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Abstract

The root mean square radii of the A-particle orbits in hypernuclei are
calculated semi-analytically for every bound state, using the Dirac equation
with a scalar potential Ug(r) and the fourth component of a vector potential
Uy(r) in the case of rectangular shapes of these potentials with the same
radius R.In addition an analytic expression of the expectation value of the
corresponding potential energy operator is derived. For the above quantities,
expressions of the energy eigenvalues in terms of the potential parameters
are needed and approximate formulae may be used, in certain cases. The
variation of these quantities with the mass number is also investigated and
numerical calculations are performed.

1. Introduction

As is well known, various problems in nuclear and hypernuclear Physics
are traditionally studied using the Schrondinger equation [1-6]. In the last
decades,however, a trend has been developed in using also the Dirac equation
for such studies, [7-16], which has certain advantages. Relativistic effects in
nuclei and A-hypernuclei are known, however, in most cases to be very small.

In the present paper we follow a phenomenological relativistic treatment
in order to calculate analytically the root mean square radii of the A-particle
orbits in hypernuclei, for every bound state, assuming that the A-nucleus
potential is made up of an attractive component Us(r) and a repulsive com-
ponent Uy(r), both of rectangular shape with the same radius. An analytic
expression of the expectation value of the A-particle potential energy operator
is also given, for every bound state. In all these calculations the knowledge of
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the binding energy B, of the A particle in hypernuclei in every bound state
is needed. A feature of the Dirac eigenvalue problem with such a potential
is that it can be solved ”semi-analytcally”. The large and small component
wave functions are given analytically in terms of the mass of the particle,
the potential parameters and the energy. The energy eigenvalue, however,
is given implicitly, that is through the eigenvalue equation which has to be
solved numerically. Nevertheless, approximate formulae for B, in terms of
the potential parameters may be obtained in certain cases, [15].

The arrangment of this paper, in which we give our preliminary results
of the treatment described earlier, is as follows. In the next section, the ba-
sic formulae used are exhibited and the derived analytic expressions for the
above mentioned quantities are given. In the final section, numerical results
are given and disscussed.

2. Basic formalism and analytic results

It is assumed that the average potential between the A-particle and the
nucleus is made up of an attractive scalar relativistic single particle potential
Us(r) and of a repulsive relativistic single particle potential Uy (r) which is
the fourth component of a vector potential and that the differential equation
describing the motion of the A-particle in hypernuclei is the Dirac equation

[c&- F+ Buc® + BUs(r) + Uv(r)lp = Ey (1)

where @ = (a1, @3, a3), B are the Dirac matrices. F is the total energy (i.e.

E = —Bp +uc?, By being the binding energy of the A-particle) and 1 is the

Dirac four-spinor.( We are using the formalism outlined in refs [8-10])
Instead of the potentials Us(r) and Uy(r), the potentials

Ug(r) = Us(r) £ Uy(r) (2)

are used, which are both attractive. We consider the case in which U, (r)
and U_(r) are rectangular wells having the same radius R and depths D,
and D_, respectivelly i.e.

Us(r) = —=Di[1 - ©(r — R)] (3)

where O is the unit step function and R = roA}:/3 . A, is the mass
number of the core system. In such a case the generalized Dirac equation
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with the rectangular well potentials we are discussing may be solved ” semi-
analytically”, for every bound state [14]. We find it more convenient, how-
ever, to express the large and small component wave functions in terms of
the spherical Bessel j; and the spherical MacDonald functions k; instead of
the spherical Hankel functions. The expressions of G and F may then be
written:

G(r) = Nnr [[1 — 0(r — R)ji(nr) + O(r - R) J’((:Olg) (nor)] (4)

1
~Bp + 2uct— D_
1 Ji(nR)
—Ba + 2uc? ki(noR)

while the energy eigenvalue equation becomes

F(r) = Nnch|[[1 - ©(r — R)] [nrjic1(nr) + (k = Dzi(nr)]

+O(r — R) [~norki_(nor) + (k — Dki(nor)]]  (5)

e B noRki_1(noR)  (k—=1)D_ + nRji-1(nR) (6)
2uc? — By ki(noR)  2uc? — By Ji(nR)
In these expressions the quantities n and ng are defined as follows:
2u 2\—1 12
n = 25Dy = Ba)(1 - (D- + Ba)(2uc) )] ™)
2p 2y~1 o
no = [5[Ba(1 - Ba(2uct) ™) (8)

The quantum numbers in G, F,Bj and N have been suppressed.
The normalization constant N is calculated using the following normal-
ization condition

L6 + Frriar = 1 )

After using the expressions for the radial components G(r) and F(r) of the
wavefunction, which were given above, we find for the normalization constant
the following formula

_ 1 j2(nR) R3
n 'k} (noR) 2

R3
~ k-1 (noR)kia (noR) — —-ji-1 (nR)jia (nR)+
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c2h? n?R3

(2“02 _ BA — D_)2 . [_ 9 ]l—2(nR)]I(nR)+
n*R3 9 (k- 1)2 3
—5 Jiaa(nR) = 5 Rit(nR)l+
c2h? ]f(nR) n§R3

Bad —Bay BnoR) | 2 -2(meR)ki(noR)—

n2R? (k=1)? _
STy (noR) + - REF(noR)J} 2 (10)
It is interesting to note that the normalization constant in the non-relativistic

limit, that is omitting terms of the order (uc?)~! and higher reduces to the
expression

1212 j(nR)

nr = ;Rm[k?(noR) ki_1(noR)kiz1(noR) — ji-a(nR)jia (nR)) V2 (11)

given by Sitenko [17] for the nonrelativistic square well case.
The root mean square radii of the A-particle orbits in hypernuclei for
every bound state are obtained by means of the expression

<>l /0 " P2GH(r) + F(r))dr}"? (12)

since G and F' are normalized, by means of condition (9). Calculating the
above integral,(using expression (10) for the normalization constant), the
following lengthy formula for < r? >1/2 is derived:

s> T OEINBD (R (nB) + (/23R +
(/2 (s (F) = i (nR)) — 22y

D+ = BA
2uc?(1 — (By/2uc?) — (D- [2uc?))

=) i almRY(R) + (1/2)i4 (mR))

2n?R?
Jjiz1(nR)
nR

[

((1/2)(ji-2(nR) = ji(nR)) — )’ +Jiy (nR)+
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3(k—1)?
2R2
3(’“2R2’) [(20 + 1)(ji-2(nR) — ji(nR))+
(20 —1)(2 +1)
T mRr

g((:oflzi)) [(2l +2?13§(}2i’i = (—ki-1(noR)kis1(noR) + (1/2)k{ (noR))+

———"(—jiz1(nR)jis1(nR) + jf (nR))+

(4- )2l = 1)j4 (nR)]]+

k((noR)

((1/2)(ki=1(noR) + kig1(noR)) + o )%+
By i(nR) (21 +1)(21 -3

2pc?(1 — (Ba/2uc?)) kf(noR)[ 2n2 R?

) (— kl_g (TIQR) IC[ (TI.QR)+

k1_1 (noR) 9

(1/2)k7_1(noR)) + ((1/2)(ki—2(noR) + ki(noR)) + R )

2
klz—l(”oR) + :‘3—:3——1{2[_)
3(k-1)
4niR?
(2l-1)(21+1)
niR?

(ki-1(noR)ki1(noR) — kf (noR))—

[(20 + 1)(ki—2(noR) + ki(noR))*—

(4+ )(21 = 1)k, (no R}

{ ’:;((nl;;)) ki_1 (noR)kip1(noR) — ji_1(nR)jis1 (nB)+
Dy =By

2uc*(1 — (Ba/2uc?) — (D-/2uc?)

" (k=10 2 .
Jl-l(nR)_ 2l+1 2R2]lz

‘[~5i-2(nR)ji(nR)+

(nR)]+
BA (nR)
2uc?(1 — (Ba/2pc?)) kz(noR [kl— (noR)k(noR) — ki_y (noR)+
(k — 12 2k2(noR)
20+1 n2R?

e (13)
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In view of the complexity of the above expression, approximate formulae
for the root mean square radii of the A-particle orbits in hypernuclei for every
bound state were obtained by using the following asymptotic forms for the
spherical Bessel and MacDonald functions

i) 2 —i;cos(z —(1/2)(1 + 1)r), (14a)

-1 o
kl(:r) ~ _Em_ge—(z+(1/2)zl1r+(z/2)1r) (14b)

One of these expressions is

1 1

<r? >y u + [cos(QnR—l7r)+sin(2nR—l7r)%] (15)

T 312 2ng31/2 2031/
If we set n

p= arccot-;o (16)

and write R as a function of A, in the first term, we have
<2 512 roAl/3 1 1 sin2nR-lIr+¢) a7

- 312 2ng31/2  2ny31/2 sinp
Observing that the ratio

sin(2nR — It + @) (18)

singp

can be approximated by a constant Cn;, (where N is the principal quantum
number N =1,2,...), one obtains the simple approximate formula

o 1—-Cwnm
. ﬁAi/a (2n03l/2)
for the lower bound states. From this formula one can deduce immediately
the almost linear behaviour of the curves < r? >1/2 versus Al/3 for the heavier
hypernuclei. (We note by, that in the above formulaif /=0, Cy = —1.2. If
I=1,Cu=-14,etc)
Another approximate expression which may be derived from (15) is the
following

(19)

[
< r? > —r——[l + Sin(_ﬂ) - COS(IW)(D*F
47" By

0 1/2 D 1/3
-1 sy e
31/2 4 ) (1 4#62 )]AC +
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Wyfg—pg)m[l?'m(l it s1'71(1—7r) (3—;- T, l7r)cos( e
(D4 — Ba )_1/2((—‘ = lr_r + l7r)sm( Y cos( ) D' )] (20)

For the ground state (I = 0) all the expressions for the root mean square
radii go over to those given in ref [16].

We have calculated also the potential energy of the A-particle in every
bound state.The potential energy operator is of the form

V(r) =pUs(r) + Uv(r) (21)

The expectation value of V(r) for the rectangular potentials considered here

is

—~Dy JRG¥(r)dr + D_ [R F*(r)dr
(G (r) + F*(r)ldr

Using the normalization condition and the normalization constant we find

for the potential energy the expression

<V(r) >= (22)

< V(r) >= {=Ds[~ji-1s(nR)jia (nR) + 57 (nR)]+

5 D, - By .
" 2uc*(1 — (Ba/2uc?) — (D-/2uc?))

[iam R R) + 34 (n) — S22
3 ()

{ k,z(noR)

ki1 (roR)ki1(noR) — ji-1(nR)jipa (nR)+

D, — By _
2uc?(1 — (Ba/2uc?) — (D-/2pc?))

. . . (k=17 2
[—]l-z(nR)]l(nR) + .712—1 (nR) - 20 +1 2R2J’

[ (nR)+

By jinR) ,
TR~ (Ba [20) o) "o R (o f) = K (no)+
) )
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In the non-relativistic limit the above expression goes over to the expression

k[_l (noR)kH-l(nOR) _ )
Rnor) )

<V(r) >= =Dy + {Dy + jH(nR)(

ki-1(noR)kit+1(noR) pe

{ji1(nR)ji1(nR) + jH(nR) (moR) (24)

From expression (23) one can obtain also the following simple approximate
expression for the potential energy.

< V(r) >~ =Dy + (Dy — D_)(Dy — Bp)(2uc? = 2By — D_ + D4)™' (25)

This is expected to hold, however, for very large values of A, (and lower
states).

3. Numerical results and comments

In this section we present our results concerning the root mean square
radii of the A-particle orbits in hypernuclei and also its potential energy.
These results were obtained using the expressions (13), (15), (23), and the
following potential parameters

D_ =300MeV , Dy =25.T4MeV, ro=1.22fm

derived from an "overall fitting” that is a least squares fitting to the exper-
imental binding energies B§* of all states of a number of hypernuclei. In
the above fitting the potential parameter D_ was kept fixed to the value
D_ = 300MeV(see ref [14]).

The results for the root mean square radii of the A-particle orbits in its
ground and excited states are given in tables / and I], respectively. In table
I the results derived with the exact expression (13) are given while in table
I1 those derived with the approximate expression (15). (Note that in table
I1 only the lower states are tabulated.)

The results for the potential energy of the A-particle in all bound states,
calculated using the exact expression (23) are given in table I1] . It is seen
that the variation of < V/(r) > with A. is increasing, as expected.

In figure 1 the results given in table I (i.e the < r3 >!/?) are plotted
versus A!/3. It is interesting to note that the behaviour is rather similar to
that reported in ref. [3]. The almost linear behaviour of the curves < r3 >/2

132



versus A!/3, for the heavier hypernuclei, is fairly well understood on the basis
of expression (19) which predicts such a behaviour for large A..

The main advantage of the rectangular potential used is the possibility
of solving the corresponding eigenvalue problem semi-analytically. This fa-
cilitates the analysis carried out and gives rise to fairly simple approximate
analytic expressions of the quantities discussed, as function of the mass num-
ber.
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Table I

Root mean square radii < r? >!/2 of the A-particle orbits in the ground
and excited states for various hypernuclei obtained numerically using the defi-
nition (expression (13)). The potential parameters used arero =1.22 fm , Dy =
25.74 MeV ,D_ =300 MeV.

A S1/2 | P3/2 | P1/2 ds/z da/z f7/2 f5/2
fm | fm | fm | fm | fm | fm | fm

8 2.27
10 | 2.27
11 | 2.28
12 | 2.30

15 | 235 | 3.44 | 3.96
27 | 2.61 | 3.20 | 3.17
31 |2.68 |3.26|3.22
39 |2.83|338|3.33)4.06|4.26
50 |[3.00 | 3.54 | 3.50 | 4.05 | 4.02
88 |3.46 | 4.04 | 4.00 | 447 | 440 |49 | 4.86
137 | 3.90 | 4.54 | 4.49 | 497 | 4.90 | 5.32 | 5.24
207 | 4.39 | 5.08 | 5.04 | 5.54 | 5.48 | 5.89 | 5.81
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Table II

Root mean square radii < r? >1/2 of the A-particle orbits in the ground
and first excited states for various hypernuclei obtained using the approxi-
mate expression (15). The potential parameters used are the same as in table

I

A, S1/2 | P3/2 | P1/2

fm | fm | fm
8 [2.38
10 | 2.40
11 | 242
12 | 244

15 | 2.51 | 3.56 | 4.40
27 | 2.80|3.12 | 3.16
31 |2.89(3.16 | 3.18
39 [3.05|3.28 |3.28
50 |3.24|3.44 343
88 |[3.754.93 | 3.92
137 | 4.23 | 4.42 | 4.41
207 | 4.75 | 4.96 | 4.95
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Table III

Potential energy < V' > of the A-particle in the ground and excited states
for various hypernuclei obtained from expression (23).The parameters used
are the same as in table I.

A S1/2 P3/2 P12 ds/z d3/2 f7/2 f5/2
MeV | MeV | MeV | MeV | MeV | MeV | MeV

8 -17.44
10 |-18.82
11 |-19.32
12 | -19.75

15 |-20.70 | -13.46 | -11.03
27 | -22.64 | -18.66 | -17.91
31 | -22.81 | -19.42 | -18.81
39 | -23.26 | -20.47 | -20.03 | -15.89 | -14.14
50 |-23.67 | -21.38 | -21.07 | -18.02 | -17.04
88 |-24.35|-22.87 | -22.72 | -20.88 | -20.47 | -18.11 | -17.12
137 | -24.72 | -23.65 | -23.57 | -22.26 | -22.03 | -20.48 | -19.99
207 | -24.98 | -24.18 | -24.13 | -23.16 | -23.02 | -21.9 | -21.62
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