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Abstract

The form factor and the density distribution of the * He nucleus are cal-
culated approximately using the Morse single-particle potential. The pa-
rameters are determined by fitting the theoretical charge form factor to the
corresponding experimental data of the elastic electron scattering by *He
which are extended to large values of the momentum transfer. The correc-
tions due to the center of mass motion (in the fixed center of mass approach)
and of the finite proton size have been taken into account. The calculations
can be performed partly analytically and the results show a considerable im-
provement with respect to those obtained with the oscillator shell model.

Introduction

The study of the charge form factor of *He [1-3] has received consider-
able attention by quite a number of authors who used various theoretical
approaches . One of the main reasons is the simplicity of this nucleus. More-
over, it is one of the very few nuclei for which the charge form factor has
been measured in a very wide range of momentum transfers.

Among the methods which have been used in calculations of the form
factor of nuclei, those based on many-body techniques are usually the most
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satisfactory ones. They are, however, more complicated than those based
on single-particle models. As is well known, the disadvantage of the latter
is that, one cannot fit with such a model both the form factor and the
momentum distribution. Thus, if the parameters are determined by fitting
the theoretical charge form factor to the corresponding experimental results,
the values of the momentum distribution are not expected to agree well with
the experimental values of it [3,4]. Nevertheless, the choice of the single-
particle potential seems to play an important role in improving the results
and diminishing the above mentioned difference between the calculated and
experimental values of n(k). This is clear if a strong short range repulsion is
included in the potential. If for example a potential of the form [5]

V(r):-—%+%kr2+7—g, 0<r<oo (1)
k>0, B > 0isused, then a considerable improvement is mostly observed
not only for the form factor but also for the momentum distribution.

A characteristic of the potential (1) is that it has an ”infinite soft core”
near the origin, which seems to be an extreme . It is more natural to expect
that there is a repulsion in the single-particle potential near the origin, as for
example relativistic Hartree calculations indicate, but not with an infinite
behaviour near the origin. Thus, a potential of the Morse type [6-12 ] which,
as is well known, has many applications in Physics, seems to be a rather
good candidate for the single-particle potential of a light nucleus. In fact the
first preliminary work in using the Morse potential in calculating the form
factor of He was made in ref. [9]. The disadvantage is that the Schrodinger
eigenvalue problem can be solved analytically only for the s-states for this
potential. Therefore, it is not so convenient to be used for heavier nuclei if
one wishes to take advantage of its analytic properties.

The object of this paper is to report on our first results in using the Morse
potential in calculating the charge form factor of *He by further extending
the work of ref. [9]. In a subsequent investigation improvements will be
made and also the interesting problem of the calculation of the momentum
distribution will be discussed. In the next section the notation is specified
and basic formulae regarding the Schrodinger eigenvalue problem with the
Morse potential are given and discussed. In section 3, the expressions of the
density distribution as well as of the form factor are given. The final section
is devoted to numerical results and comments. .

172



2 The approximate single-particle ground state wave function.
The well -known Morse potential is given by the following expression: [6]

V(T‘) — D[e—2a(r—rg) _ 2e—a(r—ro)] =_D + D[l _ e—a(r—'ro)]fz’

0<r<oo (2)
It has its minimum value (—D) at r = ro, tends assymptotically to zero as
r — oo and is repulsive near the origin taking the value De?*™ (1 ~2e7%") at
r = 0. The corresponding radial Schrondinger equation for the s-state wave
functions @n, (1) = rRy, (r):

d2 no \T 2 —2a(r—r —a(r—T
Lonlt)_Bip ) _geme) - Blg () =0 (@)

may be solved analytically. The approximate solution is
(Pno(r) = Nnoe—de—a('-'o)e_%(zd—2n—1)(r—ro) X Lﬁ:iﬁ—ll(zde—a(r—ro)) (4),

where L are the generalized Laguere polynomials and Ny, is the normaliza-
tion constant [6]. Also d is given by the expression:

2uD ..
d=(33)" (5),
and n is an integer in the interval
0<n< (2d2—— 1)

The approximate energy eigenvalues are given by the expression

2,2
h*w§

. 1 2
2)n+5) (6),

h? 1
EnO = —a2@(2d -1- 271)2 = —D + th(TL + 5) = (

where wp is the angular frequency of classical small vibrations around ro:
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2D
T) (7)’

The ground-state radial wave function in which we are interested here is
given by the expression:

[N

wo = af

(POO(T) = Nooe_de_a(r_ro)e“%(24-1)(7'-1-0) (8),

where the normalization constant Ny is given in terms of the parameters a

and d ,

2d—1
Noo = (22073 (9).
(2d-1)
As it was stated, the above expressions for the wave functions and energy
eigenvalues are approximate. The reason is that they were derived under the
assumption that the wave function ¢ is zero when r — —oo and not at r = 0,
which is the appropriate boundary condition. The exact wave function may
be also obtained [7,8], but in this case the energy has to be determined by
solving numerically a transendental equation. Work in this direction is in

progress.

3. Expressions for the density distribution and the form factor
of ‘He.

In this section we give the expressions of the density distribution and the
form factor of ‘He.

The normalized to unity ([ p(r)d®r = 1) density distribution for central
single-particle potentials is given by the general expression

p(r) = =3, 2020+ DRY(r) (10).

In the case of the *He we have simply

plr) = 1= Roo(r) (11)

The point-proton form factor in the Born approximation and for spherically
symmetric p(r) is:
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Flg) = 4 [ o)y (12)

In the case of *He we have

/ |Roo smrqr) 2y (13)

The proton charge form factor is introduced using the Chandra and Sauer
parametrization [13]

3 _%T
folg) = Z;=1Ame * (14)
where
Ap, =0.506, Ap, = 0.327, A,, = 0.165
and

p = 0.431fm,a,, = 0.139fm,a,, =1.525fm

The center of mass correction in the Form Factor of *He is taken into
account, using the "fixed center of mass correction” of Radhakant-Khadkikar-
Banerjee [14]. Thus, the expression of the form factor corrected for the center
of mass motion is:

JPwF (| + 6|) F(w)

o 1
Py = Il (15)

Therefore, the theoretical expression for the charge form factor is:
Fu(q) = fo(q)- F(q) (16)

The above formulae read as follows for *He, if the approximate wave-
function of the Morse potential is used,

1 1. a(2d -1 ~2de—(r=10) _a(2d=1)(r-r
p(r) = pa(r) = ——2[‘1‘((2d)— Tyle pei R N 1

1 a(2d)2d 1 °°1 _gd,—ﬂ(f—fo)

F(q) — [__(_éd____]j sin(qr)e-a(2d—1)(‘r—ro)dr . (18)
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The integration in (18) is performed numerically.

4. Numerical Results and Comments

Calculations of the charge form factor, and of the point-proton (or body)
and charge density distributions were performed for *He using the approx-
imate solution of the Schrodinger equation. The potential parameters were
determined by the least-squares method by fitting the theoretical expression
of the charge form factor to the experimental data of the elastic electron
scattering by *He. We used the same experimental results (which are ex-
tended to large values of the momentum transfer), used in ref. [5] as well.
The potential parameters obtained are:

a=1.6897fm ™, d=1.1134, ro=0.9095fm (19)

In figure 1 the variation of log|F.x(q)| with ¢® for *He is plotted (full
line). The experimental points are indicated by crosses. Notice that the
curve fits the experimental data very well. Also, in the same figure, we
give the results obtained using a harmonic oscilator potential with potential
parameter b = 1.432fm (dashed curve). This seems to be in fairly good
agreement with the experimental data at the small values of momentum
transfer.

The body density distribution of *He was calculated also, using the ap-
proximate wavefunction with the potential parameters given above. The
corresponding curve is shown in figure 2.

It is seen that the approximate analytic expression for pg(r) is not good
for a small region near the origin (r < 0.2fm) as is expected. The pro-
nounced dip of the point-proton density at small r is due to the short-range
repulsion of the Morse potential. This is largely smeared out in the charge
density (dashed line in fig.2) because of the proton charge density.
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