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Abstract

In part 1 the effect of muclear core dynamics on the binding energies of A hy-
pernuclei is discussed in the framework of variational correlated wave functions. In
particular, we discuss a new rearrangement energy contribution and its effect on the
core polarization. In part 2 we consider the interpretation of the A single-particle
energy in terms of basic A-nuclear interactions using a local density approximation
based on a Fermi hypernetted chain calculation of the A binding to miclear matter.
To account for the data strongly repulsive 3-body AN N forces are required. Also
in this framework we discuss core polarization for medium and heavier hypernuclei.

1 Nuclear Core Dynamics and Rearrangement Energy
1.1 Introduction

To introduce the problem we consider the simple and very old effective-
interaction model of the binding of a A to its core nucleus (consisting of A-1
nucleons) to make a hypernucleus (HN) of baryon number A. To be specific
we focus on the hypernueleus 3 He = *He + A for which the experimental A-
separation energy is 3.12 MeV. For. simplicity, in Part 1 we consider mostly a
central 2-body AN potential Vyn with a repulsive core, although for a realistic
description 3-body ANN forces are required. From Vjy one may obtain an
effective interaction Vyy which is smooth and (approximately) takes account
of AN correlations (mostly due to the repulsive core). Vyn can be obtained in
various ways. Thus \j’,\.\- = tan Where tpn is some appropriate reaction matrix,



or more appropriately for a variational approach we can use

2

Vzlnf/w], (1)

v ok
Van = fan[Vawn o
where pan is the AN reduced mass and fay is an appropriate correlation
function, obtained e.g. from a nuclear matter calculation. The second term,
the so-called induced kinetic energy arises from the action of the K.E. operator
on fan which depends on the nuclear coordinates. The A-core nucleus potential
is then obtained from

Vae(r) = [ Van (1€ = f)pe(r; R, @

where p. is the core density which is obtained from the core wave function WP.
For brevity we represent this dependence on ¥ through a generic variational
parameter R which emphasizes the importance of the core radius. The result-
ing single-particle A energy €5 (R) is then obtained from the A-core Schrodinger
equation for the potential Vj.. If distortion of the core by the A is neglected,
and if the isolated core corresponds to the value Ry, then the A separation
energy is given by

BA = —CA(RO). (3)

Thus the single-particle energy €,(R) gives the A binding for a fixed core of
radius R; €, is expected to decrease slowly and smoothly as R decreases.

To include the response of the core to the A (core polarization) we write,
plausibly, for the total energy of the HN,

AE(R) = ea(R) + ' E(R) (4)
where
A-1E(R) =< U|HN|U > [ < 9T > (5)

.is energy of the core whose Hamiltonian is Hy. The minimum E,, of 4~! E(R)
at R, corresponds to the ground state of the isolated core mucleus. In the
presence of the A this minimum is shifted to 4~'E(Ry) > A~'E(R,), where
R, represents the core polarized by the A. Since €) = dep/dR > 0, the HN
energy will decrease as the core contracts and thus AR = Ry — R, < 0;
physically: the A drives the core to a smaller size. Thus with a quadratic
approximation for 4-! E:

AB(R) = AE(R) + sC(R - R (6)
one abtains

AR = Ry, — R, ~ —€}(R,)/C (7)



AE = “B(R) - “BR) = HaRIP/C ®)

where AFE is the core polarization energy. C is a measure of the nuclear re-
sponse (and for a heavy nucleus is related to the incompressibility constant K
~ through C ~ 2AK/R?). The A separation energy is then

—Bp = AE(Rx)— *'E(R,) = ea—AE < ep. 9)

Thus B, increases by AE as a result of core polarization. Estimates for
SHe give AE ~ 0.1MeV, AR ~ —0.05fm. We will show that this intu-
itive approach to the polarization emergy is essentially correct in the. absence
of AN correlations, i.e. if Van =~ Van. However, with correlations there is a
rearrangement-energy ocontribution Eg involving the core Hamiltonian Hy,
and which depends on the AN correlations and on the difference between ¥
and the exact isolated core wave function ®p. The presence of Er leads to
qualitative changes in the core polarization mechanism.

1.2 A Separation Energy and Rearrangement Energy

We shall now sketch a rigorous treatment, in a variational context, of the effect
of the core dynamics on By. The total Hamiltonian of the HN is

H = Hy +Hy (10)
where
A-1
Hy = T\ + Z Van, (11)

i=1

is the A Hamiltonian in an obvious notation. The nuclear Hamiltonian is

Hy = Tn+ Wy (12)
A-1 )

Ivn = Y. Ti, Vv =Y Vin,. (13)
i=1 i<j

‘The variational wave function is of the Jastrow type

Ay = F¥ (14)

A-1
F = H fAN.‘ ) fAN. = 'fAN(lfl\ —fil)a (15)

i=1

where we ignore spin dependent and other correlations which are inessential
for the present discussion. ¥ is the core-nucleus wave function which we do



not need to specify further at this point. For the exact (ground state) core
wave function ®y and the exact ground state energy En we have

Hy®y = En®y. (16)
The total HN energy is
AE[¥] = < FU|Hp + (Tn + WN)|F¥ > | < F¥|FT >, (17)

where [¥] emphasizes the functional dependence o the core wave function.
Now TnF # FTn because fany has a dependence on the nuclear coordinate.
Then by partial integrations ’

< FUTN|FT > = < FUTP|FU > + < FTy|T > . (18)

Here T\ is an “induced” (by the A) nucleon kinetic energy due to the AN
correlations.

AE = ex+ < FPU|HN|U > [ < FU|FY >, (19)
where
ex =< FYH, + TN |FY > | < FYFY > (20)

is an exact expression (for a wave function of the form of Eq. (14)) for the
effective single-particle A energy considered in the introduction. (In the lowest
order of the cluster expansion one obtains Eq. (1)). We write

U = &y + 60y (21)

Thus 6@y is the difference between ¥ and the exact core wave function. After
some manipulations which makes use of Eq. (16) we obtain

AE = ex+ *'E+ Eg (22)
where
ACIE = < U|HN|¥ >/ < ¥|T > (23)

is the core energy corresponding to ¥. The rearrangement energy Eg is
Er = < F*®y|(Hn — En)|6®n > /| < FY|FT¥ > +
< F*6®yN|(Hy ~ EN)|6®N > | < FY|FT > —
< 6N |(Hnv — EN)|I6®Nn > ] < 9|T > . (24)

Thus the exact expression Eq. (22) for 4 E differs from Eq. (4) by the additional
term Eg.



It is convenient to define an effective single-particle E, with respect to the
core energy for a core wave function ¥:

EA[¥] = 4E[¥] — 4'E[¥] = s+ En. (25)

The tatal HN and the A separation energies are then (the ¥ dependence is
from now on implicit)

AE = Ex + *'E (26)
—By = fE—En = E\+AEN > E\ 27)
= er + < F?®y|(Hy — EN)|6®N > /| < FU|FT >, (28)

where
AEy = A7'E¥] - En (29)

is the core polarization energy (for ¥). The separation energy Bj with respect
to the variational minimum

Em = < Up|Hy|m >/ < | > > En (30)

By = By + (E, — En) 2 Ba (31)

thus trivially Bay < Ba.

If we compare Eq. (22) with Eq. (4) we see from the discussion following the
latter, that the driving effect of the A in distorting the core is in fact measured
by E} = €\ +E}R where ' denotes diffcrentiation with respect to the appropriate
variational parameter (denoted gencrically by R in the introduction) at the
core wave function optimum.

We summarize some general properties of F obtained from Eq. (24). Numer-
ical results will be discussed in Section 1.3.



1. Er~0if F = ¢,(F) corresponds to a single-particle A-core wave func-
tion, where 7is the A coordinate with respect to the center-of-mass of the
core. Thus if there are no AN correlations and if the core is held fixed,
then as can be seen from Eq. (24) by intergrating over Ty one obtains
Eg = 0. Recoil of the core nucleus could give some small value for Fp. A
single-particle approximation for the A, represented by ¢,, thus brings
us back - not surprisingly - to the situation represented by Eq. (4) and
discussed in 1.1.

2. Ep=0if 6Py =0,1e. f ¥ = Oy is the exact ground-state wave function
of the core. This is obvious from Eq. (24).

3. Equation (24) shows that for “small” 6®n one expects [ x §®p. Thus
we expect Fp to change sign as 6@y changes sign.

4. Even with both AN corrclations and é®n # 0 one can have Ejp = 0 for
some particular value of §®y because of the nonlinear terms in Eg.

5. For mfinite (translationally invariant) nuclear matter, it is straightfor-
ward to show that EKr = 0. This arises because the A does not cause any
change in the nucleonic part of the wave function.

Thus in general Er # 0 only if there are AN correlations (F # ¢,) and if
6@y # 0. We can have 6Oy # 0, and therefore Kp # 0 with a correlated F,
either if the optimum core wave function ¥ is in error and/or if some external
agency, such as the A distorts the core wave function from its exact ground-
state value ®n. This latter change is just core polarization by the A and will
be illustrated by our numerical results. Also property 5 implies that because
Er = 0 for nuclear matter, Ep is expected to become relatively less important
for large A and thus that the finite nuclear size is an essential ingredient for

Er #0.
1.3 Numerical Studies for 3 He

We have studied and illustrated our general considerations by calculations for
aHe. For our NN potential, we mostly used a Mafliet-Tjon (M-T) central
spin-independent potential® which we used extensively in earlier work®. We
also made calculations for the central and spin-independent Afnan-Tang (A-
T) S3 NN potential® which gives a somewhat better value for the ‘ He energy
and radius. We use a central spin-independent AN potential V(r) with a
repulsive core V. and a two-pion attractive part Vo, = —V,T? where T, is the
OPE tensor shape factor (Refs 5,7). For most of our (illustrative) calculations
we used V, = 6.2M ¢l which gives agreement with the AN scattering. For the
core wave function (appropriate for a central spin-independent Viyy ) we use a



Jastrow function

= f_[fNaNj(rij)' (32)

1<3

For a more realistic Vyn the appropriate correlation operators must be includ-
ed. The variational HN wave function is then given by Eq. (14) with F given
by Eq. (15). The specific variational Monte Carlo (VMC) method as applied
to the s-shell HN is described in detail in Ref. [5]. The correlation functions
fnn and fan each depend on a number of variational parameters (through ef-
fective potentials in Schrodinger-type equations for the fs). We concetrate on
the two most significant parameters (for central Viyn). These are ky, £a and
SN, sa respectively for fyn, fan. Here k7! is a length parameter determining
the asymptotic behavior of f(~ e *") and s is a potential strength parameter
multiplying the attractive parts of Vyy, Van in the effective Schrodinger e
quation for f. Since our emphasis i$ on the core wave function we focus mostly
on Ky, sy. Optimization with respect to kj, s, is implied.

Our variational results (VMC) for *He give ‘E = —31.40 + .03MeV (M-T)
and —27.30 + .03MeV (A-T). This is to be compared with the exact Green
function MC (GFMC) results: —31.36+.01MeV (M-T) and —27.35+.01.MeV
(A-T). Within errors our VMC results agree with the GFMC results indicating
that our VMC wave function is quite dose to the exact wave function: ¥ ~ @y
for both M-T and A-T potentials.

For 3 He a “brute force” VMC calculation of B, requires calculation of the
minimum of § E by optimization with respect to the parameters of both fan
and fyny. Then —Bp = 3Enin — ‘Enin where *E,;, are the above VMC
values. '

The VMC values of By are 7.05 + .05MeV (M-T) and 6.70 + .05MeV (A-T).
The GFMC wvalue (only for M-T) is 7.20 &+ .015MeV. We note the expected
overbinding obtained for AN and NN potentials, implying the need for repul-
sive ANN forces (Refs. 5,9). The smaller B, obtained for the A-T potential
we attribute to the somewhat larger * He size obtained with this potential.

We now discuss the dependence of our results on ky and sy; for each set of
values we have optimized with respect to kj, sy. We show the emergies: *F
(Eq. (23)), €a (Eq. (20)), Ex = 4E— *E, Ep = Ej —€p; 4 E is obtained fromn
Eq. (17) as just discussed.

Figure 1 for the M-T potential shows the dependence on ky for sy = 1
(increasing kx corresponds to decreasing core size). We see a nice confirmation
of the general properties discussed previously. *E has the expected quadratic
dependence near the minimum (—31.4MeV') which occurs at xy = 0.323fm 1.
At the minimum: ey = E5, = —B, and thus Eg = 0, providing confirmation



of the goodness of our variational core wave function: ¥ ~ ®y. As expected
ep decreases slowly with sy, ie. with contraction of the core, and €, > 0.
However, Ep increases with xky and at a rate |ER| > |€}| such that Fy =
Egr + €5 also increases with xy. Since it is £4 which drives the core, this
has the unexpected result that the core for the HN has expanded relative to
the isolated core - contrary to the intuitive consideration of the introduction.
Thus, the optimum By = 7.05MeV for the HN occurs at kxy = 0.30 fm™!
corresponding to a larger core size than for the isolated core. The increase of
Bj from its value at the core optimum is ABy, = 7.05 — 6.70 ~ 0.35MeV
which is just the core polarization energy AEy and is quite small. The results
for the A-T potential, not shown, are quite similar with a polarization energy
AEN = 0.4MeV . The values of Eg for the optimum By are —0.75M eV (M-T)
and —1.0MeV (A-T).

Fig. 1: Core and hypernuclear energies for the M-T potential vs. the core vari-
ational parameter ky for sy = 1.

Our results clearly exhibit the dynamics of core polarization which because
of the presence of Eg is qualitatively different from the intuitive picture con-
sidered in the introduction where the core-polarization driving force is only
the single-particle energy e,. Although complete and reliable calculations for
realistic Vyn are required, we do not expect the core polarization energy AEy
to be very different, at least in order of magnitude, from the value ~ 0.4MeV



obtained for the M-T and A-T potentials. This has very recently been con-
firmed by Murali and Usmani'?. They obtain ALy ~ 0.2—0.6M eV depending
on Vyn. Calculations which give much larger values for AEy would have to
be considered suspect.

The linear change of IR, or equivalently of £y — €5 about the optimum core
wave function, with £ = 0 at this optimum, suggests an intriguing use of the
HN as a probe of the core wave function - in this case improving the accuracy
of the optimum W. Thus, calculation of /£y and ¢, for a few (2-3) value of each
significant variational parameter could significantly improve the accuracy of
the optimum values of these parameters by identifying the point ¢y, = Fj.

The dynamics of core polarization just discussed illustrates how a distortion
of the core from its exact wave function @y is associated wth a non-zero value
of Er. To discuss the effects of an error in the variational core wave function
(¥,, # ®n), we have simulated such an error by “detuning” our optimum
¥ by changing one of the parameters sy, sy from its optimum and then
calculating the various energies as a function of the other parameter. Figure 2
shows the case where sy is varied with fixed ky = 0.39fm™! (optimum at
0.234fm™!). The minimum of *¥ is now K,, = —30.45MeV at sy = 0.9. Now
Er = 0 for sy = 0.75 with ¢4 = Fx = —6.7MeV but with &y # 0 as a
consequence of the nonlinear terms. However, there is now no intersection of
ea and By (the A separation energy with respect to E,). The point Egr =0
is quite far from F,, and there is no meaningful core response at Er = 0.
In this case By = 6.2MeV is well below the absolute minimum of 7.05MeV
and By = 53MeV (Eq. (31)) is even smaller. The plot of By vs. sy also
shows that even quite small errors in the optimum sy(=0.9) can lead to quite
large errors in By. This mostly reflects the effect of the core energy * £ which
depends strongly on sy.

Figure 3 shows results vs. ky when the core wave function is “detuned” to
sy = 1.2 from its optimum sy = 1. Although F,, = —29.05MeV, at sy ~
.265fm™!, is now 2.3MeV greater than Ey = —31.4MeV , the overall picture
strongly resembles that of Fig. 1 for the optimum ¥. The point £ = €5 occurs
close to E,, but now for @&y # 0. For Ep = 0: o = Ep = —6.65MeV . The
maximum of By = 7.0MeV is again shifted to smaller xy (larger core) and is
quite close to the optimum B,; the core polarization dynamics is quite similar
to that of Fig. 1.

In all the cases we considered for the M-T potential: Er = 0 occurs for £ =
en ~ —(6.65 — 6.70)M eV . Furthermore, £ corresponds to the intersection
of the rather slowly varying quantities ¢y and £, which are less subject to
appreciable statistical errors than =1 E and Bj.



For a more realistic Viyny the optimum ¥ could still differ appreciably from
&y because of structural inadequacies which could lead to errors even for
the optimum ¥. Perhaps as, or more important, could be statistical errors
in the optimum ¥. Our results suggest that for such more complicated wave
functions, it may be better to use a less direct procedure based on E, and ¢,
rather than a “brute-force” optimization of 4 E.

-8.075 MeV

N\, 10

Fig. 2: Core and hypernuclear energies for the M-T potential vs. sy for
Ky = 0.39fm~".

Very recently calculations for more realistic NN potentials have been made:
Ref. [10] for '"O and Ref. [11] for } He both for Argonne v6 + U7. Reference [12]
is for § He with Argonne v14 + U7/U8 (Ref. 13) and Argonne v6 + U7/US.
Here v6 is a truncated version of Argonne vl4 which ignores the (last 8)
L? and LS terms in the full Argonne v14 potential and where U7 and U8
are different 3-body NNN potentials. For {3 He, a calculation with Argonne
v6 4+ U8 and with the same Vjy as used in this paper (but with V, = 6.16 MeV
m Vo) gives By = 58MeV, Egr ~ 0.6MeV, AE ~ 0.2MeV . These values
are quite close to those found in the present paper for the much simpler M-
T and A-T potentials. With a realistic Vyn which includes L? and LS terms
there will be induced terms arising from these momentum dependent terms, in
addition to the induced kinetic energy. Thus with Argonne vi4 + U8, Murali
and Usmani'?, and for the same Vjn just quoted, obtain By ~ 52MeV,
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Er ~19MeV, AEy ~ 0.6MeV, thus giving a significantly smaller By and a
significantly larger Eg than without the momentum dependent terms.

Fig. 3: Core and hypernuclear energies for the M-T potential vs. xy for sy =
1.2,

2 A Single Particle Energies

2.1 Introduction

In this part, we consider the A single-particle (s.p.) energies obtained from
the 7t + 4Z — K* + 4Z reaction for a wide range of HN with bary-
on numbers A < 81 and for orbital angular momenta I, < 4, Ref [14], and
in particular their interpretation in terms of the basic A-nuclear interactions.
These generate a A-nucleus potential which roughly follows the density dis-
tribution p.(r) of the core nucleus, with an approximately constant calue Dy
in the interior. This well depth D, is then identified with the A binding in
nuclear matter at normal nuclear density p,. Then the A separation energy is
Ba = D) — Tx where the A kinetic energy Ty ~ A~%3. Figure 4 shows the
experimental By vs. A~%3 in particular the s.p. energies. Extrapolation to

11



A — o0, ie. A™¥® — oo, in particular for the sx (i.e. [y = 0) states gives
Dy =~ 30 + 3MeV, a value which has been known for a long time.

For the heavier hypernuclei adequate variational techniques are in general not
yet feasible. We therefore use the local density approximation whose central
element is the Fermi hypernetted chain (FHNC) calculation of the A binding
to nuclear matter D(p, ka) as a function of the nuclear matter density p and
of the A momentum k,, with the identification Dy = D(p,ka = 0). The
depth D(p, ks ) is then used to generate a A core-nucleus potential Ux(r) and
an effective mass m}(r) which are used in a Schrodinger equation for the
A-nucleus wave function to calculate Bj.

Previous calculations of the single-particle By have used various approaches.
Closest to ours is that of Millener et al.!'® who in addition to a purely phe-
nomenological analysis also considered a local density approximation but one
based on a purely phenomenological zero-range Skyrme force. Other approach-
es use a self-consistent Hartree-Fock approach and a relativistic mean-field
theory approach.

A SEPARATION ENERGY (MeV)

Fig. 4: The experimental B, are shown with errors. The curves depict cal-
culated B,. The solid curve is for two mteractions with both dispersive and
2rANN potentials (Vo = 6.16 MeV, W = 0.01MeV,C, = 2MeV, e = 0.34 and
Vo = 6.2MeV,W = 0.013MeV,C, = 2MeV,e = 0.32). The dashed curve is
for a purely dispersive ANN potential (Vo = 6.2MeV,W = 0.016 MeV,C, =
0,¢ = 0.32).
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2.2  A-Nuclear Interactions

Our interactions are in large part phenomenological but are generally consis-
tent with and suggested by meson-exchange models, and are such that they
can be used in few- and many-body calculations.

AN potential. Since the A has isospin / = 0 there is no (strong) AA7 vertex,
and hence no OPE potential. However, isospin allows a AL vertex. Since the
¥ is only about 80 MeV heavier than the A, the two-pion-exchange (TPE)
potential is a dominant part of the AN potential being in turn dominated
by the strong tensor OPE component acting-twice. There will also be K, K*
exchange potentials which will, in particular, contribute to the space-exchange
and the AN tensor potentials. The latter is of quite short range because there
is no long range OPE and furthermore is also quite weak because K and
K™ tensor contributions are of opposite sign. Also there will be short-range
contributions from w, quark-gluon exchange, etc. which we represent with a
short-range Saxon-Wood repulsive potential which we take to be the same as
for the NN potential.

We then use an Urbana-type central potential with space exchange and a TPE
attractive tail which is consistent with Ap scattering. This has been discussed
in section 1.3. However, we now also include a space exchange component:

Van(r) = V)4 Ve, Vi = —eV(r)(1 = P,) . (33)

where P, is the AN space exchange operator; V, is the space-exchange po-
tential with ¢ its strength relative to the direct potential V (r). The strength
of Vor which is consistent with Ap scattering is V, = 6.15 + 0.05MeV". The
space-exchange parameter is quite poorly determined from the Ap forward-
backward asymmetry: € = 0.1 — 0.38. For our fits to the s.p. data we take ¢
to be a free parameter. ¢ determines the odd-state potential, in particular the
p-state potential to be V, = (1 — 2¢)V ().

With only a AN potential fitted to Ap scattering, and even with rather large
space exchange, the HN for A > 5 are strongly overbound relative to the
experimental values. Furthermore, our results for the s.p. data show that these
do not permit a fit with a AN potential alone even if the requirement that
this fit the scattering data is dispensed with. This overbinding implies that
many-body effects are large.

ANN potentials.  Many-body effects can arise for a central Vjy through
changes in the AN correlation function gay due to the presence of other nu-
cleons. However, for our potentials such effects are quite small in the absence
of ANN forces. Related effects are modifications (suppression) by other nu-
cleons of an effective mmteraction due to e.g. a tensor force which must act at

13



least twice. Such tensor-force suppression of the NN force is a very important
contributor to nuclear saturation. However, a AN tensor force is suppressed
much less because of its short range and weakness. For the TPE AN potential
Var a closely related suppression effect arises from the modifications of the
propagation of the intermediate ¥ or N by other nucleons (Fig. 5). We repre-
sent such suppression effects by a phenomenological (repulsive) “dispersive”
ANN potential of the form

Vidin = WTEHria TR (ran), (34)

where r;j are the A-nucleon separations. The other type of three-body ANN
force (Fig. 5) arises from TPE, appropriate to a p-wave pion interaction of the
A with two nucleons (1 and 2), and has the form

Viin = —(Cp/6)(7 - 72)
{[(31 - GA)Y (ria) + SiaT(r1a)), [(F2 - Ga)Y (r2a) + SaaT'(r2a )]} (35)

where {A,B} = AB + BA,Y(z) = exp(—z)(1 — ezp(—cr?)/z and T(z) is
OPE tensor potential shape with a cut off. S;; is the tensor operator for
particles 7,7 and &; and 7; are the spin and isospin Pauli operators for particle
t. Theoretical estimates give C), =~ 1 — 2MeV . Thus our ANN potential is
Vann = ViBin + V&% and involves the two strengths W and C,.

ANL-P-21,143
s o . s 0 B
n T
z .LMq > >
N
- - - 2 - -
x P--a

Fig: 5: Diagrams for dispersive and TPE ANN potentials.

For our earlier calculations of the s-shell HN: 3H, 1 H and {He (both J =
0 and 1), and } He we used a M-T central NN potential. The calculations
included AN, NN and ANN correlations: fan, fun, fanny = fivn fiwn- The
most pertinent result for our present work is that V)X, alone gives at best
only a small repulsive contribution. Consequently a strongly repulsive AN N
dispersive potential V{3 is required if § He is appreciably overbound. This is

14



because the AN NV correlations f2% y reduce the contribution of V2 y from one
which is appreciably repulsive to one which is only slightly repulsive or even
attractive, whereas the effect of correlations on the repulsive contribution of
VR v is much less. For our calculations of the s.p. encrgies we have considered
a AN potential only and several families of AN + ANN potentials of the
type discussed above, some of which in particular are constrained to give the
experimental value of Bx(} He).

2.8 Calculation of the s.p. Energtes

The s.p. energies By are obtained from a Schréodinger equation with a A-
nucleus potential U and an effective mass mj} which are obtained in the local
density approximation using the FHNC method. This is used to calculate the
A binding D(p, kp) for nuclear matter of density p and for a A momentum
of kpn. The FHNC method is based on a variational wave function of the
form of Eq. (14) where ¥ = ®4-! (with A — oo) is now the uncorrelated
Fermi gas wave function for nuclear matter of density p. The correlation factor
F now includes both AN and ANN correlations. Details of the correlation
factors fan, fnn and fann as well as of the calculational method are given
in Ref. [5]. The effective mass m}(p) is obtained from the quadratic term in
ka in D(p, k). We also allow approximately for a “fringing field” (FF) due to
the finite range of the AN and ANN potentials by a folding procedure. For
a zero-range Vjn, i.e. without a FF, one has Ux(r) = D(pc(r), ka = 0). The
densities p. are obtained from the electron-scattering data. The effective mass
as a function of r is given by mj(r) = mj(p.(r)). Finally, B, is obtained as
the lowest eigenvalue of the appropriate radial Schrodinger equation for an
orbital angular momentum /.

We briefly discuss the expressions for D(p) and mj(p) obtained with the
FHNC method. We define (always for a given density p of nuclear matter)

D = D(ky =0) = D' 4 DANN, (36)

where DMV and DAVN are the AN and AN N contributions respectively. Fur-
ther

DWW = DMW L DM, (37)

where D}V is the direct AN contribution and DAV is the exchange AN con-
tribution. D}V is proportional to p to a good approximation, reflecting the
small depedence of fyny on p. The exchange contribution DAV is proportional
to the exchange strength e: DAY = €A, where

3 37%.,,
A = —E(T)Z/Jbops/aﬂ. (38)
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The form factor F| represents finite-range effects for DAV by is given by

b= bp=0) = 3 [ guVanr*ds, (39)

where gpq is a correlation factor. The effective mass m} is given by

X = m -1 = ey, (40)
mh h

where bis given by the expression for by but with an additional factor Dp(kpr)
in the integrand and such that by = b(p = 0). Finite-range effects occur
through b and are represented by the form factor £, = b/bo.

Exchange contributes both through DAV and therefore through the A-nucleus
potential Uy, as well as through m}. For € > 0, DM is repulsive (odd state
potential less attractive than even state) and m} < mj thus giving a larger
kinetic energy relative to that for m, and therefore also an effective repulsion.
Fi(p), Fa(p) are form factors which represent finite-range effects of Van: Fi,
Fy, = 1for p = 0, or equivalently for a zero-range Vyn. Fi, F; differ by less than
2% between different interactions and together with by then determine A =
DM /e and Y/e. Finite range effects (F), Fy < 1) are much more important
for \, ie. for mj}, than for A: thus F} =~ 0.82, F, = 0.5 at pq.

The ANN contribution to the A binding is
DANN — t;;/)zl'jm\:/\r . (41)

where Fynn(p) is a form factor such that Fayny = 1 for p = 0 or equivalently
for a zero-range ANN potential. Fyyy depends on various correlation func-
tions. The maximum variation of Fyyn for all the interactions we considered
is less than a factor of two over the range of p considered: 0 < p < 0.25fm 3.
The dominant p variation therefore comes from the p* factor. We also define
Do = D(e = 0) = DMV 4+ DMV with the total A binding D = Doy + DAV,

2.4  Fits to the s.p. Energies

In our fits to the s.p. data only the exchange parameter ¢ is varied for a given
interaction. The well depth is given by Dy = D(po) where py = 0.165fm >
is the density of normal nuclear matter: Dy = Ba(A = oo) for all l4. For
a satisfactory fit to the sx(lp = 0) data, D(p) must satisfy Dy = D(po) ~
30MeV i order to allow a satisfactory fit for large A. On the other hand for a
fit for lighter nuclei which have relatively more surface, D(p)/p must be larger
for p < py. This implies a “saturation” behavior of D(p) with a maximum at
Pmaz Which 1s not very different from py. These features are illustrated in Fig. 6,
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in particular for an interaction (Vo = 6.16 MeV,W = 0.01MeV,C, = 2MeV)
with € = 0.32, which gives a satisfactory fit to the s.p. energies. The saturation
features were previously emphasized by Millener et al.!® in their analysis of
the s.p. energies. To give the empirical differences between the B, for different
Is requires quite generally that m} = 0.7m,, which in our approach requires
€=~ 0.3 —0.5.

ANLP-21,145
3 r T T T T T T T T T, T y

D(v,=598) ~DMW

—pMN

A BINDING ENERGY (MeV)

R
I

T ] T [ L ] T ] T | T
0.04 0.08 0.12 0.16 020
p (m®)

oﬂ,

Fig. 6: The A binding D(p) and its components vs. p for an interaction with
Vo =6.16MeV, W = 0.01MeV,C, = 2MeV,e = 0.34 for which the s.p. ener-
gies are shown in Fig. 4. Also shown is D(p) for only Vin (Vo = 5.18 MeV)
with ¢ = 0.88.

Direct AN potential only. For this € = 0 and thus m} = ma. As Fig. 6 shows
DAY = DAV =~ 400pMeV for a Vyy which fits the s-wave scattering; any
nonlinearity with p being quite small. Thus, Dy = DA (py) =~ T0MeV. All
the s.p. states and in particular the s, states are then much too strongly
bound, even for quite small A. If alternatively the strength V4 were adjusted
(without any justification) to give Dy =~ 30MeV so as to fit the B, for the
heaviest HN, then conversely the B, for even medium heavy HN would be
much too small (and the AN scattering would be very much too small). These
considerations clearly indicate the need for the “saturation” features of D(p)
if a fit to By is to be obtained for both small and large A. Thus a direct AN
potential cannot fit the s.p. energies.
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AN potential with space exchange. Now DM = D{)‘N + DM . To obtain
Dan(po) = 30MeV requires a large and repulsive exchange contribution
DAN =~ —30MeV which is obtained for € 2 0.88. The A binding D(p), shown
in Fig. 6, then has a maximum = 35MeV at ppq. = 0.215fm=3. However the
large value of € implies a correspondingly small value of m} /ma ~ 0.48 at po.
The results for the s, states are then reasonable for large A as expected, but
the large A kinetic energy (small m}) gives too small B, for smaller A and
also much too small B, for the /[, > 0 states. In fact, no even tolerable fit
to the s.p. data can be obtained with a AN potential with space exchange.
Thus a central AN potential with and without exchange is ruled out by the
s.p. data.

AN tensor force. This will make a nonlinear contribution in p to D}N. VI,
will arise mostly from K and K™ exchange, the associated range being quite
small. Further, the K and K* contributions are of opposite sign giving a
small net V,. The short range implies predominantly quite high momentum
components which are only slightly modified in nuclear matter. This results
in only quite weakly p-dependent AN correlations, or equivalently an effective
central interaction ~ (V5 )? which is only slightly more repulsive in nuclear
matter than the free interaction. Thus, with a reasonable AN tensor force,
the direct AN contribution D}V will be approximately linear with p, and
the repulsive (nonlinear in p) contributions can be ascribed almost entirely to
DANN 4 DAN with only a small contribution from DAV,

AN + dispersive AN N forces. To obtain an adequate fit to the s.p. energies
and to } He the latter must be overbound by a AN potential (fit to the AN
scattering) by 3MeV or more, since otherwise V% v (fitted to Ba(} He)) is
insufficiently repulsive for heavy HN. This insufficient repulsiveness cannot
be compensated by a larger exchange parameter € (which would give a more
repulsive D?V) since then m} /m would be too small leading to a mediocre to
poor fit for [ > 0 as depicted in Fig. 4 for a situation where { He is overbound
by 2.5MeV . In fact it is quite likely that } He is even less overbound than this
in which case a purely dispersive ANN force is even more strongly excluded.

AN + dispersive ANN + TPE AN N forces. For such interactions we obtain
excellent fits to all the s.p. data as illustrated in Fig. 4. Figure 6 shows D(p)
and its components vs. p for one of these interactions. The depth D(p) has
the characteristic saturation features needed for a fit to the s.p. data: Dy =
D(po) = 2TMeV required to fit By for large A, and a maximum ~ 28MeV at
Pmaz = 0.14fm™>. A combination D¥yy + V)% v permits a fit to the s.p. data
and to } He because the 2rAN N correlations fi%y in § He strongly reduce the
repulsion due to V2% and can even give attraction, whereas this is not so for
nuclear matter, i.e. for D. Thus a sizeable V/} , which gives a small repulsive
or even attractive contribution in 3 He can give a large repulsive contribution
in nuclear matter. This, together with the repulsion from V/J , (which is
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required for } He if this is sufficiently overbound and for which there is no
such dramatic change between A = 5 to A = o0) provides sufficient overall
repulsion DAV (py) &~ —30MeV needed for the s.p. data. More generally it
seems clear that what is required for our family of interactions is that the
effect of correlations for VA?V n does not change too much with A, whereas for
VI y the effect of f27,\ should depend quite strongly on A in such a way as
to give relatively more attraction for small A.

As an average for the interactions which fit the s.p. data we obtain € ~ 0.32 +
0.02 and mj(p)/ma = 0.72 £ 0.02, which implies an exchange contribution
to Dp of DAV x~ —12MeV. For the ratio of the p to the s-state potentials we
obtain V,/V, = 0.35 £ 0.05. For Dj we then obtain Dy = 27 + 1MeV.

2.5  Core Polarization for Medium and Heavy Hypernucle:

We have extended our local density calculations of the s.p. Bx to include
polarization by the A. In view of the contribution of the rearrangement energy
EpR discussed in section 1, such estimates must be considered valid only for
medium and heavy HN.

As in 1.1 the total HN energy is assumed to be

AElp) = “TUE[p] + ealp], (42)

where p is the density of the core nucleus and [p] emphasizes the functional
dependence on p; €y = — By is the s.p. energy as obtained in 2.3, and 4~'E is
the core energy. We now consider p(r) ~ [L + e ""R)/t]-1 a5 a variational trial
density dependent on radius (R) and surface thickness (t) parameters. The core
energy “~1 E[p] is obtained as an integral of an energy density €(p)+C(Vp)?/p
plus the Coulomb energy and a fixed asymmetry term. The gradient term
represents finite-range effects of the nuclear forces and is required to obtain
a nuclear surface of finite width. The energy per particle €(p)/p is chosen to
give the correct saturation values (—16MeV at py = 0.165fm~2) and involves
the incompressibility constant K and two additional parameters. These and C
(for given K = 200 and 300MeV') are chosen to fit the experimental nuclear
binding energies by calculating the minimum of A~'E[p] = 4-1E(R,t) for
any given set of parameters in the energy density and then choosing that set
which gives the best fit to the experimental energies. We obtain an excellent
fit A-'E to these experimental energies for densities 4~'p which give quite
good agreement with the empirical densities.

To obtain the total HN energy we calculate €x[p] = —B) as discussed in 2.3,
but now for the trial core density p rather than for the fixed empirical electron-
scattering density. The trial density is then varied to give the minimum of the
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total energy 4 E[p] for our best fit parameters for the nuclear energy density.
This minimization gives a changed density 4~'j and core energy A-1E appro-
priate for the HN. The core polarization energy AE = A~'E— 471E is also
the energy by which the total HN energy is lowered due to core polarization.

Core polarization results. Both the polarization energy 6 £ and the change in

rms radius § < 72 >/? decrease in magnitude with A and for larger K, and
are generally quite small. For a AN potential only, Fig. 6, shows that DM
increases with p (this corresponds to the decrease of €5 with R discussed in
section 1.1). In this case the A binding prefers larger p and hence a smaller
core radius, ie. one expects § < r? >'/2 to decrease due to the presence of the
A (quite similar to the discussion of 1.1). The response of the core nucleus to
the A is determined roughly by AK (which is effectively the coefficent of the
quadratic term ~ (p — po)? in €(p)/p) and thus the polarizing effect of the A
is approximately proportional to (K A)™® with o ~ 1. Numerically we obtain
(for a AN force only): AE ~ 0.12MeV (A = 50), 0.06 M eV (A = 150) for K =
200MeV. With ANN forces the situation is qualitatively changed since D(p)
now has a maximum at p,,,, not very different from the situation density po.
In fact for the D(p) of Fig. 6 (with pa: =~ 0.15fm™> < py) we obtain a small
expansion of the core-nucleus surface. The “driving force” due to the A is now
much less than for D4V because of the much smaller variation of D with p near
po. Numerically we now obtain AE =~ 0.05MeV (A = 50), 0.02MeV (A = 150)
for K =200MeV, much smaller than for DAV ; as expected §E is smaller for
larger K, eg. AF =~ 0.03MeV (A = 50) for K = 300MeV.

We conclude that polarization effects are small and can generally be neglected,
especially for a “saturating” D(p) which is required to fit the s.p. energies.
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