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A STUDY OF THE ELECTRODYNAMIC PROPERTIES 
OF MACROSCOPiCALLY EXTENDED FERMION 

MATTER 

A.Kechriniotis.and C.Syros 
Laboratory of Nuclear Technology 

University of Patras.261 IO Patras,GR.P.O.Box 1418. 

Abstruct:Finite!y extended fermion matter is studied in the framework of 
Dirac's theory .Some asnaiytic properties of the spinors are discussed. Pro­
positions are demonstrated important for the formulation of the solution. 

I INTRODUCTION 

The study of the fermion matter1,2is encountering an increasing 

interest for Astrophysics and particular for the Physics of the 

neutron stars? The neutron stars present real physical objects in 

which the notion cf extended fermion matter finds application. 

We are developing a systematic method will allow to study-using 

the Dirac equation-the finitely extended fermion matter in 

atomic,nuclear or sub-nuclear forms. The finitely extended fermion 

systems we consider . fulfill appropriate boundary conditions. 

Since nucléons are fermions,it is necessary,to study nuclear 

matter using the Dirac equation4 instead the Schroediger equation. 

This is necessary not only because of the relativistic energies 

involved,but rather because of the exact description of the spin 

properties which play the principale role. 

More generally,by this method the problem of the quark-star5"8 

matter in the form of strange-quark matter or charm-quark9 matter 

can be treated adequately. 

In this study we also assume that,nuclear matter interacts be­

sides the nuclear forces also with electromagnetic four-potentials. 

The purpose of the present paper is limited in the study of the 

mathematical properties of spinors1°that describe nuclear matter 
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under the above conditions.Specifically,we consider the four-po­

tential (A
Q
,A),where A-(A ,A ,A

3
) with A^k - 0,1,2,3 periodic 

function in Minkowski space.We take for simplicity ^ as indepen­

dent of time. 

The solution of the Dirac equation,coming after separation of the 

time variable from the space variables corresponds obviously to 

the solution of the time independent Dirac equation. 

II FORMULATION OF THE PROBLEM 

Considered is the equation 

( f δ (a -ΐα
μ
)

 +
α °

+
κ γ ° ) Ψ « 0 , 2.1 

in which the following notation is used: 

a
M » _eA^

; a
o

e
 A ^ E m _mç_ δ m y Q md/Q% d

 „
 a r e t|| 

hC hC h μ ' μ μ ' 

Dirac matrices,where μ = 1,2,3. Ε is parameter allowing for the 
time separation and is related to electron energy. 

We assume,the A
M
-functions have a period of 2n with respect to 

the variables χ ,x ,x . 

In what follows,we present the most basic results,that are 

directly related to the solution of 2.1 . 

In order to obtain and study this solution,the following 

definition and propos it ions nre <u.sefui: 

Definition I 

We define the c linear transformation a,that operates on the 

periodic functions f ,in the variables \ > \ > \ of period 2n,in 

the following way: 

For every n:*(n
J
,n

2
,n

3
) e Ζ

3
 it is 

(af)(x) - f
n
 if x:-(x

it
x

2
,x

3
) e [ n ^ + l ) χ [n

2
,n

2
+l) χ [n

3
,n

3
+l) 

c R
3
 were f are the expansion coefficients of the function f in 

Fourier series. 

In other words of is a step function defined in R
3
. If the 

224 



periodic functions,aM,p-0,1,2,3,are continuous in R3 and satisfy 

the condition: 

ΣΚΙ < η 

where aH . η c ζ are the coefficients of the expansion of a" in 
η 

Fourier series,then there holds the following: 

Proposition I 

Given Spinor Φ •ι defined in ft ,such that: 

1 , 9 1 , Χ,Χ„Χ,Ψ € L2(R3) and θ ψ are continous functions in R
3 

τ
ν μ

τ
ν 1 2 3

T
v * ' . μ ν 

and ψ bounded functions in R for v-1,2,3,4 and p=l,2,3.Then the 

following statement is true: 
A 

The spinor Φ is a solution of (1) iff Ψ is a solution of the equa­

tion: 
'3s Γ [ -i £ δ ( σ ι μ ) ( · ) + (ot°)(i) ] ( e ^ X k f s J d 3 

R 3 v'1 

p k + l f k + l - k +1 3 A 

•J j j •A·»» Σ*;ν v i * ( k ' ) d k ; d k 2 d k 3 · 2 · 2 

S
 k

i
 k
3 

A 

where Ψ is the Fourier transform of Ψ. 

With the aid of Proposition I,we prove the following basic 

Theorea I 

Let spinor ψ be a solution of equation (1),Ψ satisfy the 

pressupositions of the above proposition and the following 

conditions: 

VWWk)) € L1(R3) 2 · 3 

Llim ,lim Llim (k ψ (k)) - 0 2.4 
1 - 2 - 3 -

for μ-1,2,3 ; v-1,2,3,4. 

Then,a) spinor Ψ satisfies 
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( Y exp(inx))( π [exp(ix )-l])(( f δ / + ia° }Ψ) - 0 2.5 

n
 _3 v - 1 μ - 1 

nez A , 

β) If in addition,spinor Φ is continuous in R ,then Φ - 0. For 

the proof of Proposition I and Theorem I,the following 

notation and remarks are required: 

Notation and Remarks: 

«) V ~ f e : <»,•><·>
:
-

3
„

u(x)l
x-· 

β) L
p
:- L

P
(R

3
) is the set of funktions u defined in R

3
 for wich 

there holds: 

| |u(x)|
p
 d

3
x < », where χ-^,χ^χ^, ρ e R

+
. 

R
3 

γ) F, , is the set of functions defined in R
3
,and are periodic 

(2n.3) 

with respect to the variables x,»*»»^ with the same period 2n and 

are integrable on [0,2n] χ [0,2n] χ [0,2n] c R
3
. 

It is well known that: 

If f e F
( 2 n 3)

then f(x) = £ f
n
exp(inx), 

nez
3 

where 

nx:- n ^ j * n
2
x

?
+ n

3
x

3
 with n=(n

l
,n

2
,n

3
) ,x-(x

l
,x

2
,x

3
) 

»2 n -2 n -2 n 

V ( 2 n ) J j J f(x)exP(inx)d3x . 
ο 0 0 

δ) F1 := { f e F : Y If Ι < » >. 1 (2π.3) ι (2π,3) L ' ' η 1 ' · 
ne ζ 3 

Consequently,the functions aM of equation (1) are elements of 
F1 

(2n,3) 

ε) If n:= (n tn ,n ) a n d 1 ; = (1,1,1) we define: [n,n+l): -

[n^n^l) χ [n2,n2+l) χ [n3,n3+l) (semi-open cube) 

Obviously,for k e R3,the set of [n+k,n+k+l),n e ζ 3 is a partition 
of R3.That is U ,[n+k,n+k+l) « R3 and [n+k,n+k+l) η [m+k,m+k+l)=0 

neZ3 

for n*m. Thus,we have the 
Remark 1 
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For every integrable funktion u on R and for every k e IR is 

_ Pn+1 , r ^ r n+k+l , 

£ | u(x)d3x =J u(x)d3x = £ J u(x)d3x, 

n e z 3 η R3 n e z 3 n+k 

f a + l f a + 1 - · + l - a +1 

where j u(x)d 3x : " J J J " ( W V d x

3

d x

2

d x i 
a 

στ) We define the c-linear transformation Τ in the set of 

functions u € R3,in the fllowing way: 

(7u)(x):»u(xl+l,x2+l,x3+l)-u(xi+l,x2+l,x3)-u(xi+l,x2,x3+l) 

-u(xl,x2+l,x3+l)+u(x1+l,x2,x3)+u(x1,x2+l,x3)+u(xl,x2,x3+l) 

-u(x1,x2,x3). 

Remark 2 

If the function s A s , u i s defined for every χ e R3 and i s 

integrable on R3,then i t holds: 

r x + 1 3 
(7u)(x) = j aiaza3 u ( s ) d 3 s , 

χ 

(7u)(k+n) - J ( a i a 2 a 3 u ) ( k + s ) d 3 s , 

η 

where χ « ( x ^ x ^ ) . 

Proof: 

rn+l , rk+n+l , 
J (a^uMk+sJd's - j a ^ u M d ' x (x=k+s) 
η n+k 

f3 + n 3 + 1J k 2 + n 2 + 1[a2a3u(k1 +n1 +l,x2,x3)-a2a3u(k1 +n1,x2,x3)]dx2dx3 

k 3 + n 3 k 2 + n 2 

J 3 " 3 [ ö 3 u(k l + n 1 + l ,k 2 +n 2 + l , x 3 ) -a 3 u(k l + n l + l ,k 2 + n 2 , x 3 ) 

k 3 + n 3 

-a u(k, +n,,k +n+l ,x j+a ,u(k ,+n, ,k 0 +n„,x , ) ]dx , 
3 x 1 1 2 2 3# 3 v 1 1 2 2 3 / J 3 
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-u(k1+n1+l,k2+n2+l,k3+n3+l) -ui^+n^l,k2+n2+l,k3+n3)- . . . 

-ut^+n^kg+n^kg+np - (7u)(k+n). 

The first relation can be proved in a similar way. 

ζ) With Mj we will symbolize the set of step-functions t 

defined in R
3
, that satisfy: 

ζ ) For every χ e [n,n+l) there holds true: t(x)«t (t is a com­

plex constant that depends on n),where η € Ζ. 

ζ
2
) t e L

1 

η) I consider the c-linear transformation o,that operates on the 

elements f of F* „,as follows: 
(2n,3) 

(of)(x)« f αν χ € [n,n+l) ,n e Ζ 3
, 

where f(x)- £ f exp(inx). 

nez
3 

This means,that the elements of o(F,„ .) fufill the conditi-
x
 (Zn.3)' 

on ζ ),which satisfy also the elements of w, . Specifically there 

holds true 

Remark 3 
From f e F* ,, we obtain: of e M

3
. 

(2π , 3 ) 1 

Proof: 

It is sufficient,to prove that of e L
1
: 

From f e FÌ2n3)»we obtain,that if χ e [n,n+l),then (of)(x)-f e 

c and £ |f
n
| < » . So it holds: 

nez3 

[ |(of)(x)|d3x - ][ | |(of)(x)|d3x (Due to remark 1) 

R3 nez3 η 

_ rn+l , „ 

Σ , I if»id * • Σ ΐ ' , ι < 
nez3 η nez3 

Remark 4 

Let f e Fj 2 n 3 ) with f(k) - £ fnexp(ink) then the inverse 

nez3 
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Fourier transform of a(f) exists and it is: 

(2n)"
3/2
 J (a(f))(k)exp(ikx)d

3
k 

R
3 

3 / 2 i [expiix^-ntexpiix^-lJtexpiix^-l] 

= (2πΓ / £ ί ì ί c- f(x) 

Proof: 

X 1 X 2 X 3 

From f e F * c L (R3) we have that there exists the Fourier 
transform of f.Additionaly.from the definition of a and with the 
aid of remark 1,it follows: 

r , r̂  r n + 1 

(af)(k)exp(ikx)d3k = V S (af)(k)exp(ikx)d3k 
R „+ 1 n€23n 

- I J fnexp(ikx)d3k 
nez3 η 

I fn{Jni+exp(ik1xl)dkl}(Jn2+exp(ik2x2)dk2}{J"3exp(ik3x3)dk3) 
n e Z 3 η 

^ 3 1 
Σ fn Π <-j-[exp(i(n +l)x )-exp(in χ )]} 

ne ζ 

3 

. - - „ , " μ μ μ μ 
3 μ = 1 μ 

( Π (-~-[exp(ix )-!]}) I fnexp(inx). 
"- 1 μ nez3 

Remark 5 

if u € L2 then obviously 7u e L . 

In addition there holds: 
3 

J>u)(k) exp(-ikx)d3k -{ niexpiix^-l)} J* u(k)exp(-ikx)d3k. 
R3 1 = 1 R3 

Proof: 
From the definition of Τ we obtain: 
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J"(7u)(k)exp(-ikx)d3k = J u(kl+l,k2+l,k3+l)exp(-ikx)d
3k 

R3 R3 

-J u(kl+l,k2+l,k3)exp(-ikx)d
3k-J u(kl+l,k2,k3+l)exp(-ikx)d

3k 

R3 R3 

-| uik^k^U^+Dexpi-ikxJd'k + J u(kl+l,k2,k3)exp(-ikx)d
3k 

R3 R3 

+|u(k1,k2+l,k3)exp(-ikx)d
3k + J u(k1,k2,k3+l)exp(-kx)d

3k 

R3 R3 

- J uik^k^yexpi-ikxjd 3^ 

R3 

Performing the substitution k'» k +1 i.e k'-k+l,k'-k+1, 

k'=k +1 in the first integral of the second term,and k'-k,+l, 
3 3 1 1 

k'=k+l,k'=k in the second integral of the second term e.t.c we 
2 2 3 3 3 

obtain: 
J (7u)(k)exp(-ikx)d3k 

R3 

where 

»expiiXjJexpiix^expiix^ I(x) - expiix^exptix^ I(x) 

- exp(ixl)exp(ix3) I(x) - exp(ix2)exp(ix3) I(x) 

+ expiix^ I(x) + exp(ix2) I(x) + exp(ix3) I(x) - I(x) 

= ((exp(ixl)-l)(exp(ix2)-l)(exp(ix3)-l)} I(x), 

I(x):= f u(k')exp(-ik'x)dV. 
3 

III STUDY OF THE SPINOR PROPERTIES - PROOF OF A PROPOSITION 

In section we prove the basic properties of the spinors which 

may be used in the exact study of nuclear matter properties. The 

relations to be roved enable us to represent with the help of 

elementary functions the solution of the Dirac equation for the 

extended nuclear matter. 
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Proof of the proposition I: 

a) Let Φ be a solution of 2.1 .From a
M € F ) ,it follows: 

(2n.3) 

*
Μ
" Σ

 a
n

e x
Pi

i n x
)> M »0,1,2,3 3.1 

nez
3 

Since Ψ is the Fourier-transform of Ψ,κβ will have: 

Ψ -(2n)'
3/2
f î(k)exp(-ikx)d3k 3.2 
» 1 
R3 

Using the relations 3.1-3.2 in 2.1 we obtain: 

{ π i\ • v.-1 ς y» «n»-» ι 
R3 v'1 neZ3 

+ J] a°exp(inx)+<Y°)$(k)exp(-ikx)d3k-0 j 

neZ3 

A f ( t " i k A + *Y° )î(k)exp(-ikx)d3k 
l R 3 "-1 

= I ( Σ <* È V n - *i>)î(k)exp(i(»-k)x)d3k}. 
Ì3 , 3 μ = 1 ' R neZ' 

Interchanging integration and summation on the rhs yieldes the 

relation (see Appendix) 

J [ t -i\% + *Y° ]î(k)exp(-ikx)d3k 
R3 μ = 1 

Σ 3 [ 4È an5
M "an] J3exp(i(n-k)x)î(k)d3k. 

neZ H * R 

Furthermore,we substitute n-k by -k'in each integral of the 

second part and we get 

Γ ( È - i k A + *Y° )"Wexp(-ikx)d3k 
R3 μ Μ 

Σ J ( È Κ δ

μ - an)$(n+k')exp(-ik'x)d3k\ 
nez3 R3 μ = 1 

By again interchanging summation and integration on the rhs we 

have 
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Γ ( f -ik δ + <γ° )î(k)exp(-ikx)d3k 

ί Σ ( ϊ Κ
δ

μ
 - a°)î(n+k)exp(-ikx)d3k 

R nel 

According to the conditions of the proposition is the first 

term of the last equation a spinor whose components are in o_2.This 

entails the same property for the rhs of the last equation. 

Consequently,we immeadiately from the last equation the relati­

on: 

i"1 Ì kA + "f°^w 

nez3 »•' '" 

Applying transformation Τ (defined in Remark 2) on the last 

equation and using afterwards Remark (2) on every term of the 

second part,we obtain 

'Σ J (iî<5M-a°)(aiW)(s+k)d
3s * 

neZn 
3" μ«1 

Introducing aa
M
(see definition of o) in the second part of the 

equation we have: 

{( -i ïyv + <Y°)î(k)} 

n + 1 * 

-X { ( i t ί^μ;δ
μ
 - oVHa^î) (s+k) d3s. 3 * μ-1 

nez η 

We apply Remark 2 on the lhs and Remark 1 on the rhs we gwt im­

mediately equation 2.2. 
A 

β) Let Ψ be a solution of equation 2.2. Carrying out the 

substitution s=-x in the integral of the lhs of 2.2 and using 

232 



Remark 2,in the rhs we obtain: 

J [ -i Ι δ
μ
(σ

3

μ
)(-χ) +(<7a°)(-x)] ( a ^ Î M k - x)d 3x 

R3 μ = 1 

τα i ν k.s. - <γ° ]Ψ(^} f k δ - <γ° 
μ?1

 μ μ 

Next,we multiply the equation with exp(-iks) and integrate on 

R
3
.The following result is obtained: 

f ( f [ - i f 5(aaM)(-x)+(aa°)(-x)](aaafii)(k-x)d3x)exp(-iks)d3k= 

l· i3 A ' 

- J Γ{[ i J k δ - *γ° ]f(k)} exp(-iks)d3k. 3.3 

R 3 μ = 1 

Now,we observe that,according to the condition of the proposition 
2
 A 

x.x^x,
1
^ € L and it follows that the components of a a 3„Ψ are 

1 2 3 ν
 r

 123 

elements of o_ . 
The same holds true,also,for the components of -i V δ (aa

M
)(-x) 

μ = 1
 M 

+(aa°)(-x).The last assertion is obtained in the following way: 

From a e F1
 it follows,according to Remark 2.3,that 

aa e M\C L ^ L
2 

A 
It follows,therefore,that the components of -i Υ δ (aa

M
)(-x) 

μ = 1
 M 

(aa )(-x) will be elements of L »since they are linear combinations 

of σβ
μ
,μ=0,1,2,3. Consequently,we can apply the convolution theorem 

on the first part of equation 3.3: 

j { J[-i|;oM(aa
M)(-x)+(aa

0)(-x)](aia2a3î)(k-x)d
3x)exp(-iks)d3k 

"J {-i t ôM(aa
M)(-k)+(aa°)(-k)}exp(-iks)d3k 

R3 R3 μ = 1 

,3 μ · 1 

J (a^îjikjexpi-iksjd'k 3.4 X 

, 3 
R' 

We observe that,if we make the substitution k=-t in the 
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integrals of the rhs and subsequently we use Remark 4 we get: 

f (-i £ 5
M
(aa

M
)(-k)+(aa°)(-k)}exp(-iks)d

3
k 

R
3 μ = 1 

| (-i Ι δ
μ
(σ3

μ
)(1)+(σ3°)(1)}βχρ(η5)αΗ 

R
3 μ-1 

[exp(is
l
)-l][exp(is

2
)-l][exp(is

3
)-l] 

s
,

s
„

s
, 

1 2 3 

x( £ δ / (
5
) +ia°(s)). 3.5 

M - l
 M 

For the other integral of the rhs of 2.9 there holds true ac­

cording to the property of Fourier transforms 

a Ψ($)-Γ^ î(k)exp(-iks)d3k. 
R3 

J (a^ÎKkJexpi-iks^k - - i s ^ s ^ s ) . 3.6 

R3 

On the other hand, using Remark 5 and basic properties of 

Fourier transforms we obtain from the rhs of 3.3: 

•Ι" Γ { [ i Î kuV Y ° ^ ( k ) ) exP("i^)d3k 
R3 μ = 1 

-{ π [exp(is ) - l ] } f ( i f κδ - Y°}î(k)exp(-iks)d3k 
J 3 M - 1 M M 

« ( π [exp( is v )- l ]}((- Ι δ a - Y > ( S ) ) 3.7 
v » l μ=1 

Due to the relations 3.4-3.7 equation 3.3 becomes: 

{ π [exp(is )-l]}( V δ (a -ia
M
) + *Y>(s) - 0 3.8 

1-1
 l

 μ«1
 M μ 

Let there hold 

f(s):={ π [exp(is )- l ]} 
1 « 1 
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0(s):« ( ^ δ (3
μ
-ΐα

μ
) + κγ° )Ψ(5) 

μ = 1 

Ε ^ * |(2nn,s
2
,s

3
) : η e Ζ ; s

2 >
s

3
 e R|, 

:- |(s
i
,2nn,s

3
) : η e ζ ; s^Sg e R J , 

:- |(s
1
,s

2
,2nn) : η e ζ ; s ^ e R | , 

E
2 

E
3 

E :-
 E l
 υ E

2
 u E3. 

Obviously the set of solutions of equation f(s) = 0 in R
3
 is 

identical with the set E. Consequently,from equation 3.8 e obtain 

for every s € R 3 - E valid the equation:6(s) * 0. 

Since,now,obviously R3-E is dense in R3 (with respect to the phy­

sical topology of R3) and θ is continuous in R3
 (according to the 

conditions of the proposition) we have: 9(s) = 0 for every s e R
3
. 

IV FURTHER SPINOR PROPERTIES-PROOF OF THE THEOREM I 
A 

a) Since Ψ is a solution of equation 2.1 spinor Ψ will be soluti­

on of 2.2 (according to proposition I).Then: 

f [ -i f δ(σ
3

μ
)(χ) +(αι°) (χ)] (β.β « î)(k + x)d3x 

R 3 - μ-1
 M 

r
k+l i „ A 

J W i l l i I k̂
M
-Y>(k'))d

3
k' 4.1 

k 

placing in (14) k+n ,in place of k for every η e ζ ,we obtain 

| [ -i £δ
μ
(ο-3

μ
)(χ) +(aa°)(x)] ( a ^ a ^ M k + n + x ^ x -

P
k+n+l 3

 A 

J V i
a
3

( c i
i

k
A " * v W

k
' ) )

d k
'

 4 · 2 

R
3
 »-

1 

k+n
 μ = 1 

Summing the equations 4.2 part by part for every η e ζ
3
,we 

obtain: 

235 



Σ ί [ _ i È *(«">(*> +(™°M*)] (a aa3î)(k+n+x)d3x 
nez3R3 μ 0 

rk+n+l i „ Α , 

• Σ I V 2 a 3 ([ i£k;5 M -KY>(k ' ) )dY » 

nez3 k+n μ _ 1 

(Using Remark 1 on the rhs) 

Ι β J [ -i J δμ(σ3

μ)(χ) +(oa°)(x)] (e^îjik+n+xjd 

3x 

nez3 R3 μ Μ 

R
3 

Performing integration on the rhs of the last equation ,bcause of 

condition 2.4,weobtain that the value of the integral is 0. 

Consequently the last equation becomes: 

Ι Γ C-i χ δ

 11(ffaM)(x)+(ffa°)(x)](a a β î)(k+n+x)d3x = 0 4.3 
nez3«3 μ = 1 

Multiplying (16) with exp(-iks) and integrting on R ,we have: 

J. i Σ , { [ " i E δμ(σ3

μ)(χ)+(σ3°)(χ)] 

x(aia2a3î)(k+n+x)d3x)exp(-iks)d3k - 0 

R3 nez3 R3 μ = 1 

Interchanging the outer integral with the sum we obtain (see 

Appendix): 

Σ J ί J Ι"! £δ
μ
(σ

3

μ
)(χ)+(σ^)(χ)] 

nez
3
 R

3
 R

3 μ = 1 

x(a
i
a

2
a^)(k+n+x)d

3
x)exp(-ks)d

3
k = 0.' 

Applying the substitution n+x=-r in each inner integral,we obtain 

the following form: 

Σ J ( J Ci Ε δ
μ
(™

μ
)(-η-Γ)

+
(σ

3
°)(-η-Γ)] 

J R
3
 R

3 μ = 1 

aia2a3î)(k-r)d
3r)exp(-ks)d3k=0 
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The convolution theorem used in every term of the sum,we obtain: 

I 9 J [-i| 5M(aa
M)(-n-k)+(aa°)(-n-k)]exp(-iks)d

3k 

x J (a^ÎHkJexpi-iksJd^ - 0. 
n ez

3 R3 "-1 

R3 

Introducing in every lhs factor of each term of the sum,the 
substitution -n-k=t,there holds true: 

Y [exp(ins)-l]f [-i f 5(aaM)(t)+(ffa0)(t)]exp(its)d31 

xJ ( aiW ) ( k ) e x p (" i k s ) < , 3 k" °-
n 6z

3 R3 "-1 

R3 

Because of relations 3.5-3.6 of proposition I we immediately 
obtain relation 2.5 . 
β) The continuity of a

M
,Ψ,and the relation 2.5 imply that: 

,M . iJ> 
{ > δ a

M
 + ia

u
 }Ψ - 0 4.5 

μ-1
 M 

From equations 2.1 and 4.5 we immediately get: 

( > δθ + κγ° )ψ - 0. 
μ-ι μ μ 

Inserting in the last relation 

Ψ - (2n)"
3/2
 f î(k)exp(-ikx)d3k , 

3 

R3 

we obtain 

[ ( V -ik δ + κγ° )$(k)exp(-ikx)d
3
k - 0 4.8 

R
3 μ = 1 Μ μ 

According to the pressupositions of the theorem, it is evident that 

the components of ( £ -ikö + *Y° )^W are elements of L2. 

Thus,from relation 4.8 we have: 

( J -ik δ + κγ° )î(k) - 0 
μ-l ^ 
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•• ( f ikö -κγ°)( t -ik δ + < Y ° ) î ( k ) - 0 
μ -1

 M Μ
 μ -1

 Μ Μ 

Performing the multiplication and using the relations 

δ δ„+ δ δ — γ γ - γ γ - 0,if μ * ν; δ δ — 1 ; δ γ° + γ°δ · 0, 
μ V ν μ 'μ'ν ' ν ' μ μ μ μ μ 

we have: 

( t κ - m - ° 
μ - 1

 Μ 

Λ ο 

Considering that spinor Φ is continuous in R ,it follows from 

the last equation that: 

Î - 0, * Ψ - 0 

Corollary: 

If the components of the solution Ψ of eq.2.1 are elements of 

the 5-space of Schwartz,then Ψ » 0. 

Remark 6 

If the solution Φ of 2.1 does not obey the constraints 2.3-2.4 

of theorem I but it satisfy the conditions of proposition I,then Φ 

can be different from zero. 

APPENDIX 

a) We give here the proof for the possibility to interchange the 

integration and the summation in the expressions after 3.2. 

ÎS ÏS1 I V n - an »î(k)exp(i(n-k)x)d3k « 

Σ ( Î * η
δ

μ
 ' Φ i exp(i(n-k)x)î(k)d3k. 

F3 n€Z3 "-1 

Proof: 
nez3 μ = 1 ÌR3 

Let bj,,b£,b3,b* be the components of Spinor 

V-( Iß Ì VU - < »*w 
,3 μ - 1

 M 

neZ' 
According to a well known theorem of integral calculus,the 
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integral of the first part willbe commutativ with the sum,if ishow 

that: 

Y |b*exp(i(n-k)x)| < » δηλαδή Y |b*| < » για v=l,2,3,4. 
1 3 

nez
3
 neZ

J 

I will show the above eniquality only for v-1,since the proof for 

v«2,3,4 is exactly identical: Performing the arithmetic evaluation 

I find that the component b of Φ is 

* Σ ι »il * \\\l \<\ + i i 4 i Σ i»»i 
nez 3 neΖ neΖ3 

•ΐί,ΐΣ l ' U l u l i ι«ϋι· 
nez

3
 neZ

3

 Λ 

With the pressuposition of the proposition: Φ. are bounded in 

R
3
 and a

M
e FJ

 3 )

t n a t
 *

s
 Σ l

a

n
l * °°>

we n a v e
 Zl

b

n
l * °

9
· 

β) The commutation of the integral with the sum in the relation 

Σ J ( Î ian5
M -

 an )U(n+k')exp(-ik'x)dY 
nez3 R3 μ = 1 

is proven identically. 

γ) It will be shown that the integral of the following expression 

commutes with the sum 

f ( Σ f [ - i Ì 5 u K ) ( x ) V ) ( x ) ] 
ÌR3 nez3 k \ μ = 1 

x(a
i
a
2
a
3
$)(k+n+x)d

3
x)exp(-iks)d

3
k. 

Proof: 

Let A
n
,A^,A

3
,A* be the components of 

(
 Σ J I"

1 î 5M(aa
M)(x)+(aa°)(x)](aiô2ô3î)(k+n+x)d

3x) 

nez IR 3„3 μ-1 
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and BÌ,BÌ,B!,B1 the components of 
η η η η 

r
k+n+l 3

 Λ 

Ι -Γ
 3

Λ
θ
3

( [ ί
 Σ k'5 «Y

0
]V(k'))d

3
k' 

k+n
 M m l 

The commutation of the sum with the integral is possible,if we 

can prove that 

I |A
n
exp(-iks)|<« 

nez
3 

•» Σ l
A

n
l * · f o r

 v-1,2,3,4 : 

Π€Ζ3 

It is sufficient to show the last inequality for v=l (since for 

v=2,3,4 the proof is identical) 

From relation 4.2 of the theorem we obtain: 

Ai - BÌ for η e Ζ3 Al 
η η 

Evaluating the integral I we obtain: 

rk+n+l A A 
Bn 'J ^ V « V W + l a i W W 

k+n 

-^wKv-'wßy* A2 

Substituting (20) in (19) and suming.we have; 

Σ K\ 
neZ3 

r , f k + n + 1 , A 

neZ3 k+n 

r k+n+l A A A 

* I J tl»1»A<WI*lv«VWItlVA(k;»,»l 
ne ζ k+n 

(because of Remark 1) 
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' J ( i V A ^ V H V A K ^ M V z V ^ 
R3 

+ |<aia2s3ini|}d
3k' < · 

due to the condition 2.3 of the theorem. 
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