laboratory frame takes the form [16]

do 0o , M

2 2n+1
E=?(mz’) 1+ )

(1 +n)?

| Jol*[1 -

&1+ 117+ 1%} (10)

where n = my/m,A ( m, = proton mass), m, is the mass of LSP, £ = p;-§ > 0
(forward scattering) and

oo = 2L(G’pm,,)2 ~ 0.77 x 1078 em? (11)
™

The momentum transfer q is given by

2m]c
147

lal = ¢ =28 (12)

29



Table 2 : The quantity ¢o (forward momentum transfer) in units of fm=! for three
values of my and three typical nuclei.

g (MeV/c?)
Nucleus | m; = 30GeV m; = 100GeV m,; = 150GeV

BCa 174 290 321
2Ge 215 425 494
28Pb 267 685 885

Some values of g (forward momentum transfer) for some characteristic values
of m; and representative nuclear systems (light, intermediate and heavy) are
given in table 2. It is clear that the momentum transfer can be sizable for
large m; and heavy nuclei.

The total cross section can be cast in the form

7= oo TP e (1B~
A= 2Z 4L s A= s
+(8- P Molad) — g(1"+"),(fv—fv—A—) L(a3)
+ (f.?;no(o))2 Im(q?,) + 25 F490(0)21(0) Jor (45)
+(fa(0))* 1u(g5) } (13)
where
L) =2p+1) [ €% |F@e)Pde,  p=0.1 (14)

In evaluating the integrals Io(g2), o1 (¢2) and I11(g2), which contain the mo-
mentum dependence of the spin matrix elements, we follow the standard pro-
cedure of the multipole expansion of the e~*@T. Thus, we can write

1 Q) (g262 Q(,\n) 2e
Lw(g5) = / §d¢ Z (g)“ p((o)é ), pp =0,1 (15)

0

We warn the reader that our normalization is different than that found in the
previous literature. Our integrals are normalized to unity as q becomes zero.
We have also made the identification

D = Q,(g5€%) = (2Ji +1)77 < JfIIZJo q0¢riJw, () (NI > (16)

g=1
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where p = 0,1 and wo(j) = 1 and w;(j) = 73(j). In general,
Q) = (2, + 1)V < quz (Y2 @) @ o)) "ia(gotrs)e, I > (17)

where p = 0,1. With the above expressions we have managed to separate the
elementary parameters f§ and f} from the nuclear parameters. The latter
were so parametrized that in the static limit (go = 0) I,,/(0) = 1. The static
spin matrix element then takes the simple expression

31 =] £39%00) + i)

In a previous paper [33] we have shown that the nuclear form factor F'(¢?) can
be adequately described within the harmonic oscillator model as follows

F(®) = [58(gb, 2) + S 8(gb, N) |4 (18)

where ® is a polynomial of the form

Nma:(ﬁ)
B(gha) = Y 0 (qb)*, a=2ZN (19)

A=0

Nmaz(Z) and Nypoz(N) depend on the major harmonic oscillator shell occupied
by protons and neutrons [33], respectively. The integral I,(¢2) can be written
as

I1,68) = Lw) = (1 + =0+ / 42 |F(2a/t7)] da, (20)
where
u=gq%/2, b=10AY°fm (21)

With the use of eqgs. (14), (20) we obtain

1
L(w) = 4 Z2 I8 (u) + 2N Z 1) (u) + N2 I8 (u)} (22)
where
Nmaz(ﬂ) Nmaz(8) 0(“) 0(/3) 2A+y+p (,\ + v + p) _ Atv+p u”
Bw= Y X B +s [ -t ) —u] (23)
A=0 w»=0 @ u = k!

with o, 8 = N, Z. The coefficients 6'*) for light and medium nuclei have been
computed in ref. [33]. In table 3 we present them by including in addition
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Table 8. The coefficients @) determining the proton and neutron form factors for
all closed (sub)shell nuclei. In a harmonic oscillator basis they are rational numbers.

The coeficients for A = 0 are equal to Z (or N).

i | A=0 A=1 A=2 A=3 A=4 A=5 A=6
08172 2
0p3/2 6 -2/3
0p1/2 8 =1
Odgjy | 14 -3 1/10
sy, | 16 -11/3  11/60
Odg, | 20 5 1/4
Ofrz | 28 -9 13/20  -1/105
1p3/2 32 -11 61/60 -11/420
Ofss | 38 14 T9/60 -1/30
pyy | 40 <15 32 -1/24
Oge» | 50  -65/3 5/2  5/56  1/1512
Ogrjy | 58 27 33/10  -107/840 1/840
ds, | 64 -31  17/4  -173/840 1/336
1d3/2 68 -101/3 293/60 -31/120 1/240
2, | 70 35  21/4  -7/24  1/192
Ohyy, | 8  -45  20/4  -73/168 37/4032  -1/27720
0h9/2 92 -160/3 107/12 -31/56 151/12096 -1/15120
fya | 100 -60  217/20 -653/840 449/20160 -1/5040
1f5/2 106 -65 123/10 -397/420 199/6720 -1/3360
2ps2 | 110 -205/3 403/30 -153/140 253/6720  -1/2240
oy | 12 0 14 /6 1/24 -1/1920
0i13/2 126 -84 35/2 -3/2 1/18 -49/63360 1/617760

those for heavy nuclei. The integrals /,(u) for three typical nuclei (33Ca, 2Ge
and 28 Pb ) are presented in fig. 1 as a function of m;. We see that, for light
nuclei the modification of the cross section by the inclusion of the form factor
is small. For heavy nuclei and massive m; the form factor has a dramatic effect
on the cross section and may decrease it by a factor of about five. The integral
I1(u) is even more suppressed but it is less important.

The spin matrix elements unfortunately depend, in general, rather sensitively
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on the details of the nuclear structure. As we mentioned in the introduction,
the first aitempt for quantitative description was based on the Odd Group
Method [26]. Subsequent shell model calculations demonstrated that the OG-
M was not adequate and showed that more elaborate calculations were needed
[31,32]. Furthermore, since the matrix elements at ¢ = 0 are often quenched,
the momentum dependence of the matrix elements was more important than
it was naively expected. As a matter of fact, one has to include a lot of con-
figurations to accommodate all multipoles, which in complex nuclei like %57
and ®(Ge, result in very large Hilbert spaces. It will be therefore, a very hard
task to substantially improve those calculations.

Among the targets which have been considered for LSP detection, 27 Pb stands
out as an important candidate. The spin matrix element of this nucleus has not
been evaluated, since one expects the relative importance of the spin versus
the coherent mode to be more important on light nuclei. But, as we have
mentioned, the spin matrix element in the light systems is quenched. On the
other hand, the spin matrix element of %7 Pb, especially the isoscalar one, does
not suffer from unusually large quenching, as is known from the study of the
magnetic moment. Thus, we view it as a good theoretical laboratory since:
i) It is believed to have simple structure, one 2pl/2 neutron hole outside the
doubly magic nucleus 28 Pb. ii) Because of its low angular momentum, only
two multipoles A = 0 and A = 2 with a J-rank of £ = 1 can contribute even at
large momentum transfers. One can thus view the information obtained from
this nucleus as complementary to that of ®Ge.

Figure 1: The integrals Ip and 1;, which describe the coherent contribution of

the total cross section as a function of the LSP mass (m;), for three typical
nuclei: 99Ca, 2Ge and %8 Pb.

To a good approximation [34] the ground state of the 27 Pb nucleus can be
described as a 2p; /, neutron hole in the 23 Pb closed shell. Then for A = 0 one
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finds

(@) = ~(1/VIF(A), Nl = (1/V3)Fy(d’) (24)
and
I = I = T = 2 [ € [ ()" g (25)

Even though the probability of finding a pure 2p;/; neutron hole in the ;~
ground state of 27 Pb is greater than 95%, the ground state magnetic moment
is quenched due to the 1* p-h excitation involving the spin orbit partners.
Hence, we expect a similar suppression of the isovector spin matrix elements.
Thus we write

[(1/2)7 >gs _CO'(ZPIN [1+Cl|[0211/2 (n)(0213/2)~ )1t >
+ Ca|[0hos2(p)(Oh11/2) " (P)ILF > +. ] (26)

Due to angular momentum and parity selection rules, we have £k = 1 and
A = 0,2. Retaining terms which are at most linear in the coefficients Cy, C,
we obtain

)yr=0
(q) = C5 {Fu(e®)/V3-8((7/13)/*CiFui(¢®) + (5/11)"/*CaFun(¢®)] }(27)
() =~ {Fala®)/V3 ~ 8((7/13)/*Ci Fu(q®) — (5/11)"/*CaFun(¢*)) }(28)

where

Nrnaz‘
Fu(g?) = e 7P/ Y~ A0 (gby> W (29)

u=0
The coefficients 7(") are given in table 4.
The coefficients Co, C; and C, were obtained by diagonalizing the Kuo-Brown
G-matrix [35,36] in a model space of 2h-1p configurations. Thus, we find

Co = 0.973350, C; = 0.005295, Cy = —0.006984
We also find

Q(0) = —(1/v/3)(0.95659),  (small quenching) (30)

= (1/V/3)(0.83296), (stzable quenching) (31)
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Table 4. The coefficients 7", entering the polynomial of eq. (29) describing the
form factor of a single particle harmonic oscillator wave function up to 6%w, ie.
throughout the periodic table.

nl| u=0 pu=1 p=2 u=3 u=4 n=>5 p==6
00 1

01 1 -1/6

10 1 -1/3 1/24

02 1 -1/3  1/60

11 1 -1/2  11/120 -1/240

03 1 -1/2  1/20  -1/840

20 1 2/3  11/60 -1/60 1/1920

12 1 2/3  19/120 -11/840  1/3360

04 1 2/3  1/10 -1/210 1/15120

21 1 -5/6 17/60 -31/840  9/4480 -1/26880

13 1 -5/6  29/120 -47/1680 37/30240 -1/60480

05 1 -5/6 1/6 -1/84 1/3024 -1/332640

30 1 -1 17/40  -31/420  27/4480 -1/4480 1/322560
22 1 -1 2/5 -1/15 41/8064 -1/5760  1/483840
14 1 -1 41/120 -1/20 1/315 -1/11880  1/1330560
06 1 4 1/4 -1/42 1/1008  -1/55440  1/8648640

The amount of retardation of the total matrix element depends on the values
of f$ and f}.

i) A =2.

In this case, in addition to the leading (2p1/2)~! configuration, the first leading
correction to the nuclear matrix element is linear in the mixing coefficients
C;.;, appearing in the expression:

1, " ¥ il 3 1
GY = Co{l@p112) () > + 2 Cinl@piy2)™ () (G5 i2) 2 = 15 5 > }32)
N2
ie.
A = D (3570, v, p) < mblialgobrlnal > (33)
V2i+1T 5

H=1)" < @p172) " ITEN2Pry2) ™ >}
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Table 5. The coefficients €4(n1!1,n2l3,2), which describe the matrix elements <
n1l1|j2(gr)|nals > (see apendix ), for harmonic oscillator wave function.

Il
[=}
=
I
=
X
Il
N
B
Il
w
X
Il
'S
X
1l
[}

n111 ’nglz K

26 s 0 .16 4
21121 15 21 21 5 105
26 2208 208 .-882 32
05 (05 15 105 315 10395 10395
.20 & -160 160 . -
06106 2 7 63 93 9009 135135

2 16 16 64 13 32 1
06 | 04 | V143 | -5z V143 | 55 VI43 | -5 \/1T | 55V a3

13 4 65 16 [65 3 fe5 | 32 /5

.64
10395 \/ 195

where G(ji,js,p) are isospin dependent geometrical factors which can be e-
valuated by standard techniques. Notice, however, that unlike the A = 0 case,
many amplitudes can contribute if the quadrupole modes coupled to the single
hole wavefunction are admixed in the ground state of the system.

In the simple model of ref. [34], in addition to the C;, C; encountered above,
one needs the amplitudes of the two additional configurations, 07;3/20711/2(n)
and 0iy/50g9/2(p), which are C3 = 0.000239 and C,; = —0.000642. Obviously,
this is a simplification, since one should consider the spin Giant Quadrupole
Resonance (GQR), which may have a small admixture in the ground state
of the nucleus but a very large transition matrix element. Such a detailed
calculation including all 2hw excitations is in progress and it will be reported
elsewhere.

The radial integrals < nyli|ja(qoér)|n2ls > can be cast in the form of eq. (29),
but they depend on two single particle quantum numbers (see appendix). The
relevant coefficients needed for the present work are listed m table 5.

Using egs. (15), (27),(28) and (33), we can evaluate the integrals I, Iy and
I. The results are presented in fig. 2. We see that for a heavy nucleus and
high LSP mass the momentum transfer dependence of the spin matrix elements
cannot be ignored.
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For orientation purposes we have estimated the spin matrix element of the
light nucleus }°F. Assuming that its ground state wave function is a pure
SU(3) state with the largest symmetry, ie f = [3],(An) = (60), which may
be a very crude approximation, we obtain [37,38] the expression

o = 5 Fauld) + §Fuld?) (39

There is only isovector component contribution (the isoscalar matrix element
vanishes). As expected that the effect of the nuclear form factor on the cross
section for light nuclei is insignificant [39].

Figure 2: The integrals I and Ij; which give the spin contribution to the
cross section for X7 Pb in the model described in sect. 3. For their definition
see eqs. (20) and (22) in the text.

4 Convolution of the cross section with the velocity distribution

Let us assume that the LSP is moving with velocity v, with respect to the
detecting apparatus. Then the detection rate is

ﬂ = B_(sza(v)’ v, >0 (35)
dt m

where p(0) the LSP density in our vicinity. This density has to be consistent

with the LSP velocity distribution. Such a consistent choise can be a Maxwell
distribution

flv) = (Vrvo) e/ (36)

provided that [30]
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vo = 1/(2/3) < v? > = 220Km/s, p(0) = 0.3GeV/em?®

For our purposes it is convenient to express the above distribution in the

laboratory frame, i.e.

£(v,vE) = (VFvo) e~ Vo714

(37)

where vg is the velocity of the earth with respect to the center of the distri-

bution. Thus,

(G =22 [ fv,veps0(ea)o (v

or
(G = v<ors sve,w)
where
2@ z
svew) = [ S22 fv,vi)o vty

and

1, 2 >0

o(v.) = °

0, v, <0

or

7 '03 2 00 il
J(VE, Vo) = (V7o) ™% | ———=—==e"" 8% g(v)dv
0/ V<>

/2 2r
X /cosﬁsinﬂdﬂ/e”'”/"gd¢
0

0

(40)

In order to perform the angular integration, we expand the exponential in
terms of spherical harmonics in a fashion which is familiar from the plane

wave expansion, i.e.

0o 1
e VEME = 4n Y i (20vp/vd) 3 Y4 (0,8)Y.(a,7)

=0 m=-—]
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where (a,7) are the two angles needed to specify the earth’s velocity. i;(z) is
the modified spherical Bessel function, which is finite at the origin, given by

1.
l_d_) sinhx (42)

: I
ylz) =2 =
(=) (a: dzx z

Then, the ¢ angular integration is trivial due to axial symmetry (only the
m=0 contributes, i.e. the result is independent of the angle v). Furthermore,

it is ea<y to show that

1
. o /3, { = odd
ji= [P =" (43)
0 fons l=2n = even
with
MR- (4n — 2¢)!
fon = 22 é(_) k!(2n — k)!(2n — 25)!(2n — 2x + 2) )
We thus get
J(vE, Vo) = 27 (/7 ve) 2 ]odv—”a—e-w’%)/"%a(u) (45)
E, Vo0 0 J \/Z_v—?_;
xy (2 + 1)i(2vvg /v2) fi Pi(cosa)
1=0
Introducing
j=ZE g 2 (46)
Vo Vo

and noting that the quantity u entering the nuclear form factors eq. (20) can
be written as

u = ugy)? (47)
with
_ 1 (2fomqc? b 2 _ v
wss (Bn) - Aot )

we see that the integral J(vg,vo) depends on the parameters 6, cosa and uy,
ie.

oo}

J(vz,¥o) — J(5, cose, tg) = \/% 3 (21 + 1)2f, P(cose) Ki(8,u0)  (49)
T =0

39



with

Ki(6, o) = 2¢~5/4 / D3V i1 (69)o (uop?)dp (50)

0

The dependence on the nuclear parameters is implicit in the cross section
o(uo?). The factor 1/4/6r is a consequence of the fact that

. 2
<v,0(v,) >= ﬁ\/< v? > (51)

It has been customary to use vV< v? > in the expression for the flux (see
eq. (39)). With this factor absent the counting rate has been exaggerated.
To proceed further, we must disentangle the nuclear physics dependence in
a(ugt)?). We begin with eq. (13) and take note of the extra velocity dependence
of the coherent vector contribution. Then, using egs. (12) and (49), we can
write the counting rate with a target of mass m as follows:

<d—N—>_p0) e R B

dt my Am,,
with
<E>= (2—:)2(1 :On)z (52)
(#[<p> (r-pi=2 2Z) (JO—%%;JI)Jr
(fs - A 2Z) Jo]

(fﬁnow))sz + 213 [420(0) 0)Jor + (£40(0)) "}

The quantities Jos Joy Joo, With p,o = 0,1, depend on ug, 6 and cosa. If Jpy =

Joi = Ji1, as seems to be the case for 27 Pb, the spin dependent expression is
2

reduced to the familiar expression [ F9%(0)+ iy (O)] Joo, where the quantity

in the bracket represents the spin matrix element at ¢ = 0

The integrals Jo, J, are obtained from the corresponding J (0) » Jag @) via eq. (22)
for o, = N, Z. The integrals J(%), J( and J,, are given by eqs. (15), (49)

with the obvious modification of K, namely

RO = 2654 [ 456 (60) lo(woy ) (53)
0
9 o0
K =27° /4<_§92-;0/'/’56_¢ u(@9),(wop*)dy  p=0,1 (54)
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Koy = 27514 ] 30y (6%) Lo (uop?)dy,  p,o =0,1 (55)

0

The parameters I, and I,, have been defined in the previous section. The
integrals (53)-(55) can only be done numerically. Since, however, the velocity
of the earth around the sun is small, vg &~ 30 Km/s, the parameter § is small
(6 ~ 0.27). Thus, to a good approximation

5l¢1

W)~ Gryom

(56)
and one can limit oneself to the first two leading multipoles, { = 0 and [ = 1.
The integrals of egs. (53) and (54) for these multipoles are shown in fig. 3.
For the integrals of eq. (54) see ref. [39]. In order to have some idea of the
dependence of the counting rate on the earth’s position, we will consider cases
in which the dependence of the matrix elements on the nuclear form factor
can be neglected, i.e. let I, = I,, = 1 and utilize eq. (56) to get

- , , BE
I{éﬂ) = I‘O,pa = ]_’ I\(()p) = Zﬁ;, fOT =0 (57)
0 _ _ VT _ T B _
= Kl,pa = T&IXIP = —8-_%6, fOT' =1 (58)

Furthermore, since

2fo=1, 2fi=2/3 (59)
we obtain

2
Jo=J1=2 g‘; 1+ 5f5ms a)/Vér (60)
= —( \/_6 cos @)/ Vb1
Jo=Jo=Ju=Jn = (1+ £6005 a)/Veér (61)

We notice that, the amplitude of the oscillatory term of the leading contribu-
tion (eq. (60) is

amplitude of oscillation = g& =~ 0.24
ie.
dN dN
<'Et—> = (E)pr(l + 0.24COSG)/V 6
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where (dN/dt),, represents the previous estimates for the counting rate (ig-
noring the form factor dependence).

The corresponding amplitude of oscillation in eq. (61) is a bit bigger ( ~
0.30). However, this coherent vector contribution is suppressed due to the
Majorana nature of LSP (through the factor < ? >). The folding improves
this contribution by a factor of 4/3.

The folding procedure can be applied in the differential rate (by convoluting
the relevant expression before the angular integration of the differential cross
section do/dfY) . The resulting expressions are, however, a bit more compli-
cated and they will not be given here.

5 Results and d;lscussion

In this paper we have calculated the event rate for LSP-nucleus scattering for a
number of experimentally interesting spin zero nuclear targets (coherent scat-
tering) as well as the spin such contribution in the case of 27 Pb. The coherent
scattering depends on the isoscalar scalar, f2, and vector, f¥, patameters. The

latter is effectively multiplied by the average velocity <ﬂ2>l/2 of the LSP due
to its Majorana nature. These parameters were evaluated in the allowed SUSY
paremeter space of Kane et al. [5]. The construction of the scalar parameters
suffers from additional uncertainties, which involve the step of going from the
quark to the nucleon level. In other words, the results are very senmsitive to
the presence of quarks other than u and d in the nucleon. Three such choices
indicated by A, B, C are presented in table 1.

The second ingredient is the nuclear structure input. The coherent scattering
does not depend on the details of the nuclear wave function. It does, however,
depend on the nuclear density, i.e. the assumed form factor, for fairly massive
LSP and correspondingly heavy nuclei. This is because the momentum transfer
in such cases can be quite high (by nuclear standards) even though the energy
transfer is small. The used form factors were as realistic as possible (see tables
3 and 4). The inclusion of the form factor results in sizable retardation of
the cross-section which can be up to 40% for Ge and 85% for Pb. The above
results were folded with the velocity distribution, which was assumed to be
Maxwellian relative to its center. This folding tends to reduce the form factor
retardation. We find that

%) = (%)0(1 + hcosa) (62)

where the angle « describes the Earth’s annual motion. The parameters <d711!>o
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Table 6 : The quantity "7’,! in y‘llf g and the parameter h (oscillation due to the
earth’s motion around the sun) for the coherent vector and scalar contributions.
For the definition of A, B, C, see text. NFM and WNFM stand for Nuclear Form

Factor and Without Nuclear Form Factor respectively.

Case Vector Scalar
i h aw h

Model A B C

Pb | #1(NFM) 0.958 x 10=3 | 0.30 | 0.597 x 10~ 0.880 1.802 | 0.24
#LWNFM) | 0.747 x 10~* | 0.24 | 0.817 x 10~* 0.121 0.247 | 0.18
#2(NFM) 0.804 x 1073 | 0.30 | 0.238 x 10~! 82.9 74.6 |0.24
#2(WNFM) | 0497 x 10-3 | 0.27 | 0.143 x 10! 449 404 | 0.25
#3I(NFM) 0.244 x 10~2 | 0.30 | 0.556 x 10~ 12.1 19.1 | 0.24
#3(WNFM) | 0.245 x 10~* | 0.24 | 0.978 x 10~* 230 3.36 | 0.18

Ge | #1(NFM) | 0.115 x 1073 | 0.30 | 0.715 x 10~* 0.106 0.216 | 0.24
#1(WNFM) | 0417 x 10~4 | 0.28 | 0.350 x 10~* 0.052 0.106 | 0.20
#2(NFM) 0.192 x 10~2 | 0.30 | 0.570 x 102 19.9 17.9 | 0.24
#2(WNFM) | 0.148 x 10-3 | 0.27 | 0.470 x 102 16.5 149 | 0.23
#3(NFM) 0.342 x 1073 | 0.30 | 0.818 x 10~* 169 2.67 | 0.24
#3(WNFM) | 0.126 x 10~ | 0.32 | 0.437 x 10~* 0.900 1.43 | 0.21

and h are shown in table 6 for two typical and experimentally interesting nu-
clei, ?Ge and ®7 Pb. From this table we see that, the event rate is highest when
the LSP is lightest (m, = 27GeV, case #2). We notice that, even within the
allowed parameter space, the event rate may vary by two orders of magnitude.
We also notice that, with the possible exception of the not so realistic model
A, the vector contribution is negligible, i.e. the Higgs contribution becomes
dominant. This is even more so in models where quarks other than u and d
are present in the nucleus with appreciable probabilities, due to their large
masses. In the most favorable cases, one may have more than 80 events per
year per kilogram of target. We notice that, the amplitude due to the Earth’s
annual motion can change by 20-25%. Finally, we should mention that, for
cases #1 and #3 (massive LSP), the rate due to the nuclear form factor can
be reduced by a factor of approximately 6. Because the form factor depen-
dence is more pronounced in heavy nuclei, there is no advantage in going to
the heavier targets if the LSP turns out to be massive.

Next we come to the discussion of the spin matrix contribution. As we have
mentioned in the introduction, the relative importance of the spin matrix
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element is expected to decrease as one goes to the heavier systems vis a vis
the coherent scattering. We have seen, however, that the increase due to the
mass number in the coherent scattering is offset by the decline due to form
factor. Similarly, 7 Pb can be adequately described as a single neutron hole
in the doubly magic closed shell 8 Pb nucleus. Thus, the retardation of the
static spin matrix element may be less dramatic than in the light systems.
Furthermore, because of the fact that more than one multipole may contribute,
the retardation due to the form factor may be less dramatic.

We find that indeed the 7 Pb ground state, in a 1h and 2h-1p model space
is more than 95% a 2p,, neutron configuration. We have evaluated the spin
matrix elements up to terms linear in the small amplitudes. Out of the 250
components, only two of them contribute to the A = 0 multipole while two
more contribute to the A = 2 multipole. Thus, we find that, the isoscalar static
matrix element suffers from very little retardation, while the isovector matrix
element is reduced by 17%. Since, in the parameter space we are using, the
isovector coupling f} is larger this results in a similar retardation of the total
matrix element. The isoscalar axial coupling f} has more uncertainties. In
passing from the quark to the nucleon level the amplitude must be multiplied
by a factor g4 which ranges from 1, in the Naive Quark Model (NQM), to
.12, if extracted from the EMC data. In our calculations we considered both
of these extremes. Also, since the dominant configuration is of the neutron
variety, the isoscalar tends to subtract from the isovector, but this is not so

dramatic in our case since the isoscalar is smaller in absolute value, especially
in the EMC case.

The momentum dependence can be described in terms of three integrals fq,
Iy, 111, where the subscripts indicate the isospin channels. In our case, these
integrals receive contributions from two multipoles, A = 0 (spin monopole)
and A = 2 (spin-quadrupole). They were judiciously normalized to their static
value (unity). When so normalized these integrals are approximately equal (see
fig. 3 and also ref. [39]). We notice that, the monopole contribution falls with
momentum transfer, as expected, quite fast in fact for large LSP mass. On the
contrary, the quadrupole contribution starts out at zero and keeps increasing
up to about 90 GeV. As a result its contribution in this mass regime is crucial
since it tends to partly compensate for the supression of the monopole term.
We expect these trends to persist even in the most elaborate calculations which
include the Giant Quadrupole Resonance (GQR) and are currently under way.
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Table 7 : The quantity %—' in y!Kg and the parameter h (oscillation due to
the earth’s motion around the sun) for the spin contribution in the LSP nucleus
scattering in 27 Pb. NFM and WNFM stand for nuclear Form Factor and Without
Nuclear Form Factor respectively.

aN

Case a h Lx h
EMC EMC NQM NQM
#1(NFM) |0.365x 102 024 0.158 x 1072 0.24
#1(WNFM) | 0.120 x 10-2 027  0.523 x 10~%  0.19
#2(NFM) |0.168 x 10!  0.24 0.110 x 1072 0.24
#2(WNFM) | 0.728 x 10! 0.22  0.800 x 10~%  0.23
#I(NFM) [0135x10"! 024 0.646 x 1072 0.24
#3(WNFM) | 0540 x 1072 020 0.253 x 1072  0.21

ref. [5], barring unforseen lack of retardation of the spin matrix element in a
light nucleus, the spin induced LSP-nucleus scattering may not be detectable.

T T

"o
-0

"
250

05 r—\

T T T T

N N
200 250

my ( GeV )

300

Figure 3: The quantities K| ,(0) and K° ) (for 1=0 and 1=1) entering the event
rates due to earth’s revolution around the sun. For their definition see sect. 4,
egs. (53) and (54), in the text.

6 Conclusions

In the present work we have performed calculations of the event rate for LSP-
nucleus scattering for two typical experimentally interesting nuclei, i.e. Pb
and Ge. The three basic ingredients of our calculation were the input SUSY
parameters, a quark model for the nucleon and the structure of the nuclei
involved. The input SUSY parameters were calculated in a phenomenologically
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allowed parameter space (cases #1, #2, #3 of table 1) as explained in the text.
In going from the quark to the nucleon level the quark structure of the nucleon
was essential. In particular its content in quarks other than u and d. For the
scalar interaction we considered three models (labeled A, B, C in table 1) as
described in the text. For the isovector axial coupling one encounters the so-
called nucleon spin crisis. Again we considered two possibilities depending on
the assumed portion of the nucleon spin which is due to the quarks (indicated
by EMC and NQM in table 1) as described in the text. As regards nuclear
stucture we employed as detailed as feasible nuclear wave functions. For the
coherent part (scalar and vector) we used realistic nuclear form factors. For
the %7 Pb system we also computed the spin matrix element. The ground state
wave function was obtained by a diagonalizing the nuclear Hamiltonian in a
2h-1p space which is standard for this doubly magic nucleus. The momentum
dependence of the matrix elements was taken into account and all relevant
multipoles were retained (in this system one encounters only two, { = 0 and
| = 2 due to selection rules). Finally, the obtained results were convoluted
with a suitable Maxwell-Boltzmann velocity distribution of the LSP’s. This
convolution was necessary to partially neutralize the form factor retardation,
but mainly to compute the modulation of the event rate due to the Earth’s
motion. We find that in almost all cases the event rate due to the Earth’s
revolution around the sun can change from -25% to +25% around its average
value. Given enough counts this is a significant effect which can be used to
discriminate against background. The event rates thus obtained are listed in
tables 6 and 7. Unfortunately, the obtained results are sensitive to the input
parameters. The inclusion of the nuclear form factor significantly retards the
event rates for heavy nuclei (A > 100) and fairly massive LSP (m; > 100GeV).
However, this retardation does not outweight completely the advantages of
using a heavy target. For the spin matrix elements the form factor retardation
of the usual [ = 0 multipole is partially neutralized by the higher multipoles.
From the data of tables 6 and 7 we see that it is possible to have detectable
rates ( > 20 per kilogramme per year) for case #2 and the realistic nucleon
models B and C, resulting from the scalar Higgs exchange term. In all other
cases, including the spin contribution, the calculated event rates are too small.
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Appendix

In the case when X = 2, the operator is written as
T = Varjx(qr) [V @) @ o] (63)

For 27 Pb we are interested in calculated the matrix elements of this operator
in the case xk = 1 and XA = 0,2 for the states

@p1ye)™ > Cigl[2or2) Vi Jid2s1/2 > (64)
or the matrix elements
ME=C2[£ < @) ITI|@pry2) " > + (65)
+2)° Ciip < 2p172) T ||(2p172) " [ Hda)ss 1/2 >

Nz

where the + sign is for isoscalar and the — for isovector matrix elements.

The reduced matrix elements < j;||T%||j, > are given in ref. [40]. The relevant
radial matrix elements < n,li|j;(gr)|nslz > for harmonic oscillator basis can
be witten in the compact way

<nilili(gr)inale > = X2 e 3 ecx”, x = (gb)*/4 (66)

x=0

where

Kmaz = M1 + ng +m, m=(11+12——l)/2

The coefficients e4(n1ly,n2ls,1) are given by

n1 n2

Z Z n! A,¢1 (n111)A,¢, (nzlz)A,‘(nl) (67)

K1=¢ K2=0

wniing! ]é

Ex =
[4I‘(n1 +h+3)(ne+L+3

where n = k1 + k2 + m and

0, K—m—n, <0
¢ =

K —m — ng, K—m-—ny>0

0, kK—m—Kk <0
g =

K—m— K, K—m-—kKk >0



For some spacial cases used in the present work see table 5.
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