HNPS Advances in Nuclear Physics

Vol 5 (1994)

HNPS1994

A Study of the Electrodynamic Properties of

Macroscopically Extended Fermion Matter
ELnopean COmimission

A. Kechriniotis, C. Syros

doi: 10.12681/hnps.2905

Advances
in nuclear physics

To cite this article:

Kechriniotis, A., & Syros, C. (2020). A Study of the Electrodynamic Properties of Macroscopically Extended Fermion
Matter. HNPS Advances in Nuclear Physics, 5, 223-241. https://doi.org/10.12681/hnps.2905

https://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at: 04/05/2024 05:06:37



A STUDY OF THE ELECTRODYNAMIC PROPERTIES
OF MACROSCOPICALLY EXTENDED FERMION
MATTER

AXechriniotis,and C.Syros
Laboratory of Nuclear Technology
University of Patras,261 10 Patras,GR,P.O.Box 1418.

AbstructFinitely extended fermion matter Is studied in the framework of
Dirac’s theory.Some asnalytic properties of the spinors are discussed. Pro-
positions are demonstrated important for the formulation of the solution.

I INTRODUCTION

The study of the fermion matter!'?is encountering an increasing
interest for Astrophysics and particular for the Physics of the
neutron stars® The neutron stars present real physical objects in
which the notion of extended fermion matter finds application.

We are developing a systematic method will allow to study-using
the Dirac equation-the finitely extended fermion matter in
atomic,nuclear or sub-nuclear forms. The finitely extended fermion
systems we consider . fulfill appropriate boundary conditions.

Since nucleons are fermions,it is necessary,to study nuclear
matter using the Dirac equation4 instead the Schroediger equation.
This is necessary not only because of the relativistic energies
involved,but rather because of the exact description of the spin
properties which play the principale role.

More generally,by this method the problem of the quark-star®®
matter in the form of strange-quark matter or charm—quark9 matter
can be treated adequately.

In this study we also assume that,nuclear matter interacts be-
sides the nuclear forces also with electromagnetic four-potentials.

The purpose of the present paper is limited in the study of the
mathematical properties of spinors'’that describe nuclear matter
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under the above conditions.Specifically,we consider the four-po-
tential (AO,A),where A-(Al, z,A ) with A k = 0,1,2,3 periodic
function in Minkowski space.We take for simplicity Ak as indepen-
dent of time.

The solution of the Dirac equation,coming after separation of the
time variable from the space variables corresponds obviously to
the solution of the time independent Dirac equation.

II FORMULATION OF THE PROBLEM
Considered is the equation

(V5 (6 -ia") + a% °)¥ = 0, 2.1
TR
u=1

in which the following notation is used:

w_ A o A%E _ mc 5 =

= - 0,H, = u
a fics O e R 9, YVY; au a/axu,and y" are the

Dirac matrices,where y = 1,2,3. E is parameter allowing for the

time separation and is related to electron energy.

We assume,the A"-functions have a period of 2n with respect to
the variables X 3X,s X, 0

In what follows,we present the most basic results,that are
directly related to the solution of 2.1 .

In order to obtain and study this solution,the following

definition and propositionsmre useful:
Definition I
We define the € linear transformation o,that operates on the

periodic functions f ,in the variables X X, X, of period 2n,in
the following way:

For every ’=(n aM,oN, ) e 2% it is

(af)(x)sf 1fx=(x X, x) € [n n+1) X [n n+1) ><[n n+l)
c R® were f are the expan51on coefflcients of the function f in
Fourier serles

In other words of is a step function defined in R®. If the
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periodic functions,a",u=0,1,2,3,are continuous in R? and satisfy
the condition:

z Ia:‘|| < o
nez’
where a: . n e Z are the coefficients of the expansion of a" in

Fourier series,then there holds the following:
Proposition I
1

w

v
2 3

Given Spinor W = v defined in R’,such that:
.4

¥ 8,0, XXXY € L¥(R®) and avare continous functions in R®
and v, bounded functions in R® for v=1,2,3,4 and p=1,2,3.Then the

following statement is true:
The spinor W is a solution of (1) iff ﬁ is a solution of the equa-
tion:

[ -i z:Bu(aa")(s) + (0a%)(s) ] (8lazaSW)(k+s)d3

3

k. +1 .k _+1 k+1
- [ IZI 8,8,3, i ika Y ]lll(k)dkdkdk, 2.2
k

.{
{

1 k3

where ﬁ is the Fourier transform of .
With the aid of Proposition I,we prove the following basic

Theorem 1

Let spinor y be a solution of equation (1),W satisfy the
pressupositions of the above proposition and the following
conditions:

818283(k ' (k)) e ! (R ) 2.3

S, Qo (o, (k) =0 2.4

for p=1,2,3 ; v=1,2,3,4.
Then,a) spinor W satisfies
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( z exp(inx)) ( 1?1 [exp(ixv)-l])(( i&ua" + i W) =0 2.5
vel =1

3
neZz
B) If in addition,spinor v is continuous in R%,then W = 0. For

the proof of Proposition I and Theorem I,the following
notation and remarks are required:

Notation and Remarks:

a9 . -
a) au. 7% (8uu)(l). auu(x)lx_-.
B) LP:= I.B(Ra) is the set of funktions u defined in R® for wich
there holds:

I |u(x)|”® d°x < w, where X=(x,,X,,X,), P € R.

3

R

Y) F(Zn o1 is the set of functions defined in R®,and are periodic
with respect to the variables X 21X, X, with the same period 2n and
are integrable on [0,2n] x [0,2n] x [0,2n] c R’.

It is well known that:
IffeF then f(x) = z fnexp(inx),

(2n,3)
nez
where
nX:i= N X + N X+ N.X, with n=(n1,n2,n3) ,x=(x1,x2,x3)
2n p2n p2n
fn- (2n)7 I f I f(x)exp(inx)d®x .
o 0 0
wl . )
8) Fi = {feF, - Y 3|f"| <w ).
ne Z
Consequently,the functions a" of equation (1) are elements of
1
l:(Zn,s)'
g) If n:= ("1’"2’"3) and 1:= (1,1,1) we define: [m,n+l): =
[nl,n1+l) x [nz,n2+l) X [n3,n3+1) (semi-open cube)

Obviously, for k € R3,the set of [n+k,n+k+1),n € z% is a partition

of R*.That is U 3[n+k,n+k+l) = R® and [n+k,n+k+l) n [m+k,mk+])=0
nez

for n=m. Thus,we have the
Remark 1
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For every integrable funktion u on R® and for every k € R is

k1
y j L Iu(x)cﬁx- y jn++u(x)d3x,

nez’ n nez’® n+k

a+l a +1.a_+1qa_+1
where I u(x)dax = I . I 2 I . u(x X ,x) dx dx dx
a al n a

or) We define the C-linear transformation 7 in the set of

functions u € R%,in the fllowing way:
(Tu)(x):=u(x1+l,x2+l,x3+1)-u(x1+l,x2+1,x3)-u(x1+1,x2,x3+1)
-u(xl,x2+1,x3+1)+u(x1+1,xz,x3)+u(xl,x2+1,x3)+u(xl,xz,x3+1)
-u(xl,xz,xs).

Remark 2

If the function 8aau is defined for every x e R’ and is
integrable on R®,then 1t holds

x+1 3
(Tu) (x) = j 8,0,3, u(s)d’s,
X
n+l 3
(Tu) (k+n) = I (0,0,8,u) (kes)d’s,
n
where x -(xl,xz,xs).
Proof:
n+l . k+n+1 3
I (8,8,8,u) (kes)d’s = J’ 88,8u(x)d°  (x=kss)
n n+k

k_+n_+1 k2+nz+1
= I I [:SJZc'Jau(k1+nl+l,xz,xa)-o:-)zz:)au(klml,xz,xs)]dxzdx3

k_+n_+1
3773
J [33"(k1+"1+1 . k2+n2+1 ,x3) '83"(k1+"1+1 5 k2+n2,x3)

ka*n3

-aau(kl+n1, kz+n2+l ’x3)+aau(k1+"1’ k2+n2,x3) ]dx3
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-u(k1+nl+l,k2+n2+1,k3+n3+1) -u(k1+nl+1,k2+n2+1,k3+n3)-

-u(k1+nl,k2+n2,k3+n3) = (Tu)(k+n).

The first relation can be proved in a similar way.
7) With M; we will symbolize the set of step-functions t
defined in R®, that satisfy:
Z ) For every x € [n,n+1) there holds true: t(x)-t (t is a com-
plex constant that depends on n),where n € Z°

Zz) ted!

n) I consider the c-linear transformation o,that operates on the
elements f of F(z 338 follows:

(of)(x)= £, av x € [n,n+1) ,n e 2,

where f(x)= ) f exp(inx).

3
nez
This means,that the elements of a(F ) fufill the conditi-

on Z ),which satisfy also the elements of "l Specifically there
holds true
Remark 3

From f e F(z 5) e obtain: of € mﬁ.

Proof:
It is sufficient,to prove that of e L':
From f e F! jowe obtain,that if x € [n,n+1),then (0f)(x)=f, €

(20.3
C and Z [fy] < o . So it holds:
nez®

f |(of) (x)|d*x = ¥ f |(af)(x)|d3 (Due to remark 1)

R} nez’ n :

-5 I |f|d3 =Y If,l < e

nez’ n nez’
Remark 4
let f e l-'(2 3) with f(k) = Z fnexp(ink) then the inverse

nez
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Fourier transform of o(f) exists and it is:

(2n)/? I (0(f)) (K)exp (ikx)d°k
R3

[exp(ixl)-lltexp(ixz)-il[exp(ixz)-ll ;
f(x).

- (2n)'3/zi
X, XX,

Proof:
From f € F‘;na)c Ll(Ra) we have that there exists the Fourier
transform of f.Additionaly,from the definition of o and with the

aid of remark 1,it follows:

n+l
[ h etk = § [ (of) (Kexp(ikadk
3

3
R a+l . neZ" n
) j f exp(ikx)d’k
nel3 n

nl+l . n2+1 . n3+1 .
- zsfn(f exp(ik x )dk ) ([ * exp(ik,x,)dk)( [ “exp(ikx,)dk )
n n

€
mel L 2 3

= }E fa

3
1 ; .
2 fa 1 Cleetiin ) epling)D

U

3
= (1 (Glexp(ix)-11)) T frexp(inx).
u=1 1] 3
nez

Remark 5
if u € L% then obviously Tu e LL .

In addition there holds:

I(Tu)(k) exp(-ikx)dsk =( %(exp(ixl)-l)) I u(k)exp(-ikx)d3k.
IR3 1=1 R3

Proof:
From the definition of T we obtain:
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I(Tu)(k)exp(-ikx)dsk = I u(k,+1,k,+1,k +1)exp(-ikx)d’k
R R

j u(k1+l,k2+1,k3)exp(-ikx)d3k-_[ u(k +1,k, k +1)exp(-ike)d’k
3
R R

J‘ u(k ,k,+1,k +1)exp(-ikx)d’k + f u(k +1,k,,k,)exp(-ikx)d’k
3 3
R R

+j u(k,,k+1,k Jexp(-ikx)d% + Iu(kl,kz,k3+l)exp(-kx)d3k
R3 R3
- J‘ u(k,,k, k) exp(-ikx)d’k.

3

R

Performing the substitution k= k +1 1i.e k;=kl+l,k;=k2+1,
k;=k3+l in the first integral of the second term,and k;=k1+1’
k;=k2+l,k;=k3 in the second integral of the second term e.t.c we
obtain:

_[ (Tu) (k)exp(- ikx)d’k
e
=exp(ixl)exp(ixz)exp(ixa) I(x) - exp(ixl)exp(ixz) I(x)
- exp(ixl)exp(ixa) I(x) - exp(ixz)exp(ixs) I(x)
+ exp(ixl) I(x) + exp(ixz) I(x) + exp(ixa) I(x) - I(x)
= {(exp(ix )-1)(exp(ix,)-1)(exp(ix;)-1)} I(x),

where :

1(x):= Iu(k')exp(-ik'x)dak'.
R3

III STUDY OF THE SPINOR PROPERTIES - PROOF OF A PROPOSITION

In section we prove the basic properties of the spinors which
may be used in the exact study of nuclear matter properties. The
relations to be roved enable us to represent with the help of
elementary functions the solution of the Dirac equation for the
extended nuclear matter.
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Proof of the proposition I:

a) Let Wbe a solution of 2.1 .From a" e F:mua) ,it follows:

a”sz a:exp(inx), p =0,1,2,3 3.1
nez’
A
Since ¥ is the Fourier-transform of W,we will have:
-3/2( & . 3
¥ =(2n) IW(k)exp(-lkx)d k 3.2
3
R

Using the relations 3.1-3.2 in 2.1 we obtain:

{ ia(uzf ‘ikuiSu-i z 35ua'|‘| exp(inx) ]
nez
+ Y alexp(inx)+y°) (k) exp(- 1kx)d*k=0 }
nez
»{ [ §-1ks + 0 )bk exp(-1k)d'k
! W
-] (¢ zs(i.,zla"a:' - )k (in-k)x)a'K}.

R™ nezZ
Interchanging integration and summation on the rhs yieldes the

relation (see Appendix)

J[ 3

ik 3, + A ]ﬁl(k)exp(-ikx)d%

R u=1
’n§z3[ igl a:ﬁu ‘3:.] laexp(i(n-k)x)w(k)dak.

Furthermore,we substitute n-k by -k’in each integral of the
second part and we get

[ ( § -k + 1y )B(k)exp(- ik d’k
R3 u=1

A
= Z I ( i ia:BH- a:)W(n+k')exp(-ik'x)d3k'.
nez® R® ¥°
By again interchanging summation and integration on the rhs we
have
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J' ( i -1k 3, + Ay ) (k) exp(-ikx)d’k

R3 =1

f Y ( in“s ; a°)w(n+k)exp( ikx)d’k .
R3 nez

According to the conditions of the proposition is the first
term of the last equaticn a spinor whose components are in L2.This
entails the same property for the rhs of the last equation.

Consequently,we immeadiately from the last equation the relati-
on:

(-i i k3, + )ik

) (ii s, - ag )i(n + k).
nez
Applying transformation 7 (defined in Remark 2) on the last
equation and using afterwards Remark (2) on every term of the
second part,we obtain

r{ ( -iuilkuau + y)(k) }

n+l

-y I (15: aks - ap )(aaaw)(s+k)d3s &

nez’n B

Introducing oa"(see definition of o) in the second part of the
equation we have:

T{( -iuzlkuau ' xy")ﬁ(k)}

n+l
=) J' ( 12 (aa“)6 aa°)(a 3,8 lll)(s+k) d’s.
nel n

We apply Remark 2 on the lhs and Remark 1 on the rhs we gwt im-
mediately equatlon 2.2.

B) Let W be a solution of equation 2.2. Carrying out the
substitution s=-x in the integral of the lhs of 2.2 and using
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Remark 2,in the rhs we obtain:

J[ N ia (03") (-x) +(0a%)(-x)] (alazaﬁ)(k - x)d’x
R p=1 ¥

. 0o A
= T([ luzlk"a“ - ky JU¥(k)}

Next,we multiply the equation with exp(-iks) and integrate on
R®.The following result is obtained:

J’ ( j [-i i 5 (0a") (-x)+(0a°) (-x)](8.8,8.9) (k-x)d°x) exp( - iks) d’k=
3 3 et "} 123
R R

= I T([ i i ks - ky° ]l?l(k)) exp(-iks)d’k. 3.3
23 WLy
Now,we observe that,according to the condition of the proposition
A
xlxzxawve L% and it follows that the components of alazasw are
elements of LZ.
The same holds true,also,for the components of -i i 6u(aa")(-x)
=1
+(0a%) (-x).The last assertion is obtained in the following way:

1

From au € Fm

3)11'. follows,according to Remark 2.3,that
aaue IM;c ILlcle

It follows,therefore,that the components of -i 6u(aa“)(-x)
=1

+

(0a%) (-x) will be elements of L?,since they are linear combinations
of oa",u=0,1,2,3. Consequently,we can apply the convolution theorem
on the first part of equation 3.3:

[ ]t $ 5 (02") (-x)+(02") (-x)1(8,3,8.9) (k-x)d"x) exp( - iks) &’k
3 3 = " 123
R™ R

-[ i i 5 (0a") (-k)+(0a") (k) Jexp(-iks)d’k
3 =1

R
A 5 3
xj (8,8,8,0) (K)exp(-iks)d’k 3.4
3
R

We observe that,if we make the substitution k=-t in the
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integrals of the rhs and subsequently we use Remark 4 we get:

[KE! 5 5,(0a") (-K)+(02’) (-K) Jexp(- iks)d’k
R3 u=1

.I ¢-1 i 5u(qa“)(t)+(aa°)(t))exp(its)dst
R3

u=1

[exp(is,)-1][exp(is,)-1][exp(is,)-1]

%%y

x( iﬁua"(s) +ia’%(s)). 3.5
u=1l

For the other integral of the rhs of 2.9 there holds true ac-

cording to the property of Fourier transforms

A
8 w(s)-[-ik W(k)exp(-iks)d’k.
H 3 H

R
A R . '
L(alazasw)(k)exp(-us)d’k = -is 5,5 U(s). 3.6

R
On the other hand, using Remark 5 and basic properties of

Fourier transforms we obtain from the rhs of 3.3:

i i k5 - y"J0(K)) exp(-iks)d’k
R3 W= "l

3 0\ 3
={ 11 [exp(is )-1])f {i i kd - y)¥(k)exp(-iks)d'k
v=1 v R3 u=1 M
3 ) .
= (m [exp(is,)-11}((- i 5,9, Y)¥(s)) 3.7
v=1 u=1
Due to the relations 3.4-3.7 equation 3.3 becomes:

3
(1]1 [exp(isl)-l])( i 6u(au-ia") + k°)U(s) =0 3.8
=1 p=1

Let there hold

3
f(S):=(ln [exp(is,))-1]}
=1
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a(s):= ( iau(au-ia") + 1" )u(s)
u=1

El:- {(Znn,sz,sa) tnez ; $,08, € R},

E,:= {(sl,Znn,sa) tneZ ;5,8 € R},
E,:= {(sl,sz,Znn) *nelZ ;s,s, € R},

E:'EIUEzufs.

Obviously the set of solutions of equation f(s) = 0 in R® is
identical with the set E. Consequently,from equation 3.8 e obtain
for every s € R°- E valid the equation:6(s) = 0.
Since,now,obviously R*-E is dense in R® (with respect to the phy-
sical topology of R’) and 0 is continuous in R® (according to the
conditions of the proposition) we have: 8(s) = 0 for every s e R.

IV FURTHER SPINOR PROPERTIES-PROOF OF THE THEOREM I

A
a) Since W is a solution of equation 2.1 spinor W will be soluti-
on of 2.2 (according to proposition I).Then:

[r-i i&u(aa”)(x) +(02) (0] (2,2,0,0) (k + x)d’x
3 =1
R
k+1 A
’ . 0 . 3y
- J 316263([1ui1ku6"-v (k")) d’k 4.1
K =
placing in (14) k+n ,in place of k for every n e z°,we obtain:
I[ -i iGu(aa“)(x) +(aa°)(x)] (alazaaﬁl)(k+n+x)d3x =
3 =1
R

k+n+1
-]

" . 0,0, 3, -
alaZaB([luZIkusu - 10k’ )) d’k 4.2

k+n
Summing the equations 4.2 part by part for every n e Z°,we

obtain:
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Y J' [ -i i 5 (02") (x) +(0a%) (x)] (2, asﬁ)mmx)d“‘x =
nel IR

-3, ]

nez® k+n

k+n+1 ) i . 0A e
alazaa([1u-lku6u- I(k))dk -

(Using Remark 1 on the rhs)
y I [ -i i 5,(0) (x) +(0a") (x)] (5,8,2,8) (kemex)d*x
nez’ R®

18283([1 f: k'S, - w°10(K)) ¢k’

Performing integration on the rhs of the last equation ,bcause of
condition 2.4,weobtain that the value of the integral is 0.
Consequently the last equation becomes:

) J’ [-i i 5 (aa")(x)+(aa )(x)1(2,8,0 w)(k+n+x)d x=0 4.3

nez’r® V7!
Multiplying (16) with exp(-iks) and integrting on R®,we have:

SRS 1i6(oa)(x)+(aa)(x)1
rR® nez® R® ¥°
x(alaZBSQ)(k+n+x)d3x)exp(-iks)d3k =0

Interchanging the outer integral with the sum we obtain (see
Appendix):

NSRS ia(oa")(xmaa)(x)]
nez’ R R’

x(alazaal?l)(k+n+x)d3x)exp(-ks)d3k =0.

Applying the substitution m+x=-r in each inner integral,we obtain
the following form:
Y [(jniwa“)( -n-r)+(0a’) (-n-r)]
nez’® R®

x(alazaaw)(k r)d®r) exp(-ks)d* k=0
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The convolution theorem used in every term of the sum,we obtain:

Yy | [-1 5 5 (02%) (-n-K)+(0a) (-n-K) Jexp( - 1ks) &’k
nez’ g 41"
8,0.6.0) (k)exp(-iks)d’k = 0.
x £3< 12,2,9) (K)exp( - iks)

Introducing in every lhs factor of each term of the sum,the
substitution -n-k=t,there holds true:

y [exp(ins)-l]I [-1f 5 (0a") (t)+(0a?) (t) Jexp(its)d’t
nez’ R we1

xJ. (alazaﬁ)(k)exp(-iks)dat - 0.
RS

Because of relations 3.5-3.6 of proposition I we immediately
obtain relation 2.5 .
B) The continuity of a*,¥,and the relation 2.5 imply that:

{iSa"+ia°)w-0 4.5
p=1 ¥
From equations 2.1 and 4.5 we immediately get:
( iaa + i’ )u=o0.
w1 U
Inserting in the last relation
W= (2n)32 I (k) exp(-ikx)d’k ,

. R3
we obtain

J

According to the pressupositions of the theorem,it is evident that

) (k3 + 1 YB(k)exp(-ikn)d’k = 0 4.8
=1

the components of ( i -iku6u+-xv° )ﬁ(k) are elements of LZ.
p=1

Thus, from relation 4.8 we have:

. 0 yA
( uil-uuau + Ky JU(k) =0
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- ( iik& -t ) ( 2-11(6 +xy° )0(K) = 0
u=1 H U W=l [
Performing the multiplication and using the relations
; o1 o 50 4 05 .
5u6v+ 6v6u--vuvv- ¥, - 0,if p = v; Buﬁu 1; Guv +y 6u 0

we have:

( i ki - k)b

u=1
Considering that spinor ¥ is continuous in R®,it follows from

the last equation that:
A
V=0, » U=0

Corollary:
If the components of the solution W of eq.2.1 are elements of
the S-space of Schwartz,then ¥ = 0.

Remark 6

If the solution W of 2.1 does not obey the constraints 2.3-2.4
of theorem I but it satisfy the conditions of proposition I,then ¥
can be different from zero.

APPENDIX
a) We give here the proof for the possibility to interchange the
integration and the summation in the expressions after 3.2.

j ( Z ( i 5. - 2% ))¥(k)exp(i(n-k)x)d*k =
R nez’

=¥ ( i ats, -af) Iexp(l(n K)x)U(k)d k.
nez’
Proof:

Let b;,b;,b;,b4 be the components of Spinor

o:=( Y i 5.2, - ap )) (k)
3 u=1

According to a well known theorem of integral calculus,the
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integral of the first part willbe commutativ with the sum,if ishow
that:

z |b;exp(i(n-k)x)| < o dnhadi z |b;| <w vyiav=1,2,3,4.

nez’ nez’
I will show the above eniquality only for v=1,since the proof for

v=2,3,4 is exactly identical: Performing the arithmetic evaluation
1 find that the component b1 of Onls

1 1 A a3 o o N
bn =-a v, W + 1a W a, ﬂg -, wl
> Y | s|lll|2|a|+|lll|z
nel nel nel
+|w|z|a|+|w|z
neZ nel

With the pressuposition of the proposition: w are bounded in

R’ and ae F(z g that is z |a | < w,we have Z|b | < .

B) The commutation of the integral with the sum in the relation

j ( i 285, - ab Jh(nek Jexp(-1k x)dK’
nez’ R *°!

is proven identically.

y) It will be shown that the integral of the following expression
commutes with the sum

[ (L [ri i 3, (02") (x)+(02") (x)]
R nEZ R
x(alazaalll)(k+n+x)d *x) exp(-iks)d’k.

Proof:

Let A1 A2 A3 A4 be the components of

(y J’ [-i i 5 (aa”)(x)+(aa )(x)1(2,,0 w)(k+n+x)d *x)
nez® R® 7!
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1 p2 p3 pé
and Bn’Bn’Bn’Bn the components of

I -Ik+n+l

. . 0 A, 3, -
616283([1 21ku6u-xy 19(k’))d’k
k+n g
The commutation of the sum with the integral is possible,if we

can prove that

z |A;exp(-iks)|<o
nez
» ) Al <@ forv=l,2,3,4 :
nez’®
It is sufficient to show the last inequality for v=1 (since for
v=2,3,4 the proof is identical)
From relation 4.2 of the theorem we obtain:
Ap - By for neZ Al

Evaluating the integral I we obtain:

L A A
B, -j (-3,8,8,(k7U,)+i8 8,8 (K’U,)
k+n

LA A,
-8,8,8, (k;¥.)-x0,0,0.¥ )&’k A2

Substituting (20) in (19) and suming,we have;

PDRIEA

3

nez
k+n+l A LA
’Z 3| J (-0,0,8,(k ¥, )+i8 8.8 (k¥ )
nez” k+n
880 (k¥ ¥ )d’k’
9% 3( 3 3)'Kaxazaa 1)d |
k+n+1 A A A :
sy I (lo,8,5,(k;¥,) [ +]0,0,0.(k:U,) |+],8,8, (k)|

nez® kn

2880 |1k’
+ | K 2, 3W1|}d k

(because of Remark 1)
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. IA IA IA
< J'3{|616263(k1w4)|+la13283(kzl|l4)|+|616233(k3w3)|
R

0 )k
+|k0,8,0V |} <w

due to the condition 2.3 of the theorem.
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