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THE TINE CONCEPT IN ATONIC AND SUB-ATONIC SYSTENS - RECONCILIATION 

OF THE TINE-REVERSAL-INVARIANCE AND THE NACROSCOPIC ARROW OF TINE 

Constantin Syros 
Laboratory of Nuclear Technology,University of Patras 
261 10 Patras,P.O.Box 1418,Greece 

Summary 
A new conception of time is presented in the framework of the 

quantum generalized stochastic and infinitely divisible fields. A 
non-unitary evolution operator lacking the continuous group 
property is derived from a time-reversal-invariant field theory 
in Minkowski's space. It describes the arrow of time on the 
quantum level. By quantizing the field action integral the usual 
evolution operator is obtained as a particular case. Quantum 
processes violating the T-symmetry are possible in the present 
theory.It is also explained why Bom's interpretation of the wave 
function is necessary.The Feynman path integral is obtained as 
the limit of a series of similar integrals with finitely additive 
measures.This form of the Feynman integral does not conflict on 
the quantum level Heisenberg's Uncertainty Principle. 
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1 INTRODUCTION 

"Time is money" is probably not only a commercial wisdom. It 

may equally be a fundamental physical principle,if it is true, in 

a sense,that time is intimately related to energy changes. 

Macroscopically.time is perfectly defined since ancient epochs 

as a continuously flowing quantity on the basis of directly or 

indirectly observable changes in the motion of material bodies.On 

the quantum level,however,time cannot be of the same structure as 

in the macroscopic scale phenomena. 

The purpose of the present paper is to introduce a new concept 

of the time and to apply it to derive a new evolution operator in 

the framework of the quantum field theory which will be a 

realization of the unified arrow of time on the quantum level and 

in the macrocosmos. 

No matter what kind of a mechanism is used to implement the 

time flow - the clepsydra or the pendulum or the Earth or the 

pulsars - an energy change invariably takes place. 

In the clepsydra the minimum time duration generated is 

determined by the total water quantity,by the hole diameter of 

the container and by the acceleration of the gravity,g,among 

other things. Larger time neighbourhoods are realized by adding 

any number of the minimum time neighbourhoods in each case.The 

accompanying energy change consists in the change of the 

potential energy of the water during flowing. 

In the pendulum case the minimum time neighbourhood,the semi-

period, is determined by the pendulum moment of inertia and by g, 

the acceleration of the gravity.Again,larger time neighbourhoods 

are constructed by taking any number of semi-periods. The 

relevant energy change in this case is connected with the change 

of the potential (or,equivalently,the kinetic) energy of the 

pendulum mass. 

If the Earth rotation around the Sun is used to define the 

time,then the minimum time neighbourhood is defined as the year, 

and larger intervals are obtained in the same way as above. 

Here, the accompanying energy change is that of the potential 

energy of the Earth in Sun's field of gravity,but to the humans' 

perception of the time flow serve other accompanying phenomena of 
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shorter duration as night-day (or seasons) succession. 

Similarly,in the chemical clock or in the atomic clock there 

exists in each case a minimum time from which larger intervals 

can be constructed.In the case of the atomic clock the minimum 

time is determined by the inverse frequency of the emitted light 

quanta during transitions between certain states of the Cs atom. 

For us,humans,the continuous time flow feeling is perceived 

also independently from clepsydra's observation etc. by the im

mense number of internal (biological) and external (physical) 

stimulations acting on our five senses. 

These facts let appear the idea of the continuity of time as 

not more justified than the non-continuity,although macroscopic-

ally one can imagine physical processes giving minimum continuous 

time neighbourhoods long enough for all practical purposes. 

On the macroscopic level the time is,as it will become clear, 

in fact always continuous. The overwhelming majority of the 

differential equations of Physics are based on the idea of a 

continuous time variable and everything is working perfectly. 

On atomic and sub-atomic scales,however,the discontinuity of 

the time variable is more evident.Dispite this fact the time 

variable enters the differential equations of Quantum Physics in 

the same way as in Classical Physics .The consequences of this 

fact will be also discussed. 

The consequenses of using,instead of the universal time the 

interaction Drooer time neighbourhood of every process do not 

appear in practical issues of the macrocosmos.However,when atomic 

or sub-atomic processes are handled which eventually are 
3 expressed by the evolution operator or by the S-matrix ,then the 

use of the interaction proper time neighbourhood is unavoidable 

in the time integrations of the above mentioned operators. 

This paper is organized in 6 sections.In section 2 the neces

sity is discussed for a relationship between time and energy. In 

section 3 a procedure is presented showing that the time is since 

long recognized as a non-continuous (physical?) quantity. 

An other very intriguing question related to the structure of 

time is the statistical nature of the wave function in Quantum 

Theory as it has been ingeniously postulated by M.Born. 
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It is one of the most surprising facts in Physics that,while 

the Scrödinger equation does not contain any random,stochastic or 

statistical term,derivative or factor,its solution is of stati

stical character. 

It seems that the way for understanding the Born interpretati

on of the wave function goes via the consequent recognition of 

the fact that the time used for the description of the observable 

phenomena in nature is composed,in a set theoretic sense,from the 

time neighbourhoods of the realm of the microscopic phenomena to 

which are due the microscopic or the macroscopic observable chan

ges. This will be the subject of section 4. 

The relationship between the many times of the microscopic 

processes and the time of the macroscopic phenomena-it is believ

ed- is the deeper reason for which the quantum fields are in fact 

generalized and infinitely divisible stochastic fields. 

An evolution operator is derived in section 5 making use of 

the stochasticity of the quantum fields.The questions of reversi
bility- irreversibility and of conservation dissiuation are 

discussed. It is shown that the arrow of time and dissiuation are 

spontaneously generated by the stochasticity of the quantum 
fields and by rejecting the property of the continuous group of 

the evolution operator. It is interesting to note that the famous 

Feynman Dath integral aooears as a Darticular case in the 

framework of the generalized and infinitely divisible stochastic 

filds.. 

Finally,in section 6 the obtained results are discussed and 

some conclusions are presented. 
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2 THE GENERATION OF TINE IDEA AND ITS RELATIONSHIP TO ENERGY 

2a The origine of the tiae idea. 

If the entire Universe consisted of one single,structurless 

particle, e.g.,an electron,then the idea of the time would be 

for a "foreign" observer neither definable nor useful. Motion 

would be,on the basis of our familiar physical criteria, 

unobservable and meaningless. The particle would be describable 

by its intrinsic characteristics , mass,spin,charge,etc.,and no 

change whatsoever would be possible.In particular no change of 

the particle energy would be possible. 

If the entire Universe consisted of two non-interacting 

structureless particles,then the idea of time would again be unde-

finable and the motion,if any,would be unobservable by an ob

server in the frame of reference of either particle (due to the 

lack of interaction). 

If the two particles do interact,then messages between them 

conveying physical characteristics exist,and a new parameter is 

required for the description of their evolution:This parameter is 

the interaction proper time neighbourhood. 

However,interaction means change of physical characteristics 

and exchange of parts of them between the particles. Moreover, 

transfer of physical characteristics implies in any case energy 

changes inside the Universe of the two particles.Consequently,it 

appears that associated with any time laps is an energy change. 

This association has not the character of a causal relationship. 

This becomes clear from the fact that if no description of the 

phenomenon is desired,then there is no time variable. 

Conversely,it is empirically clear that no time laps is obser

ved, if no energy change -and more generally no change whatsoever-

takes place. 

2b The relationship "energy-time". 

The idea that time is related to the energy is not new.Already 

Schrödinger and Pauli considered the relation of the time with 

the energy as direct consequence of the commutation relations 
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[χ ,D ] = ihOô" ι»,Λ=1,2,3. 2.1 
m η mn 

However,it was not sufficiently emphasized that the position 

coordinate χ and the conjugate momentum D are related,despite 

their independence in the sense of the Mathematical Analysis, not 

just by the commutation relations.There is still an other 

reciprocal physical relationship: The change of the position 

variable,x,of a particle generates its momentum D . The converse 

is also true.The change of the momentum D of a particle 

necessarily implies change of its position x. This mutual 

relationship has not been sufficiently emphasized although its re

ality is quite evident. 

In quite a similar way,the change of the energy of any 

particle generates the time laps which is appropriate for the 

description of the history of this particular event. 

The commutation relation between the energy operator //,the 

Hamiltonian,and the time operator t is 

[tyH] = ihu. 2.2 

Here,as well as in 2.1,the "generating" relationship between 

energy change and time change is apparent from 2.2 and it follows 

from physical considerations analogous to those valid for 2.1. 

A further analogy between 2.1 and 2.2 of greate importance for 

the understanding of the nature of the time is the following: 

The result of applying 2.1 on a wave function is to describe the 

generation of a quantum pertaining to the particle having the 

momentum D. 

Similarly,the application of 2.2 on a wave function generates 

a quantum pertaining to the particle having the energy E. 

At this point it is appropriate to emphasize that each time 

neighbourhood pertains to the particle subject to the correspond

ing interaction and only to that.It refers to its rest frame.It 

would not be in agreement with Relativity, if the same time 

neighbourhood would be used universally to describe the evolution 

of other particles at different points of the space (events). 

By mixing the time and the space variables as it is done in 

the transformations of Relativity we do not yet fully eliminate 

the classical,absolute character of the time.Such could be 

achieved to a greater extent by attaching to every one act of 
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interaction its own time variable,which takes values exactly as 

long as the interaction lasts. 

Considering that in a many particle system each particle's 

history is described by its own set of time neighbourhoods - each 

one starting and ending with the starting and the ending of the 

corresponding interaction (causing the associated changes in the 

energy) of the respective particle-it is not obvious at first 

sight,which one of the many pieces of time (which,by the way,may, 

clearly,or may not overlap,in the sense of simultaneity of Rela

tivity, partially or entirely) would be appropriate to descricribe 

the whole set of particles as a physical system. 

2c Microscopic and Macroscopic universal tiae. 

These considerations make clear that any time variable defined 

to describe a macroscopic system will be conceived as a super

position of time neighbourhoods generated during the numerous 

interactions of the atomic or sub-atomic constituents of the 

system under observation. 

It becomes,therefore,clear that every system of many particles 

has its own macroscopic time. If two different particle systems 

have equal numbers of identical particles which interact via 

identical interactions they may or they may not have identical 

microscopic times.The macroscopic time variables,r,however,of 

the two systems of Ν particles will be with very high probability 

the same and take values on the union of the microscopic inter

action proper time neighbourhoods (ti?!?
1
) pertaining to the 

interactions {a) between the particles {/?} of the system (fig.l): 

Microscopic universal time -

τ :- U U t{(!'ß) 

_ a micr. 
α β 

- Union of all factual interaction proper-time 

neighbourhoods. 2.3 

Despite the possible leaks between the particular interaction 

proper time neighbourhoods for a small number of particles in the 

system there is no practical difficulty in describing the 

macrocosmos by a continuous time variable,because the number of 
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the interacting particles in other particle systems perceived 

simultaneously by the observer and the corresponding number of 

interaction proper time neighbourhoods is so large that the 

mathematical (and the psychological) continuity (in the sense of 

2.3) is assured. 

v*; 

τ 

Fig.l Interaction proper time neighbourhoods (t_-t') of particle 

pairs in a system with 5 interactions.(t,-ti) has no common point 

(t
2
-t^) which partially overlaps with (t--tX). The end point of 

(t.-ti) coincides with the initial point of (tr-ti). The union of 

the above interaction proper time neighbourhoods constitute the 
universal time of the given system of particles which is sectio-
nally continuous.For \/ery large numbers of interacting particles 

τ becomes equivalent to R . 

Hence,in case Ν is very large,τ consists entirely of partially 

overlapping interaction proper time neighbourhoods,and a continu

ous macroscopic time variable may emerge,which would be identical 

with the macroscopic or psychological time. 

2d Tine and entropy 

Whenever the scientific discussion is about the evolution in 

time one invariably recalls entropy. This quantity introduced by 

R.E.Clausius as a thermodynamic state variable,has been later re

lated by L.E.Boltzmann to the probability of the thermodynamic 

state of a gas. 

Since eyery particle system in a non-equilibrium thermodynamic 

state tends to an equilibrium state,and since,during this tenden

cy, the probability of the state increases with entropy,and since 

entropy increases,or at least does not diminish,during every evo

lution of an isolated system,there automatically emerged impres

sion of a relationship between time and entropy. 

This relationship provided the entropy with the reputation of 

a fundamental quantity for the evolution generally in Nature. To 
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which extent is this reputation justified? 

First it is recalled that entropy,defined by 

5 = jdQ/T, 

depends on a heat quantity and on the temperature of the heat 

source. No one of the quantities Q or Τ is fundamental.The funda

mental physical fact here is that,if heat flows spontaneously 

from one source with temperature 1' to a heat sink of temperature 

7"< 7"', it will never flow spontaneously in the opposite way. 

To investigate this question one should at least analyze in 

detail the various situations,in which entropy changes with time. 

The simplest question to ask: Is the relationship "entropy -

time" linear? Even this question is incomplete,because we left 

unspecified which time we are talking about. 

Since Thermodynamics is concerned with a large number of 

particles the system time defined by 2.3 coincides with the uni

versal time.We can,therefore,assume that time continuously flow

ing. If the thermodynamic transformation of the system proceeds 

irreversibly,then the most reasonable assumption seems to be that 

entropy increases linearly with the time. 

This assumption,however,may be wrong. The reason is that our 

question is still incomplete.We have not yet specified,whether the 

heat sources involved in our irreversible thermodynamic trans

formation are of variable or of constant temperatures. 

Suppose,then,that the source temperatures are constant. In 

this case the relationship "entropy - time" is linear, if among 

other things the heat transferred between the heat sources is li

near in time. 

Hence,under the stated conditions,the entropy increases with 

constant speed and is,in a sense,a measure for the time flow. 

We postspone,for a moment,other pressing questions concerning 

the linearity and we ask,whether this speed is universal,i.e.»va

lid or not for all thermodynamic systems in our universe. The 

answer is,of course,"No". Because,other temperature differences 

of heat sources imply other speeds for the entropy increase in 

irreversible transformations. 

The other pressing questions regard the degree of irreversibi

lity in the transformations of our universe.Clearly,while the ti-
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me defined by 2.3 for the system under discussion flows, during 

reversible trasformations,entropy stops to increase.This destroys 

the linearity of the relationship. 

In short:The increase of the entropy in our universe does not, 

with high probability,proceed linearly with the time;it depends 

on the temperature differences and,consequently,entropy is an 

average measure for the total change in our universe. 

Let us next suppose that there exists in our universe a space 

neighbourhood from which not all physical changes in our universe 

are observable.The observable physical changes from the neighbour

hood in question allow to define a macroscopic time by means of 

2.3. 

If the physical changes in other similar neighbourhoods of the 

universe do not proceed in the same way (for example,the 

temperature differences are quite differently distributed,entropy 

changes in different ways in different particle systems and they 

do not define the same time),then the macroscopic time defined 

there may in principle differ from that given in the first 

neighbourhood. This opens the question of the possibility for a 

constructive definition of a universal time on the basis of 

entropy.The most likely answer is that there cannot constructive

ly defined a universal time for all causally separated regions 

of the universe. If this is so,the question might be of some in

terest to Cosmologists. 
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3 TINE CHANGING BY STEPS AND LATTICE STRUCTURE OF SPACE-TINE 

3a The Liouville elenentery solution. 

In all physical processes the elementary interaction time is 

finite and, therefore,the corresponding energy change is also 

finite (quantum exchange).From this fact it becomes clear that 

the time variable can in general be only a sectionally continuous 

variable. This can be seen also in a more formal way. 

We consider a system of Ν particles interacting via forces 

(F
( n )

> and moving in the phase space Q
( 5

βΡ
( ]

 according to the 

Liouville equation 

L g(q,P,t) - 0. 3.1 

Here the operator L is defined by 

l - a
t +

 £ ( p
( n )

. v
( V

+
F

{ n )
. v

( P n )
) 3.2 

(q
n
) (P

n
) 

and 7 , 7 ,are the gradient with respect to the position 

vector q
( n )

 of the n-th particle,the gradient with respect to the 

momentum p
( n )

 of the n-th particle. g(q,p,t) is an elementary so

lution of the Liouville equation. 

For simplicity it shall be assumed that the forces are indepen

dent of q
( n )

,p
( n )

,t. 

According to the above definitions an elementary solution of 

3.1 is given by 

gfo'îV'.t)-

in which θ is a constant to be conveniently determined. This 

solution of the Liouville equation can be used to costruct more 

general distribution functions f(g) for the system of particles 

under consideration. 

3b An example for time discontinuity 

To do this with the above form 3.3 we shall postulate two 

principles:The reality of f(g): 

Im f(g) = 0, (reality) 3.4 

and the additivity of two solutions corresponding to two systems 
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of particles: 

f(g
1
)-f(9

2
) -

 f
(9i+ 9

2
) (additivity). 3.5 

The total energy of the system is equal to the sum E = £ε
η
 and 

it is assumed that the total energy is conserved in the sense 

that 

[f=0. 3.6 

The simplest form f(g) satisfying 3.4 and 3.5 is f(g) * Ce"
9
, 

where C is a normalization constant. f(g) satisfies the Liouville 

equation,if,besides 3.4 to 3.6 and some relationships concerning 

the linear momenta of the particles,it satisfies also the condi

tion 

λε t - 2i/7k
n
, 3.7 

where k
n
 - 0,1,2,... . 

It is seen from other considerations that A
_ 1
= -ih. Hence,3.7 

allows the following conclusions: 

i) Time cannot change continuously. 

i i ) For given energy ε of the n-th particle the least time step 

for this particle is Znh/ε . 
H i ) A quantum process is more rapid the higher the energy 

change. 

These conclusions,if taken with consequence,modify our picture 

of the time in atomic and sub-atomic Physics. 

The initial question "why time changes by steps" is justified 

in classical non relativistic theories such as the theory of the 

Liouville equation.The answer is that such a theory describes ob

servable phenomena only if the distribution function satisfies 

the reality condition,and if the condition that the sum of two 

similar systems must be described by added similar distribution 

functions.These two conditions are satisfied if,among other 

things,the time associated with elementary events changes step

wise. 

3c The space quantisation 

In 3b conditions have been described under which time cannot 

change continuously for a system of particles of given constant 

energy interacting via external forces. 

It is,therefore,seen that the most important condition for the 
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noncontinuity of the time is the additivity of the solutions for 

two systems. In the present example this has been obtained by 

requiring the particles to interact at most via external forces. 

However,this does not constitute a proof for the assertion 

that the solutions lose the additivity property as defined in 2b 

if there exist interaction forces between the particles whose 

they are the distribution functions. 

Since the solutions as given by 3.3 are directly related to 

energy,the above discussion is equivalent to the discussion about 

the additivity of the particle energies. Hence,if a representati

on can be found in which the energy of each particle in each sy

stem is independent of the number of the system's particles,then 

the solutions become strictly additive. 

It is,of course,well-known that the above requirement is met 

in the thermodynamic limit,where the ratio surface/volume of the 

system tends to zero with the number of particles tending to in

finity. 

It follows,therefore,that at least under the above restrictive 

conditions space too must be quantized. A full discussion of 

these matters will be presented elsewhere. 

Based on the above results and observations Born's statistical 

interpretation of the wave function will be analysed from the 

interaction proper time point of view. 
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4 ON THE ORIGIN OF THE STATISTICAL NATURE OF THE HAVE FUNCTION 

4a The wave function of the «any particle beaa 

Interactions are the reason for any change in Nature.The des

cription of any state is implemented in the microcosmos by means 

of a wave function satisfiyng a quantum equation (Schrödinger, 

Dirac,Klein-Gordon,etc.).These equations are partial differential 

equations with a derivative with respect to time. No one of these 

fundamental physical equations is of statistical character. 

Despite this fact,one of the most surprising discoveries in 

Physics is that of Max Born: 

Although the Schrödinger equation does not contain any random, 

stochastic or statistical term.factor or derivative,its solution, 

the wave function,must be statistically interpreted. 

The mathematical structure of the time used in the above 

mentioned differential quantum equations to describe the elemen

tary particles' behavior and their motions,is usually identical to 

that of the time with the help of which we rule our daily affai

res. It is the time which we put,e.g.,into classical equations to 

solve engineering problems.lt has nothing to do with the particle 

interaction proper time required by relativity.. 

The tacit assumption that these two time structures are 

identical is certainly well done in many problems as long as no 

elementary interaction takes place. Our question is whether this 

can or cannot be done in problems of atomic or sub-atomic scale, 

where interactions occur and the proper time of each particle in 

the sense of Relativity plays its own part.Is the time structure 

in conjuction with the interaction processes which we wish to 

describe adequately taken into account? 

The possibility of a continuous time variable to be the proper 

time of a series of events is not related to the velocities of 

that series events being comparable or not to the velocity of 

light,c.It is rather related to the time,which is created 
simultaneously in its neighbourhood with each particular interac

tion event on the quantum level. The proper time neighbourhood 

does not exist prior to its creation by the lementary interaction 

process. 
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There is no hope to discover experimentally the absence of the 

space-time anywhere.Because an observation for this purpose 

pre-requires a series of elementary physical interaction events 

which themselves create the space-time observed.Vacuous space-ti

me on the quantum level is not observable.Only interaction pro

cesses and their space-time positions are observable. 

Our preliminary answer to the question whether we can or 

cannot identify a macroscopic time variable with the proper time 

variable of an elementary process in problems of atomic or 

sub-atomic scale is: Probably we cannot do that.Because the clas

sical universal time variable (as a point set) may have at most a 

non-empty intersection with the intervals of the proper times 

pertaining to interactions of an atomic or sub-atomic system. 

When the number of particles is very large,the situation 

changes radically, because the union of a large number of proper 

time neighbourhoods may,if they pairwise partially overlap,acquire 

the structure of R . 

Whereas the elementary physical interactions which create time 

are of finite extend,we tacitly consider the physical interacti

ons as continuous functions in time neighbourhoods beyond the 

proper interaction time neighbourhood.In so doing we tacitly 

identify the macroscopic time in the quantum equation describing 

the particular process with the set of proper interaction time 

neighbourhoods of other,macroscopic processes. This cannot be 

done,because interactions are identical to exchange of field 

quanta,and these are per definition non-continuous entities. 
ο 

It was no less a person than P.A.M.Dirac who pointed out early 

in the development of the Quantum Theory the necessity to 

introduce the many-times theory in Quantum Physics. Despite this 

proposal,the universal time methods continued to be applied since 

the beginnings of the Quantum Theory.For example,the integrations 

in the Σ-matrix or in the evolution operator expression are done 

without regard to the interaction proper time neighbourhood of the 

particle reaction.The many times variables which then must be 

chronologically ordered are introduced by the way of the repeated 

integra tions of the iteration theory. 

Contrary to this practice regarding the time,in the case of 
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distribution of a particle system) physical importance is 

attached to a space point,r, only,if there exists a particle mass 

at r. In time integrations one considers as physically important 

time points,t, at which no interaction takes place (e.g.,in the 

S-matrix,t ±»), 

This is generally done,e.g.,in integrating the interactions in 

the chronological products, despite the βχπερψβνταλ knowledge 

that interactions are of finite time duration. 

As a matter of fact,in particle reaction experiments the par

ticles are free of interaction at distances of a few wave lengths 

apart from the target. If the duration of the interactions were 

infinite,no experimental measurements on the nuclear and partic

les reactions would in fact be possible. 

On the other hand,according to Relativity,space and time coor

dinates are mixed in the Lorentz transformation formulas and, 

therefore,they always must be handled in an equivalent way. 

Consequently,a distinction in sub-atomic processes between the 

physical interpretations of the space coordinates,on the one 

hand,and the time cordinates,on the other hand,implies an nonsym

metrical and non-covariant handling of these coordinates. 

Let us consider two particles at rest. If they do not inter

act,the macroscopic time flows,but their proper times in their 

respective rest frames do not flow. 

Suppose the contrary:Then,since the proper time is always 

connected with some change in the neighbourhood of a particle,and 

since the neighbourhood of the particle in the absence of 

interaction is the particle itself,at least one observable of the 

particles should change.This conclusion is,however,false 

because,according to the assumption there is no interaction to 

cause the change. 

Consequently,the proper times of the particles do not flow 

without interaction in their respective rest systems of refe

rence. As soon as their interactions start various changes of 

their physical observables may take place and the proper time 

starts flowing for the two particles. 

When the interaction ceases,the time stops again for the two 
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particles,because in the rest frames of the two particles there 

again happens nothing to cause any change of their physical pro

perties. Meanwhile,macroscopic time continues flowing for us, the 

observers. 

The situation would be similar for us too,if the motions of 

the stars,the planets,the biological phenomena,the atoms and all 

elementary particles stopped in the whole universe. Then,a super-

observer might consider his own time as still flowing,while for 

the humans time would not exist. 

This procedure will be applied to show that the statistical 

character of the wave function according to Max Born is a conse

quence of two facts: 

i) Every elementary process has its own proper time neighbourhood 

during interaction. 

ii) The particle beam in a reaction experiment contains (many) 

non-interacting partiles at various distances between them. 

To demonstrate the Born hypothesis we consider the interaction 

of a particle beam with a target particle. Contrary to the usual 

procedure of the reaction theory (attaching to all beam particles 

one and the same space-time variable) in the wave function,we as

sume with Dirac that the beam wave function of the Ν particles 

has the form < M K , ί ί ;·· .ri, t i ) . This will be done for the 

following reasons: (i) Each of the beam particles has its own 

position in the beam, (ii) Different beam particle interaction 

processes with the target have in general different proper time 

durations. 

This form •
0
(rj,tjj;...ru,t«) of the initial beam wave function 

is necesssary and meaningful in view of the sequential production 

by the particle source and the subsequent observattion in the re

action experiment.If all beam particles were produced at the same 

space-time point by the source,then,obviously,a representation by 

an initial wave function of the form *
0
(K,tJ;...r«,tjjj) would not 

be correct. 

4b The role of the time structure in perturbation 

In preparing the discussion of the interaction "beam-target" 

we introduce the evolution operator U ( t , t ' ) which implements the 
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final one in the time neighbourhood (ί',ί). Since this operator 

describes certainly one single interacting particle within proper 

interaction time neighbourhood (t',t),it cannot describe the 

interactions of other particles having interaction proper time 

neighbourhoods {(t^,t.),>l,2,...}. This deprives the evolution 

operator of the continuous group property. 

It follows,therefore,that for each one interaction the opera

tor U(tyt') must act once on the wave function. 

The evolution operator obeys the equation: 

i X 

U{t,t ) - 1 - rX dr HAr)U{T,t ). 4.1 

V l 

Here great attention must be paied to the fact that U{t,t') 

has not the property of a continuous group 

i/(t,a)i/(b,t') * U{t,t') for a*b 

This happens,because the interaction proper time neighbour

hoods (t-a) and (b-f) may not have common the points a and b. In 

either case a>b or b>a is the group property lost. In the case of 

beam particles interacting with a target there most frequently 

holds b<a. In rare cases there holds b=a,i.e.,the next particle's 

reaction starts at the moment the previous one stops (see fig.l). 

The iterative procedure for the series solution of 4.1 intro

duces an infinite set (t jn-1,2,... } of time variables which are 

assigned the meaning of artificial interaction proper time neigh

bourhoods (t,£'), 

U(ttt') « 
t tj t

n l 

J (ifil'WrfL.J, dt[HAti)HAt2)...Hl{t)] 4.2 
n=o t t t 

or the equivalent form with the chronological ordering operator Π 

U(t,t') -

ί^{* Λ ΐ{* Λ 2·· ·{* ^nniHl(tl)Hlitl)...Hlitn)h 4.2' 

In the first form 4.2 there holds (£',*„) s (t',t
n + 1
) for 

0-1,2,...,. The relationships ((ί',ί
η
) £(t'>i

n+1
)>V0siN} indicate 
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that the integration intervals overlap,and the indices {/>} indi

cate merely different mathematical variables and not different 

physical interaction proper times neighbourhoods. 

The question is whether the time variables (t |/?-l,2,... } re

present proper times of any physical events,since there are no 

such events in the end product of the experiment or they are 

simply a mathematical device to solve the equation 4.1 . 

For the sake of completeness let us suppose the unlikely event 

that the interactions represented by the factors of the products 

{W
I
(t

1
)//

I
(i

2
)...//

I
(t

n
)|n * 1,2, } were sequential in the time 

neighbourhood ( t ' t t ) and let us scrutinize their time structure 

within (t',t).Then: 

(i) If the integration interval,(t ' , t) ,is taken larger than the 

interaction proper time neighbourhood,(t',t),of the reaction at 

hand, then,of course,the interaction Hamiltonian H(t) must be put 

equal to zero outside (£',t ) £ (ί',ί). 

(ii) If the (n+l)-th interaction strictly precedes the n-th,for 

all n,then the interaction proper time neighbourhoods ( t ' . t ) have 

the sum 
TN -„yvg 

tends to infinity for Ν-»«. This result would be not compatible 

with the finiteness of the integration time neighbourhood (ί',ί). 

In other words,the evolution would not consistently be definable 

for finite time neighbourhoods. 

(iii) If the integration time neighbourhood (ί',ί) is taken to 

be equal to the fastest process interaction proper time . 

neighbourhood,and the product 

{Hl{tl)Hl{tl)...Hl(tn)\n = 1,2,....} 4.3 

represents M{n) sequential interactions,then the sum of the inter

action proper times of these interaction processes would exceed 

the integration time interval,although it is supposed to be a 

sub-set of it. 

(iv) Associated to the product 4.3 of η factors there is a num

ber F{n) of sequential Feynman diagrams.If /H«,then the number of 

internal lines tends also to infinity in some of the cases.In or

der that the propagation along the internal lines in question be 
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the propagation would have - according to the perturbation theory 

- to proceed with infinite velocity,which is contrary to the 

Relativity. 

The physically incorrect conclusions (i-iv) were reached sup

posing that the products 4.3 represented real sequential particle 

interactions.The integrations are indeed sequential and help to 

eliminate the artificially introduced integration time variables 

by means of the iteration solution method of 4.1 . 

These interaction operator products do not represent any 

observable particle reactions which would require definite proper 

times with a total sum which is not available to the actual 

reaction. This conclusion is supported also by the corresponding 

Feynman diagrams in whose external lines do not appear the 

particles involved in all diagrams,but appear only the particles 

in fact observed. 

These interaction operator products 4.3 do not represent 

simultaneous reactions either for the following reasons: 

a) If the initial state contains only one elementary particle,it 

would have to interact at the same time in as many different 

ways,F(n),as the Feynman diagrams are. This,however,is equivalent 

to the statement that the ελβμβνταρυ παρπ*λβ after the initial 

state is distributed over the ¥{n) reaction modes. This contra

dicts the currently accepted concept of an elementary particle. 

b) If the initial state contains many particles,the reactions 

would necessarily be at least partially sequential,because the 

beam particles are at least partially sequentially produced. The 

event of sequential reactions,however,has been rejected by the 

conclusions (i-vi) above. 

Consequently,the n-1 integrations are effected sequentially and 

represent a kind of elimination of the integration variables. 

The general conclusion sofar which regards the interpretation 

of the wave function is: 

Each action of the evolution operator on the wave function 

describes one single reaction of one beam particle with the field 

or with the target of the experimental setting. 
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4c The interactions and the evolution of the wave function. 

Now we turn our attention to the wave function.The action of 

U{tyt') in the expression 

Ψ(ί) = i/(t,t'W) 

is to bring <f(t') from time t' to time t. 

Next we observe that,if the beam consisted of one single par

ticle the beam transition due to the interaction with the target 

would be realized by means of a single action of the evolution 

operator (/(t,f) on the one-particle beam wave function Ψ{τ, t). 

Now the actual particle number in the beam is /V,and it is clear 

that the beam transition due to the interaction with the target 

will be correctly realized by means of Ν distinct actions of the 

evolution operator on the initial wave function 

Ψ
0
(K»ti;...r«,t«). Because it is not possible that one and the 

same evolution operator implements a one particle interaction 

transition and a many particles interaction transition. 

The integration in the evolution operator is done in each one 

of its actions over the interaction proper time neighbourhood 

(t.*- t!j) of the corresponding j-th beam particle with the target 

whose space-time coordinates (K,t^) are acted on. 

Hence,we let U{t,t') act Ν times on the initial state wave 

function of the beam,i.e.,we let act the product 

U(tH,t'H)U(tH_vt'H_1)...U{tvt'1) on ̂ (r^tj;...^,^) 

to obtain the scattering wave: 
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- ^(iN'ÎN)^('-r
iiîr2't2;r3't3;"-rN-l'tN-lîrN'ÎN) 4'4 

Now,we observe that the wave function after the reaction 

depends on Ν random quantities,{tj-tj} the interactions proper 

times of the beam particles. 

The ordering of the factors U(t.,t'.) in the product 
J J 

U[t^,ti)U{tu -,tti •,)...U(tyt^) is not arbitrary, because the 

arrival of the beam particles on the target is time ordered in 

the target rest frame of reference. To calculate the cross se

ction for the reaction the effective practice is to have a one-

particle wave function . 

In order to obtain a one-particle beam wave function , i P ( r , t ) , 

representing the ensemble of the beam particles after their in

teractions with the target,two operations are required which im

pose the statistical character onto the wave function: 

4d Space statistics 

All space coordinates in the beam wave function after the re

action are set equal to the position vector r of the observation 

"point" in the detector.lt is clear that such a point is any 

point in the active volume of the detector,and that the 

differences {|r^-r.|} between the actual vectors {Γ,,Γ-,Γ-...r
N
) 

are in general not a negligible part of r· or r.,and the reaction 

theory of nuclear reactions should take into account the quanti

ties (|Γ^-Γ.|,i,j = 1,2,...} in the expression 

f(r
1
;t

1
,....t

M
) = [f(r

r
t

1
;...;r

1
,t

1
;...;r

M
,t

M
)]

1 / M
 . 4.5 

These differences in the space coordinates of the particles 

after the interaction contain one component stamming from the 

stochastic nature of the interacting filds. 

This fact makes necessary the application of statistical methods 

to obtain a value for the representative position of the beam 

particles in (C(r,t).We multiply 

[0'(r
1
,t

1
;...;r

i
,t

i
;...;r

N
,t

N
)]

1/N 

by the column vector r^ and have 
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ri[V(r1,t1;...;r.,ti;-..;rN,tN)]
1/N. 4.6 

We subsequently form the row vector 

r{[/(r1,t1;...;ri,ti;...;rN,tN)]
1/N 4.7 

and multiply 4.6 by 4.7 

rTri[/(r1,t1;...;ri,ti;...;rN,tN)<i'(r1,t1;...;ri,ti;...;rN,tN)]
1/N 

Next,we sum over all possible positions of the i-th particle 

in the active detector volume and obtain for the average value of 

the square r| using the normalization condition for the wave 

function 

<r?>« Jr}ri|/(r1,t1;...;r1,t1;...;rMftM)|
2/Nd^ 

/JlM,<riîtl'* •tN>f2</ri· 4 · 8 

Summing 4.8 over all i-values and dividing by Ν we obtain the 

average square of the "position" vector of the beam in the 

detector 

<?>» I <r?>/N. 4.9 

The position vector of the i-th beam particle is,therefore, r^ 
Α ο 1/2 

= i\(ry + [<q>] 'J.After taking the limit r^»,as required by 

the scattering theory,stochasticity remains in the wave function 
2 

through (<r->) which contain also the component comming from the 

stochasticity of the fields. 

Another important fact to be pointed out is the reason for 

which the propability density,p(r,t),in Quantum Mechanics is gi-
2 

ven by |(C(r,t)| and not by |<P(r,t)|. This is due to the necessi-
13 

ty for smoothness of the gradient or the current density.While 

\Ψ(τ,t)\ has a discontinuous derivative for r values for whiche 

<P(r,t)-0,the derivative of |(P(r,t) |
m
,m>l,is continuous (fig.2). 

If z-complex,then z-|z|e
lf
,z -|z|e"

1
'. If one takes m*2,then que

stions of uniqueness appear.For example, if m»v,(Kv<2),then 

z=r.exo[if±2i/7/ï] with η any integer has the same value, while z v
-

r
vexD[iv f±2ninv] has not the same property for any n. This does 

not happen for m-2,3,4, Economy and Hilbert space considera

tions suggest taking m*2. 
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This completes the proof for the statistical nature of the 

wave function with respect to the space coordinate justified the 

Max Born choice. 

fig.2 Taking the square of the absolute value of a wave function 
makes the current density continuous at the zeros of the wave 
function.This is shown in above:(a) \Ψ\ has a continuous deriva
tive and (b) \Ψ\ has a discontinuous derivative at the zeros. 

4e Time statistics. 

To obtain the average result of the action of the evolution 

operator U{tH,t'H)U(tHmVt'H_l)...U{tvt'l) on the initial beam wave 

function
 ψ

0^ι^^ι^2,ίΖ;Γ3ίΗ; " 'rH-l,tH-VrHit^ w e h a v e t o t a k e 

the geometric mean of this evolution operator 

θ(ί,ί') = [U(tH,t'H)U(tH_vt'H_1)...U{tvti)]Vti. 4.10 

From the form of the evolution operator and from the averaged 

wave function we obtain 

4.11 

V(r;t) = 9(t,t')f
0
(r';t') 

χ[«/(
Γ ι
,ί

ι ;
...

Γ Ν
,ί

Ν
)]

1 / Ν 

There have,thus,been quite naturally introduced two statisti

cal aspects into the wave function: The space averaging and the 

time averaging. 

Hence,equations 4.4 contain Ν random time parameters. Conse

quently, if we represent the outgoing wave of the beam by a 
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single-particle wave function,w(r,t),then this is related to the 

4.4 through 

Ψ(ρ,ί) ^V(r,t 1 ; . . .r,t N ) = 

VN . . . 
{U{tH,tH)U{tH_vt^1)...U{tvtl)) ·Ό( ρ 1» ί 1 ; · · · Γ Μ»*Μ ) 

4.12 

In 4.11 f(r
lt
t,;...r

N>
t

N
) is replaced by f(r,tj;...r,t

N
) and 

consequently by Ψ(τ,ί),because all beam particles are observed at 

the times t,,...t». 

4f The bound state case. 

The wave function of the particles beam has been considered 

sofar in a reaction exDeriment. The sescteness of the particles 

has made it possible to apply enumerably many times the evolution 

operator on the initial state to obtain the final state, and 

justify the necessity for the statistical interpretation. 

How should one proceed in the case of the bound state oroblem 

to obtain the statistical character of the wave function? 

To answer this question it is necessary to realize that no 

interaction is a continuous process.The interaction responsible 

for the bouding of any particles is mediated by the exchange of 

field quanta between the bound particles. 

The field quanta are the discrete entities par exellence in 

Nature.The non-continuity of the exchanged quanta makes the 

quanta exchage discrete. Hence,the totality of interactions in 

the bound states is countable. 

Each interaction adds to the position vector as well as to the 

proper time of the bound particles stochastic components. This 

makes the argumentation for the beam particles in the reaction 

experiment applicable on the bound states too. 

In the same way the space-time coordinates of every quantum 

becomes stochastic. The stochastic quantities are introduced into 

the wave function - which is as a deterministic solution of the 

Schrödinger equation - by means of the stochastic interactions. 

This concludes the demonstration that the statistical chara

cter of the wave function derives from the stochastic nature of 

the fields. 
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5 DISSIPATION AND IRREVERSIBILITY AS IMPLICATIONS OF THE 

STOCHASTIC FIELDS - THE TINE ARROW IN NATURE 

5a The stochastic and infinitely divisible fields 

It has been shown in section 4 that the stochastic nature of 

the evolution of a beam of particles due to interactions necessa

rily leads to a wave function whose significance must be stati

stical. 

Since the evolution of a quantum field is described by the sa

me evolution operator as the one acting on a wave function repre

senting the distribution density of particles,it is reasonable to 

assume that the quantum fields too must be stochastic in the sen-
14 

se of the theory of the generalized stochastic fields. 

Furthermore,it will be assumed that any function of the fields, 

e.g.,the Lagrangian density, ί(φ[χ),π[χ)),must equally well repre

sent a generalized stochastic field. 

Following this philosophy it was possible to demonstrate 

that: 

Statistical Mechanics is derivable from Quantum Field Theory 

and is reoresentable (not in Euclidean soace but) in the same 

Minkowski soace-time as the quantum fields themselves (with the 

metric imoosed by Relativity). 

Here the following statements will be shown: 

i) The arrow of time and the irreversibility in Nature is a con

sequence of the stochasticity and of the infinite divisibility of 

the quantum fields. 

ii) There exist on the quantum level creative and dissioative 

processes described by corresDonding evolution ooerators as in 

ordinary Quantum Field Theory which violate the T-symmetry. 

The demonstration of the above statements is based on the fol

lowing fundamental orincidles: 

A The Lagrangian density,!.,of the quantum 

field is a generalized stochastic field. 

It is recalled that a field L e R is said to be stochastic,if 

for ί<ξ* R a probability Ρ(ξ) is given such that the conditions 
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be satisfied: 

a) Ρ{ξι) *Ρ{ξ2), if ξ^ξν 

b) l i m ^ /(ξ) - 0 and l i m ^ Ρ{ξ) - 1, 5.1 

Β The Lagrangian density,L,of the quantum 

field is an infinitely divisible field. 

A random field L is said to be infinitely divisible,if for 

every positive integer Ν the decomposition is possible 

L « Lx+ Lz+ ... LH , 5.2 

in which (LA j-1,2,. ../V,v/V) are mutually independent (stochastic) 

and have identical probability distributions {Ρ[ξΑ}. 

Although principles A and Β have not been spelled out explicit

ly by Feynman,he used them in his heuristic finding of the path 

integral from which he derived the quantum theory . It will be 

shown in the next section that the Feynman path integral is a 

particular case of the present theory. 

5b The stochastic QFT-evolution operator 

From the Schrödinger equation 

one formally finds the solution 

i h £ | U i = Η{τ)Ψ(τ), τ *(tQtt) 5.3 

. -1 l 

(-ih) V H(r)dT 
f(t) = f(t ) - e t Ψ(τ) 

This can be written also in the form 

,ΔΪ+t 
(-ih)"1/ ° H{t')dt' 

9{ΔΜ0) « f ( t 0 ) - e t Q f ( t 0 ) , ût~{t-tQ)+t0. 5.4 

+t0) -i/(dt+t0,t0)f(t0) , 5.5 

where U{t,tQ) is an operator bringing Ψ from t to t=dt+t
0
.Hence, 

ι
 l 

[ (-ih)'V tf(t')</t' Ì 
U{ût+t ,t) » Π le t J. 5.6a 
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Here we observe for later use,that omitting the imaginary uni

ty "i" in the exponent of 5.6 implies the appearance of it as a 

factor to t in U{iut+itQiitQ), 

Γ (-h)'V H{t')dt' ) 
U(iût+ittit) = Π [e it J 5.6b 

o'-'o' " *- " ο ' -

For simplicity we consider a scalar field and we recall that 

the Hamiltonian and the Lagrangian densities are related through 

H(x) = θοφ(χ)π(χ) - ί(φ{χ),π{χ)), 5.7 

where H{t) - Sd*xH{x,t). 

If H{x) is replaced in 5.6b by its equivalent expression given 

by 5.7 and if the part of the exponential containing n{x)d φ(χ) 

is expanded in a series of integrals one gets 

U{t,tQ) = (i+yii|l
n
[ u Sd^x^ix^nix.)]) 

(ih)"
1
/ [ί(φ{χ),π{χ))<^χ 

χ e t
Q
 . 5.8 

We have used in 5.8 the notation: άφ{χ) = a a(x).dt, <Tx = 

cPx.dt. 

Next the property 5.2 is used in 5.8,and the last exponential 

factor becomes for every value of η 

η f (ih)"
1
/ [ίΛφ{χ,),π(χΛ)(ΤχΛ 

n i e t J
 J J J

J. 5.9 
j=o 

From 5.8 and 5.9 i t follows that 

t 

t ^ y - e 1 t 0 +\l*ff- l.T\S<f,xiSd9{xi)n{xi) 

( i h ) ' 1 / [L.{9(x.),n{x.))d*x. 

'lf U(f(x),/J(x))<Ar ,»,· ,η η -

I t is observed in passing that the Feynman path integral 

F = j^DdDq.exD[ih~lSL[q{t),D{t)]dt 
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follows formally from the above expansion by using the substitu

tions 

4r C TT ί<ΡχΑΜψ(χλ)π{χλ) -> 1/(2/7) π SSd9{x.)dn(x.) 

ο -> n(x) and q -* f (x) 

for n-oo. 

As a minor remark on the conceptual level: the product 

df{x.)dn(x.) 

in the Feynman path integral would not be compatible with 

Heisenberg's uncertainty principle.This problem does not exist in 

our expansion,because n(x) does not appear in differential form. 

Summing the series of integrals with application of the prin

ciples A and Β we get 

[ -i/hSd3xSdf{x)n{x) exoli/hsSxHfix),n{x))]) 
U{t,t0) « le J. 5.10 

This is a new form of the evolution operator in field theory. 

Its exponent consists of two parts,a real and an imaginary. 

The physical interpretation of its action on the state vector 

depends critically on time variable structure,i.e.,whether the 

point of view of the universal time or of the interaction orooer 

time neighbourhood is taken. This will be shown in what follows. 

5c Non-unitarity and non-conservation in stochastic QFT 

Next,it will be shown that the stochasticity and the infinite 

divisibility conditions modify the unitarity of the evolution 

operator in a very particular way.It imparts to the exponent 

three very important properties: 

i) A real part which violates the Γ-symmetry in PCT 

ii) A very special possibility for quantizing the field action 

and separating the unitary and the non-unitary parts of the 

evolution operator. 

iii) The unitary part obtained after the quantization of the 

field action contains as a special case the original evolution 

operator as before the application of the principles A and B. 
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Next,it will be demonstrated that the evolution operator 5.10 

is not unitary 

U2(tQ,t)U{t,t0) * 1 *U(tQtt)U2{t0,t). 

If we write equation 5.10 in the more expressive form 

u{t,t0) -uc{t,t0)un_c{t,t0), 

where the sub-indices "c" -conservative and
 H
n-c" » non-conserva

tive, respectively and 

tfc(t.t0>4 
-i/hSdPxSdf (x) n(x) (cos[ l/hSd*xL ( φ (χ), π{χ) ) ]}} 

5.11a 

Γ +l/hSd*xSdi> (χ) π(χ) (sin[ l/hSd*xL ( ψ (χ), π(χ) ) ]}} 

W'V-l· J 5-llb 

we see imedlately that the part with imaginary exponent obeys the 

condition 

"c^'oK^V
 =
 ' 

The operation "2" applied to UAt,t ) changes once sign of the 

exponential and the above condition is satisfied. 

On the other hand for the operation t M ' = -t:n(x) -» -/7(x).The 

cosine-factor conserves its sign under> ί->ί'= -t and L is time 

reversal invariant and hermitian.Hence, 

This proves the unitarity of U {t,t ) . 

Concerning the second factor in the Un.c(t>tQ) t n e
 exponent is 

real and the operation "2" does not change anything in it. On the 

other hand tM'= -t:{n{x) -* -n(x') and d*x •* - /x^^so that 

sin[S<rxL(f(x'),n(x'))] changes only once sign. 

This proves that ^«.rU»*«) is
 n o t

 unitary. 

Hence,the evolution operator 5.10 shows a complex behavior and 

it is interesting to study its two contributions to the evoluti-

on:The conservative and the non-conservative. 

Let us try to see,how it is possible to separate the two parts 

which exhibit so contrary properties. 

The quantization of the action integral was for Niels Bohr a 

possibility to obtain the quantum description of the atomic 

energy structure. We shall follow the Bohr way and quantize the 

field action. This will offer the the basis for what will be done 

in the sequel. 
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We first define a number /!(/?,σ) depending on two intergers by 

/ n+1/2 for a - 1 
Λ(η,σ) ~ n\ ,/M,2,3.... 5.12 

ν η for σ = 2 

Then we require the action to take integral or half-odd multiples 

of the Planck constant 

Scrx L[f(x)n(x)] = ±h /Ι(η,σ), action quantization. 5.13 

Next,we use the relation 5.7 and 5.13 becomes 

Sd*xSdf{x)n{x) * S dtH(t) ± tJ\(n,o). 

We observe in passing,that the quantization relation repre

sents at the same time a kind of action renormalization. It is, 

further observed that the quantization condition 5.13 has as a 

consequence that the operator U U , t Q ) becomes the unit operator, 

e,when ίλ l t , t ) determines the non-conservative evolution of n-c o' 
the system. 

Vice-versa,when U (t,tj determines the conservative evolution 7
 c o 

of the system,then Un_c(t>tQ) becomes equal to B.In more detail 

it is seen that UAt,t ) corresponds to 

sin[\/hSd*xL(ç{x),/7(x))]=0,and /Ι(η,σ)= π.η for σ=2, 
is time reversal invariant,unitary and,therefore,conservative, 

both in the universal time framework as well as in the inter

action oroDer time interval, 

-1
 t
 > 

M*»*«)
 =
 exD[+ih V dtH{t) ± /!(/»,2)], conservative^ i 0, 5.14 

where "-" goes with 0,2,4,6...,and "+" goes with 1,3,5,7... . 

In the conservative case there is no substantial difference, 

whether the time is the universal te(-»,+») or the interaction 

proper-time neighbourhoud ίείί',ί") because of the oscillatory 

character of the evolution operator. 

The non-conservative part, i/(t,t),corresponds to 

cos[l/h.fA£(f(x),/7(x))] = 0 for (/Ι(/),σ) * /7.(η-φ, σ=1), 

the exponent is real and it no longer is a matter of indifference 

to which direction the time runs. 

This evolution operator is a realization of the irreversibili-
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ty on both the quantum and on the macroscooic level. 

If the time runs in the positive direction,the probability of 

corresponding state acted on by f
n
_

c
U»*

0
) increases.On the con

trary, if the time is reversed,then the probability of the state 

decreases. 

-1
 l 

Un „(t,t_)-exo[±h V dtH{t)±A{n,l)]tnon-conservative, 5.15 

s 
where "+" implies an increase of the state vector norm and goes 

with η - 1/2,5/2,9/2... »while "-" leads to a shrinkage of the 

norm and goes with η - 3/2, 7/2,11/2... . 

It should be pointed out that the conclusions which may be 

drawn from 5.16 depend on whether we consider evolution in the 

universal time te(-»,+«) or or in the interaction proper time 

neighbourhood t€(f,t""). In the first case and for η = 1/2,5/2, 

9/2... the norm of the state vector explodes. In the second case 

and for η « 3/2, 7/2,11/2... the norm remains finite. 

5d The creative evolution - universal tine versus proper tine 

Equation 5.15 gives the the non-conservative evolution opera

tor,^ (t,t) which violates T-symmetry.For t->+« makes the norm 

of the state vector explode and is called creative. It interest

ing to note that even for t-w-» "
n
_

c
U»t

0
)
 m a v 9Ì v e finite results, 

provided renormalization is applied by giving to -A{n,l) the ap

propriate value of η which is a free quantum number. 

For t-»-» and η - 3/2, 7/2,11/2... i/
R c
(t,t

Q
) brings the state 

vector norm to extinction.For this reason it is called destructi

ve. Here,too,renormalisation is possible by giving to /l(/),l) the 

appropriate value of n. 

Since the universal time results as the union of many intera

ction proper-time neighbourhoods,it is a macroscopic quantity and 

applies to macrocosmos.Indeed,it is tempting to describe the big-

bang of the created Universe with an exdloding state under the 

action of the creative oœrator. 

Both,the dissipative and the creative operators implement ir-
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reversible Drocesses. 
Collecting both forms we may write 

U{t,tQ) 

l * 
' exD[-ih XS dtH(t)± /l(n,l)], conservative (a) 

*ot 5.16 

I exo[+ h"
1 S dtH(t)± Al*tZ)],ffîl*£\fâm (b) 

a) The universal time case (t - U τ ) . 
α 

(ia) The stochasticity and the infinite divisibility of the 

fields imolies the existence of an arrow of time in Nature. 

This follows from the fact that the two signs "±t" in the ex

ponent of 5.16b lead to states of completely different character. 

It is perhaps of importance that the exponent appears automati

cally with the "+" sign,might mean that all fields are in the 

phase of explosion. This explosion is not continuous in the 

universal time everywhere. It advances by one step in every 

interaction proper time neighbourhood, 

(ib) The majority of the physical systems evolve in an 

irreversible way. 

This follows from the different powers of the two number sets: 

The set of the quantum numbers leading to irreversible proces

ses and the set of quantum numbers leading to reversible proces

ses. The action values leading to irreversible processes corre

spond to the quantum numbers of the union of the two number sets 

Power of {/l(n,2)}iU{IR\/l(/j,l)) > Power of {/l(n,l)>. 

All above cases concern macroscopic level irreversibility.In 

what follows we consider transitions in the interaction proper 

time neighbourhood. 
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ii) The interaction oroœr time neighbourhood. 

(iia) Irreversibility in atomic and sub-atomic transitions. 

It has been always considered as the correct point of view in 

Science,due to the time-reversal-invariance of the fundamental 

equations of Physics,that there existed no irreversibility on 

atomic or sub-atomic level. 

The validity of the PCT theorem allowed according to the view 

accepted until 1964 at most simultaneous P- and C-symmetry viola

tions. Indeed, the 0-decay of the weak interaction was the first in 

1957 to yield the proof that for the existence of simultaneous P-

and C-symmetry violations,while conserving PCT-symmetry . 

As a consequence of this fact the experimental observation of 

a small T-asymmetry in the decay of the neutral K-system into two, 

instead of three,n~ mesons was an inexplicable puzzle in the fra
me of standard field theories. 

The present theory allows according to 5.15 for T-symmetry 

violations also in the individual elementary particle interacti

ons. 

The integration in 5.16b of the Hamiltonian is effected in the 

interaction proper time neighbourhood leads to a very small mic
roscopically finite irreversibility.The small magnitude of the 

T-asymmetry makes the observation difficult. 

(lib) In the case of 5.16a the norm of the state vector remains 

invariant after the interaction oroDer time interval of the Dro-

cess.This case encomoasses all individual interactions of elemen

tary particles which are T-symmetric. 

The above conclusions regard the behavior of the state vector 

under a single action of the evolution operator describing one 

particular particle interaction. In the case in which one is 

interested in statistically describing a system with many partic

les, then one has to apply on the state vector all evolution ope

rators for the Ν individual interactions and take the N-th root 

of the product of the N-factor product of U operators. 
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5e The arrow of time in nature and its relation to the entropy 

The overhelming majority of the macroscopic physical systems 

evolve in time in an irreversible way.The entropy,on the other 

hand,increases in every closed system evolving irreversibly. Al

though this increase is not proportional to the time - which does 

not exlicitly appear in thermodynamics -imposes this loose analo

gy between time and these phenomena the impression of a causal 

relationship. 

The //-theorem in which the time appears explicitly indicates 

that a non-Haxwellian velocity distribution of gas molecules is 

converted into a Maxwellian one. The entropy of the gas increases 

thereby. It is observed that the time the equilibrium takes to 

establish itself is of the order of the mean free time between 

collisions. 

Since the same entropy increase may appear,in many gases with 

different mean free times,it is concluded that there is not a 
18 unique proportionality between entropy and time . 

It has been indicated above that entropy is not proportional 

to the time.Here are two further a little more detailed arguments, 

i) The entropy is essentially defined as the ratio of the heat Q 

involved in a thermodynamic process and the corresponding absolu

te temperature. 

The expression c/Q/7" is integrated between two thermodynamic 

states. Here,however,neither the heat nor the temperature are 

fundamental physical quantities nor is any of them proportional 

to any fundamental quantity. There is,therefore,no obvious reason 

for the entropy to be more fundamental than the heat or the 

temperature. 

This is a formal argument.A physical argument runs as follows: 

ii) The proof of the fact that the entropy is a non-decreasing 

(• constant or increasing) quantity is based on a series of 

mathematical facts that are traced back to the Dhysical process 
in which heat flows from a hotter to a colder body. 

This last fact belongs to a whole class of similar and equally 

fundamental phenomena as is,for example,the falling water in the 

clephydra or the lowering of the pendulum mass,etc.,processes ge

nerating the impression of the flowing of the macroscopic time. 
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The series of facts leading to the almost increasing of the 

entropy are the following: 

iia) The relationship between the heats of two heat engines,one 

reversible (Q,,Q
2
) and one possibly irreversible (Qj.Qg) 

IT 
lib) The property of being negative of the integral 

dC 

5.19 

H 2 
s 0, 5.20 

19 which is based on n a ) . 

Consequently,the characteristic property of the entropy 
Β 

S{B) * S{A) + \-Ìif 
AJ ' 

where the integration is done in an irreversible or reversible way 

respectively (*),for which it receives a fundamental like look is 

traced back to a change (heat transfer) generating, alike the 

clepsydra,the impression of the time flow. 

Because,if the universe consisted of two heat sourses of equal 

temperatures,no macroscopic change whatsoever would be possible 

and no time flow would be observable. (This would correspond to a 

clepsydra having the two water compartments on the same level). 

On the contrary,if the heat sourses have different temperatu

res, a heat flow occurs and the time flow impression is generated. 

Once it is established that the importance of the entropy for 

the arrow of time is traced back to a particular time - irrever

sible phenomenon,it is logical to consider directly the class of 

these phenomena separated from other accompaning secondary facts 

or logically following them. 

In the case of the entropy secondary facts (following logical

ly from the heat flow) are,e.g.,the relationship 5.19 and the 

heat engines. 

We are here interested in primary causes of the arrow of time. 

The stochasticity and the infinite divisibility properties of 

the fields lead to a complex exponent of the operator - allowing 

in this way for the field action any value.This gives to the 

action the power of the comdlex continuum including the set of 

the half-odd numbers. 
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If the action has not been quantized,one might conclude that 

the evolution operator describes either quantum systems with con

tinuous physical characteristics,or non-quantum (macroscopic) sys

tems. This would,however,be an erroneous conclusion based exclus-

sively on the assumption of a universal time. 

Before we discuss in 5f the arrow of time in detail,it is 

appropriate to say that there are two levels of the arrow of time 

in Nature which are,of course,of common origine: the quantum 
level and the macroscopic arrows of time. 

5f The quant« arrow of tiee 

Let us demonstrate first the existence of an arrow of time on 

the quantum level. Since the proof for the existence of a quantum 

arrow is the existence of equation 5.15 itself,it is sufficient 

to discuss the conditions under which i/„ Jt>tn) has been de 
n-cy o' 

rived. 

As a matter of fact all quantum scale systems are endowed with 

deserete values oftheir physical characteristics (except some pro

perties of free particles:continuous energy and momentum). This 

suggested to quantize the action integral of the field. 

The idea for so doing came not only from our intention to 

follow Bohr's example,but also from the observation that in this 

way the general evolution operator,5.10, breaks down into two 

completely different evolution operators. 

This last fact leads on the one hand to 5.11a which is unitary 

and contains as a particular case the evolution operator of the 

usual QFT differing only by the subtracted zero Doint action ih. 

On the other hand 5.11b is obtained with a real exponent. This 

highly desirable exponent in Statistical Mechanics was impossible 

to derive in the framework of the usual QFT in the Minkowski 

space. Just for this reason one resorted to the Euclidean field 

theories to get the real exponent (self-adjoint contraction semi

group leading to the Boltzmann factor ). 

This evolution operator breaks the T-symmetry and imparts to 

the state vector (on which it acts) the arrow of time. Since the 

time integration is done on the interaction proper time neighbour-
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hood it is the quantum level arrow of time. 

The question arising thereby is,if and how this quantum-irre

versibility leads to an extinction or to an explosion of the ini

tial state and,therefore,to an easy observation of the T-symmetry 

violation. 

The answer is evident,if we keep in mind that the time arrow 

we discuss arises from elementary interactions. It is clear that 

the time generated by one interaction,(the interaction proper time 

neighbourhood) can not go to infinity.So extinction or explosion 

of the state cannot occur on the quantum level.The T-asymmetric 

interaction only increases or diminishes the probability of cor

responding state. 

On the other hand the finiteness of the interaction proper 

time neighbourhood has as a consequency that T-asymmetry on the 

quantum levelcannot be easily observed.This is due to the 

smallness of the factor exo[±h" SH(t)dt] implying a small change 

of of the state vector.One can easier observe simultaneous PC-

symmetry violation instead of the 7"-symmetry violation. 

It becomes sufficiently clear from the above that 5.11b demon

strates the existence of the arrow of time on the quantum level. 
21 An example of a T-symmetry violation in accordance with the 

quantum arrow of time is the branching of the neutral kaon decay. 

In the presented example of the arrow of time the scalar field 

Hamiltonian has been used.However,is the formalism for the 

derivation of equation 5.15 model-independent and it applies to 

every covariant field theory. 

5g The Macroscopic level tine arrow 

The evolution problem consists in that the time-reversal-inva

riance of the fundamental (classical and quantum) equations of 

Physics and the irreversibility of the majority of the phenomena 

of the macrocosmos were logically independent in the framework of 

the standard theories. 

Many,very diverse,attempts are known aiming at establishing a 

physical and logical connection between the microscopic and the 

macroscopic evolutions. This connection has not yet appeared in 
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the frame of the well-known field theories. 

The main criterion of any succeful macroscopic theory accord

ing to the present work is that the T-asymmetry must derive from 

the PCT-symmetrical theories by adding a new,missing,property to 

the fields. 

This requirement is fulfilled by the present theory.The new 

property of the fields is that of the generalized stochastic and 
infinitely divisible fields. 

Before proceeding it is important to state that in the case of 

stochastic fields there is a difference between,on the one hand,a 
time-reversed dynamical quantity taking its value after an inter
action and,on the other hand,the corresoonding quantity following 
from the factually reversed interaction. 

The reason for this fundamental discrimination is that the in

teraction proper time neighbourhoods are (per definition stochas

tic in nature) and,hence,unpredictable.Therefore,the d i r e c t 
interaction proper time neighbourhood does not coincide with the 

r e v e r s e interaction proper time neighbourhood 

Hence,the key for the explanation of the macroscopic irrever

sibility is the stochasticity of physical fields:This is demons

trated as follows: 

a) Due to the stochasticity of the fields is the interaction of 

two particles stochastic: If H Ax, t) is the interaction at time 
t,is it after the d i r e c t interaction proper time, τ·.,#τ (x, t+r.). 

Since τj is -within limits- a stochastic number,is stochastic al
so //j(x,t+r

d
). 

On the other hand,the time-invesion transformation,leaves the 

equation of motion strictly invariant,because 

t + r
d + "

t
"

r
d

:
 V * >

t + r
d )

 = Hiix,-t-Td). 5.21 

However,the factual reversed motion is not invariant,unless the 

the fields were not stochastic,and the reverse interaction proper 

time,r ,during the reversed motion equals the d i r e c t interaction 

proper time,i.e., r
d
 = r , which is a rather unlikely event, and, 

hence, 
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//j(x, t+r
d
) * Η^Χ,-Ι-τ^,τ^Τγ. 5.22 

b) Dispite the stochasticity of the interaction of two particles 

their motion is in interaction free space between two successive 

interactions time-reversal-invariant, 

HQ{x,t) = W
0
(x,-t), 5.23 

where Η(χ,t) is the free field Hamiltonian. 

c) Due to the stochasticity of the interaction is the state vector 

subjected to certain coditions: 

The following tables A and Β show how the state vector and its 

norm evolve under time inversion and under the action of the 

evolution operators. 

A Conservative evolution: 

Al t -> t'=-t: <P(r,t) -> V(r,-t),time inversion. 
A2 i/

c
(t,t

0
) : <P(r,t) -» î>(r,-t) = l/c(-i,t0)IC(r,t0),conservative 

evolution from t to -t. 
A3 \U>{r,t)\2= |V(r,-t)|2= |î(r,-t)|2. Norm conservation 

Β Non-conservative evolution: 

Bl t -> t'=-U Ψ[τ,ί) -» Ψ(τ,-ί) 

B2 U ( t , t ) : *(r,t) -> î(r,it) = U (-t,t )<?(£) 
η - c o n - c o o 

B3 |^(r,t)|
2
= |^(r,-t)|

2
 * |î(r,-it) |2. Non conservation 

of the norm 
In the stochastic evolution theory new aspects arise unknown 

to the unitary theories: 
- The first one is that the norm is not conserved,and this gives 
the arrow to the time. 
- To make clear the second aspect let us consider two interacting 
particles with state vector Ψ{τ,-τ*/Ζ ) before and ̂ (r,+r

f
/2) 

after the interaction. Let τ* denote the interaction proper time 
(f • forward in time) of the interaction from Ψ{τ,-τΛ2) to 

0(r,+r
f
/2).We put the zero of the time axis in the middle of the 

interaction proper time r
f
. 

If the interaction proceeds reversibly the state Ψ{Γ,+Τ*/2) 

of the two particles can be brought back to ^ { T ^ - T J I ) in two 

ways: 
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State vector and conservative evolution. 
First: By the time inversion U-tf'-Tf/l:^{r^Tf/Z) -> <P(r,-r

f
/2). 

Secondly i/
c
(t,t

Q
): i/

c
(-r

f
/2,+r

f
/2)«r(r,+r

f
/2) = V(r,-r

f
/2). 

If the interaction proceeds irreversibly the first way,which 

is mathematical operation,can be used and gives identical result 

to the one obtained in the first case of the conservative 

evolution. 

In practice,however,if we wish to bring the system of two 

particles to the initial state,we must let them interact again in 

the opposite way. However - here is the key - the physical fields 

are stochastic and the interaction proper time duration now will 

be τ (r * reverse interaction) instead of r^. 

In the direct interaction: 

</
n
_

c
(+r

f
/2,-r

f
/2Mr,-ir

f
/2) = <C(r,+ir

f
/2). 5.24 

In the reversed interaction aiming at bringing the system to the 

initial state the interaction proper time will be with high pro

bability equal to τ , τ - τ**0. 

State vector and non-conservative evolution. 

First: t->-t'=-r
f
/2:<P(r,+ir

f
/2) -> V(r,-Ì7-f/2). 

Second: U^c(tttQ) :V c(-r r+ y2,+rf/2)<P(r,+irf/2) 

-*(r,i(-rr+ rf/2)). 

There is,of course,a certain probability that the state vector 

(C(r,-irr+ irf/2) is identical to <P(r,-Ì7y/2). However, this probabi

lity is vanishing small (of measure zero) in comparison with the 

probability of all other possible states of the two particles. 

It follows,therefore,that a stochastic interaction,which is 

formally time-reversal-invariant leads with high probability to 

irreversible and with zero probability to reversible phenomena. 

If the transitions due to interactions are effected by means 

of the conservative evolution operator,equation 5.14,the ob

servable probability density distribution given by 

Prev" l < i i ( r' + rf / 2 ) 2| * 5 · 2 5 

If,however,the evolution is effected by means of the non-con-
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servative evolution operator,equation 5.15,then,of course,the ob

servable probabi l i ty density d is t r ibut ion is given by 
P i r r . = Ι * ( Γ , + ν 2 ) ) | , 5.26 

a quantity d i f f e r r i n g substantial ly from 5.25. The motion is i r 

reversible, although the fundamental equations of motion are time-

reversal-invariant.This is not a paradoxon,because the stochasti-

c i t y implies f luctuations in the interaction proper time.This has 

as a concequence the inequal it ies 

^ ( r , r r ) * W j ( r , r f ) * Η^Τ,-TJ 5.27 

d i s p i t e the re lat ion 

^ ( r , r f ) = / / j ( r , - r f ) , 5.28 

The relat ions 5.27 and 5.28 are perfectly compatible. 

fig.3 A particle after an interaction at A with interaction proper time α and action 
integral h(a) interacts at Β with interaction proper time β and action integral h(p) 
and flies free of interaction towards interaction point C.Halfway time is inversed 
and the particle flies in opposite direction interacting at Β with interaction pro
per time γ and action integral hfy]?£h(ß]. Due to the stochasticity of the interacti
on and of γ the alternatives {A,a,b,c,... g, . . . } are open with certain probabiliti
es to the particle. The probability measure of {a,b,c,...g}is finite/whilst that of {A} 
is almost zero. This makes the interaction at Β almost irreversible,a!though the 
interaction Hamiltonian is time-reversal-invariant.The same happens in systems 
with many particles.This reconciles the time-reversal-invariance of the funda
mental equations of Physics and the irreversibility in Nature. 

I t has,thus,been demonstrated that two interact ing part ic les 

do not by time reversal return from the f i n a l state to the i n i t i a l 

s tate. What happens with two particles,happens a fortiori with 

many p a r t i c l e s . This f u l l y explains the o r i g i n and the becoming 

of the macroscooic arrow of time ( f i g . 3 ) . 
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6 DISCUSSION AND CONCLUSIONS 

The idea that an interaction proper time neighbourhood is 

bound to the particular event which it describes,is a merit 

and,perhaps,the major achievement of Einstein's Relativity. 

However,although this has been fully recognized,it has been not 

possible to find the way to practically apply it in reconciling 

the microscopic time-reversal invariance of the fundamental 

equations of Physics with the irreversibility of the most 

macroscopic physical phenomena. 

Attempts to advance the concept of the entropy to the level of 

the fundamental quantity for the explanation of the evolution did 

not help to construct the missing bridge between the description 

provided by the fundamental equations of Physics - classical and 

quantal - and the macroscopic phenomena. 

One possible reason for this long standing impasse in Physics 

might have been the fact that the universal time - a quantity 

whose existence never has been demonstrated - passed silently 

from Classical to Quantum Physics. 

The generalized stochastic fields offer the possibility to 

recognize the importance of the interaction proper time neigh

bourhood in relating the microscopic and the macroscopic 

behaviors of the matter and to explain the long puzzling arrow of 

time. 

It is interesting to note that the Feynman path integral 

follows as a particular case of the integrals series 5.9a for 

n=oo,with a substantial difference: The product dqxdp cannot on 

the quantum level take arbitrarily small values due to the 

Uncertainty Principle. This product represents the integration 

"measure" in the Feynman integral and is the "headache" of any 

measuretharetical mathematician. 

In equation 5.9a the Feynman integral automatically appears 

with the factor [n!]" for n=<». This factor has an important con

sequence: It makes the integral equal to zero and the problem of 

a "measure" which is no measure disappears altogether. 

Also,the momentum in the present case does not appear as a 

differential.This makes the integral compatible with the Uncer

tainty Principle,if the field,p(x,t),and the canonically conjuga-

284 



te momentum,n{x,t),must considered as operators. 

The discontinuity property of the time paramenter in systems 

with few particles gives the possibility to explain why the wave 

function can only be statistically interpreted. 

This is intimately connected with the loss of the continu- ous 

group property of the evolution operator deriving from the 

non-additivity of disjoint time neighbourhoods. Also due to the 

same reason is the individual unpredictability of the interaction 

proper time neighbourhoods. This is analogous to the stochastic 

character of another quantity,the imoact parameter of the reacti

on theory. 

The most important result of this work is the derivation of 

a creative or distructive evolution operator which is not unitary 

and possesses the required properties for producing the arrow of 
time. 

In analysing the effects of the stochastic fields, distinction 

must be made between the time-inversed state vector and the state 

vector of the reverse reaction state.They are different and at 

the root of the arrow of time, both the quantal and the macrosco

pic. 

The obtained results have been possible by quantizing the 

field action integral,thus getting at the same time a generalized 

non-unitary operator whose parts are 1) one unitary evolution op

erator and 2) another non-unitary evolution operator describing 

irreversible processes. 

The first one contains,as a spesial case,the evolution opera

tor of Quantum Field Theory with a spontaneous action renormali-

zation.The zero ooint action renormalization is equal to- ih. 

However,the double process of quantization -for integers and 

half-odd - numbers,is a fact reminding of the Bose-Einstein and of 

the Fermi- Dirac statistics.This fact guards -may be- the secret 

of the physical raison d'être of the stochastic fields in Nature 

and remains for us at the moment a kind of an enigma. 

One very difficultly escapes the suspicion that the Heisenberg 

uncertainty principle is of the same stochastic origin as the 

stochastic fields. 

Also,one might speculate that by correctly taking into account 
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the time structure (which is in relation to the space structure) 

the divergences in the integrals of the QFT- perturbation theory 

may possibly be eliminated.Also the spontaneous renormalization 

of the action integral through ±h/l(n,o) is corroborating the 

present view and may eventually make unecessary the by now famous 

renormalization theory which did not earn the respect of Dirac. 

Another problem remains unsolved for the momment: There is 

full freedom in which value of ±ϊι/Ι(π,σ) must be taken. 
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