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Abstract 

The form factor and the density distribution of the 4He nucleus are cal­
culated approximately using the Morse single-particle potential. The pa­
rameters are determined by fitting the theoretical charge form factor to the 
corresponding experimental data of the elastic electron scattering by 4He 
which are extended to large values of the momentum transfer. The correc­
tions due to the center of mass motion (in the fixed center of mass approach) 
and of the finite proton size have been taken into account. The calculations 
can be performed partly analytically and the results show a considerable im­
provement with respect to those obtained with the oscillator shell model. 

Introduction 

The study of the charge form factor of 4He [1-3] has received consider­
able attention by quite a number of authors who used various theoretical 
approaches . One of the main reasons is the simplicity of this nucleus. More­
over, it is one of the very few nuclei for which the charge form factor has 
been measured in a very wide range of momentum transfers. 

Among the methods which have been used in calculations of the form 
factor of nuclei, those based on many-body techniques are usually the most 
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satisfactory ones. They are, however, more complicated than those based 
on single-particle models. As is well known, the disadvantage of the latter 
is that, one cannot fit with such a model both the form factor and the 
momentum distribution. Thus, if the parameters are determined by fitting 
the theoretical charge form factor to the corresponding experimental results, 
the values of the momentum distribution are not expected to agree well with 
the experimental values of it [3,4]. Nevertheless, the choice of the single-
particle potential seems to play an important role in improving the results 
and diminishing the above mentioned difference between the calculated and 
experimental values of T/(Ä:). This is clear if a strong short range repulsion is 
included in the potential. If for example a potential of the form [5] 

V(r) = -Vo + \kr2 + ^, 0 < r < oo (1) 

k > 0, Β > 0 is used, then a considerable improvement is mostly observed 
not only for the form factor but also for the momentum distribution. 

A characteristic of the potential (1) is that it has an "infinite soft core" 
near the origin, which seems to be an extreme . It is more natural to expect 
that there is a repulsion in the single-particle potential near the origin, as for 
example relativistic Hartree calculations indicate, but not with an infinite 
behaviour near the origin. Thus, a potential of the Morse type [6-12 ] which, 
as is well known, has many applications in Physics, seems to be a rather 
good candidate for the single-particle potential of a light nucleus. In fact the 
first preliminary work in using the Morse potential in calculating the form 
factor of 4He was made in ref. [9]. The disadvantage is that the Schrödinger 
eigenvalue problem can be solved analytically only for the s-states for this 
potential. Therefore, it is not so convenient to be used for heavier nuclei if 
one wishes to take advantage of its analytic properties. 

The object of this paper is to report on our first results in using the Morse 
potential in calculating the charge form factor of 4He by further extending 
the work of ref. [9]. In a subsequent investigation improvements will be 
made and also the interesting problem of the calculation of the momentum 
distribution will be discussed. In the next section the notation is specified 
and basic formulae regarding the Schrödinger eigenvalue problem with the 
Morse potential are given and discussed. In section 3, the expressions of the 
density distribution as well as of the form factor are given. The final section 
is devoted to numerical results and comments. 
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2 The approximate single-particle ground state wave function. 

The well -known Morse potential is given by the following expression: [6] 

V(r) = D[e-2a{r-To) - 2e- a ( r- r o )] =-D + D\\ - e ^ - ' « ) ] 2 , 

0 < r < oo (2) 

It has its minimum value (—D) at r = r0, tends assymptotically to zero as 
r —• oo and is repulsive near the origin taking the value De2ar°(l — 2e"ar°) at 
r = 0. The corresponding radial Schröndinger equation for the s-state wave 
functions (pno(r) = rRn0(r): 

flpP. _ ^[D{e-2a(r-r0) _ 2e~a(r-ro) _ ^ (|>) = Q (3)> 

may be solved analytically. The approximate solution is 

Ψ* 
,(r) = i V n o e - d e ~ e ( r " r 0 ) e - t W - 2 n ~ l ) ( r - r 0 ) . L2d-2n_-l^2de-a(r-r0)^ ^ 

where L are the generalized Laguere polynomials and Nno is the normaliza­
tion constant [6]. Also d is given by the expression: 

h2 a 

and η is an integer in the interval 

i=e' m. 

_ (2d — 1) 

The approximate energy eigenvalues are given by the expression 

En0 = ~a%{2d -1 " 2 n ) 2 = ~D + Αωο(η + 5} " ( Ί ^ ) ( η + \)2 (6)' 

where ω0 is the angular frequency of classical small vibrations around r 0 : 
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α;0 = α — ) » 7 , 
μ 

The ground-state radial wave function in which we are interested here is 

given by the expression: 

M r ) = Nooe-de-a(r-ro)e-^2d-^r-^ (8), 

where the normalization constant N00 is given in terms of the parameters a 

and d , 

,a(2d)2d-1., 

As it was stated, the above expressions for the wave functions and energy 
eigenvalues are approximate. The reason is that they were derived under the 
assumption that the wave function φ is zero when r —• — oo and not at r = 0, 
which is the appropriate boundary condition. The exact wave function may 
be also obtained [7,8], but in this case the energy has to be determined by 
solving numerically a transendental equation. Work in this direction is in 
progress. 

3. Expressions for t h e density distribution and the form factor 
of AHe. 

In this section we give the expressions of the density distribution and the 
form factor of 4H e. 

The normalized to unity (f p(r)d?r = 1) density distribution for central 
single-particle potentials is given by the general expression 

PW = ï^En/2(2/+l)iÇ,(r) (10). 

In the case of the AHe we have simply 

p(r) = j-n\Roo(r)\2 (11) 

The point-proton form factor in the Born approximation and for spherically 
symmetric p(r) is: 
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F(q) = 4π Πp(r)(S-^)r2dr (12) 
7 ο qr 

In the case of 4He we have 

F(q) = r |Aoo(r) | 2 (^Vé· (13) 
Jo qr 

The proton charge form factor is introduced using the Chandra and Sauer 
parametrization [13] 

/p(«) = Σ · = Λ · ^ (i4) 
where 

APl = 0.506, AP2 = 0.327, AP3 = 0.165 

and 

α ρ ι = 0.431/m,aP2 = 0.139/m,aP3 = 1.525/m 

The center of mass correction in the Form Factor of 4He is taken into 
account, using the "fixed center of mass correction" of Radhakant-Khadkikar-
Banerjee [14]. Thus, the expression of the form factor corrected for the center 
of mass motion is: 

F{q) " JWH ( 1 5 ) 

Therefore, the theoretical expression for the charge form factor is: 

Fch(q) = fp(q)-F(q) (16) 

The above formulae read as follows for 4He, if the approximate wave-

function of the Morse potential is used, 

q 1 [Za — 1) J ο r 

175 



The integration in (18) is performed numerically. 

4. Numerical Results and Comments 

Calculations of the charge form factor, and of the point-proton (or body) 
and charge density distributions were performed for 4He using the approx­
imate solution of the Schrödinger equation. The potential parameters were 
determined by the least-squares method by fitting the theoretical expression 
of the charge form factor to the experimental data of the elastic electron 
scattering by 4He. We used the same experimental results (which are ex­
tended to large values of the momentum transfer), used in ref. [5] as well. 
The potential parameters obtained are: 

α = 1.6897/m"1, d = 1.1134, r 0 = 0.9095/m (19) 

In figure 1 the variation of log\Fch(q)\ with q2 for 4He is plotted (full 
line). The experimental points are indicated by crosses. Notice that the 
curve fits the experimental data very well. Also, in the same figure, we 
give the results obtained using a harmonic oscilator potential with potential 
parameter b = 1.432/ra (dashed curve). This seems to be in fairly good 
agreement with the experimental data at the small values of momentum 
transfer. 

The body density distribution of 4He was calculated also, using the ap­
proximate wavefunction with the potential parameters given above. The 
corresponding curve is shown in figure 2. 

It is seen that the approximate analytic expression for ΡΒ{Τ) is not good 
for a small region near the origin (r <£, 0.2/m) as is expected. The pro­
nounced dip of the point-proton density at small r is due to the short-range 
repulsion of the Morse potential. This is largely smeared out in the charge 
density (dashed line in fig.2) because of the proton charge density. 
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