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Application of the quantum mechanical hypervirial theorems to 
even-power series potentials 

T. E. Liolios and M. E. Grypeos 
Department of Theoretical Physics,University of Thessaloniki .Thessaloniki 54006,Greece 

The class of the even-power series potentials: V(r) = — D + ]T) VkXkr2k+2, 

Vo = ω2 > 0, is studied with the aim of obtaining approximate analytic ex

pressions for the energy eigenvalues, the expectation values for the potential 

and the kinetic energy operator, and the mean square radii of the orbits of a 

particle in its ground and excited states. We use the Hypervirial Theorems 

(HVT) in conjunction with the Hellmann-Feynman Theorem (HFT) which 

provide a very powerful scheme especially for the treatment of that type of 

potentials, as previous studies have shown. The formalism is reviewed and 

the expressions of the above mentioned quantities are subsequently given in 

a convenient way in terms of the potential parameters and the mass of the 

particle, and are then applied to the case of the Gaussian potential and to 

the potential V(r) = ^~τ |ρτ· These expressions are given in the form of 

series expansions, the first terms of which yield in quite a number of cases 

values of very satisfactory accuracy. 
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I. I N T R O D U C T I O N 

Various approaches can be employed in an effort to obtain approximate 
expressions for the energy eigenvalues and other quantities of interest for a 
particle moving in a certain potential. Unfortunately the majority entails 
cumbersome calculations of matrix elements or the ingenious deduction of 
a trial function. The previous obstacles can be overcome by using the Hy-
pervirial Theorem1 in conjunction with the Hellmann-Feynman theorem, the 
"HVT-HFT" method, which could have been labeled as classical, had it not 
been for the peculiarities of the potential we select each time. Consequently, 
this method constitutes a very effective alternative to a pure perturbation or 
variational treatment. 

A multitude of authors has applied variations of this very method to a 
good number of potentials 2 - 1 0 . The results vary each time, according to 
the susceptibility of the potential in question. The scheme makes use of a 
perturbation parameter λ which enables us to expand the potential as well 
as the energy and the moments in a Α-series. We traditionally adopt the first 
non trivial term of our expanded potential as the unperturbed term of our 
problem. The energy of the unperturbed Schroedinger equation will serve as 
a parameter, in terms of which the other terms of the series will be calculated. 

In the present work we consider a wide class of potentials of the form 
oo 

V(r) = —D + Σ T4A r 2 f c + 2, Vo = ω2 > 0. The general formalism for such 

a class of potentials is reviewed in the next section and subsequently a gen

eral approximate expression for the energy eigenvalues is derived in terms 

of the potential parameters and the mass of the particle. In Sec. Ill, the 

corresponding general expressions for the expectation values of the kinetic 

and the potential energy operator are derived, and also for the mean square 

radius of the orbit of a particle in any bound state in the potential. 

In Sec. V and Sec. VI, the derived expressions are applied to the 

well known Gaussian potential and to the Poeschl-Teller(P.T)-type poten

tial V(r) = ^ L , , respectively. The final section is devoted to a test of 

the accuracy of the derived expressions by comparing their yielded values, 

mainly with the corresponding results obtained with a numerical integration 

of the Schroedinger equation. That is accomplished by taking as an example 

the non-relativistic motion of a Λ—particle in a hypernucleus moving in a 

Gaussian or in the above-mentioned P-T potential. 
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II. DESCRIPTION OF THE "HVT-HFT" SCHEME F O R EVEN-
P O W E R POTENTIALS. DERIVATION OF A GENERAL AP
PROXIMATE EXPRESSION FOR THE ENERGY EIGENVAL
UES. 

We consider a class of potentials V(r), which can be written in the form 

oo 

V(r) = -D + £ VkX
kr2k+2 (!) 

where Vo = ω 2 > 0. It is obvious that certain anharmonic oscillators, like 
for example the V(r) = \kr2 + &irm, which was studied in Ref. 3,(see also 
p.339 of Ref.2a and references therein) belongs in that class. Furthermore,in 
that class, there belongs a number of potentials encountered in applications. 
Those potentials are of the form: 

V(r) = -Df(^) 0 < r < o o (2) 

where D > 0 is the potential depth, R > 0 the potential radius and the 
"potential form factor" f, (/(0) = 1), is an even analytic function of χ = ^ . 
Namely, 

oo 

f{x) = Y,dkx
2k (3) 

k=0 

where dk are the numbers: 

1 d2k 

* = (äjiEs'W !~ * = 0·1·2·- (*) 
The radial Schrodinger equation, for the radial wave function un/=rjRn/(r), 
then reads: 

2μ drz 2μ r2 £?Q 

Unl =Enl Uni (5) 

where Eni is the shifted energy eigenvalue Eni. That is 

Eni= Enl + D (6) 
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Setting 

V(r) = 
h2 1(1 +I) 

2μ r 2 + Σ v^kr 2k+2 

fc=0 

the Hamiltonian becomes 

K2 d? 
H= ~Τμ^

 v « 
As a result the Schroedinger equation can now be written as: 

n2 d2 

2μάτ2 + y ( r ) Uni =Enl Unl 

(?) 

(8) 

(9) 

The Hamiltonian H is now identical to the one used by Swenson and Danford3, 

which means that we can make full use of the Hypervirial relation that they 

obtained.Namely: 

Eni< rN > n / = ikiV+1)- 1 < r N ^ >nl + < rN V>nl -~N(N-l) < rN~2 >nl I ar ομ 
(10) 

If we expand the energy Eni and the moments < r ^ > in λ-series we have 

respectively: 
oo 

Eni=ZE{k)^ 
k=0 

< r N > n / = = ^ C ^ ' 

(11) 

(12) 
Jfc=0 

Note that the indices (n/) on E^ and Οχ'+2 (which follows) will be suppressed 

for simplicity. According to the above definitions the unperturbed term of 

our potential is 
~(o) . . h2 1(1 + 1) 2 2 γ (r) = - — v - J + ω2Γ2 

2μ r 2 

and the corresponding energy eigenvalue is 

£(°> = 2ωαηι 2μ 

(13) 

(14) 
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which is, in fact, the energy of the Harmonic Oscillator. In the interest of 

elegance we have adopted the following notation: 

an / = (2n + / + ? ) (15) 

η = 0,1,2,3, ...(principal quantum number) 

/ = 0,1,2,3, ...(orbital quantum number) 

Applying the Hellmann-Feynman theorem(HFT) 1 5 ' 1 6 to our Hamiltonian we 

get: 

dEni.dH . . 

~dT-<-d\> ( 1 6 ) 

After some trivial calculations we obtain: 

El» = i Σ mVmC&$ (17) 
* m 0 

Substituting (8) and (9) into (7) we get the familiar recurrence relation' 

{k) _ N+l ί Λ F(q)r(k-q) Nl{l + 1) N(N-l) 

N + l 2μ 
rW -

'N-2 

"NTS N+4 ~ Ν~+Ί N+e ~ '" — N + l VkCN+k+2f ( 1 8 ) 

where CQ = #ojfc· 

The recurrence relation (18) is used to evaluate the coefficients E^ used 

by (11). In fact what we need to do is evaluate the coefficients CJy used by 

(12) and (17). We perform this calculation in a hierarchical manner 8 i.e., To 

obtain E^ in (11) we resort to (17) which readily yields 

£(*) = Vi Ci0) (19) 

We still need to calculate the Cf' coefficient which will be extracted from 

(18). Indeed, (18) gives 

Cl0) = £(°)cf> (20) 

To calculate C\ we need to resort to (18) once more so that we get 

C<°> - ^ Ì21Ì 
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EM can be obtained by virtue of (19), (20) and (21). 

The same pattern of calculations is adhered to, for each coefficient (either 

EW or CJv ). Applying this very method to the class of potentials given by 

(1) we arrive at the following general expression (where 6 = γ-): 

Enl = -D + £(°) + £ ( 1 ) λ + £<2>λ2 + £(3)λ3 + £(4>λ4 + ... (22) 

= -D + 2ωαη1ύ + ^ [l2a2

nl - 4/(/ + 1) + 3] δλ-

αηι [4α2/(17\/1

2-20ν2ω
2) + 12/(/+1)(4ν2α;2-3νι

2)+67ί/1

2-100ν2α;2]οΙλ2+ 
32u>5 

+ — i — { δ Ο α ^ δ ν ? - 132Va W + 56V3w
4) - 8α2,[12/(/ + 1)(43V? - 84Ì4 W + 

+40Vr
3w4)-1707V1

3 + 20u;2(177yiy2-98V3u;2)] + [4/(/ + l)(l lV1
3-36V1F2a;2+ 

+24^3u;4) - 3(171V^3 - 420νΊ ν2ω
2 + 280V3w

4)][4/(/ + 1) - 3]} 62λ3-

- — ^ — {48ai/[3563V1

4 - 8344V1

2V2u;2 + 4032VÌ V3w
4 + 16ω4(131Κ2

2 - 84V4u>2)] 
8192ω11 *• 

-40α2

/[4/(/ + 1)(89ΐν!4 - 2280V1

2Vr

2u;2 + 1216Vi ν3ω
4 + 642V2

2u;4 - USV4u
6) 

- 1 7 8 3 3 ^ + 47288V1

2Vr

2u;2 - 28224Vi V ^ 4 - 13264Vr

2V + 12096V4u>6] 

+48[/(/ + l)2][303Vi4 - 1048V1

2V2u;2 + 704T4V3«
4 + 16u>4(23V2

2 - 20VW2)] 

-8/(/+l)(28647V1
4-85656yi

2V2u;2+58048ViV3a;4+27120V2
2ü;4-28480y4u;6)+ 

305141V;4 - 938248V1
2V2u;2 + 673344VIV3Ü;4 + 16u>4(19277V2

2 - 22428VW2)} 6*λ 4 +. 

(23) 
For potentials of the general form (2), the above expression may be rewritten 
in terms of the depth and radius parameters. The relation which links the 
coefficients V* with the coefficients dk is the following (for λ = jg): 

Vk = -j^dk+1 A: = 0,1,2,3,... (24) 

Thus, in that case, the expansion for the energy eigenvalue becomes : 
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~avw#ïp ^ (20dld3~ 17d$ + Adld3[25"12/(/ +1)] + dî[36/(/ +1} " 6 7 ] } 6 l " 
-JQUMR' ί 8 0 0 " ' ( 5 6 < ί ^ 4 ~ m d l d 2 d 3 + 7 5 d ? ) - 8α2{40^^4 [121(1 + 1) - 49] + 

+12d1d2d3 [295 - 84/(/ + 1)] + 3<ί3 [172/(/ + 1) - 569]} + [4/(/ + 1) - 3] χ 

χ [24d\dA [41(1 + 1) - 35] + 36d1d2d3 [35 - 41(1 + 1)] + d\ [441(1 + 1) - 513]} δ 2 +.. . 

(25) 
It is of interest that Eq. (25) coincides with the corresponding one of Ref. 13 
(If correction of a few misprints or minor errors is made 1 4). That corroborates 
the validity of the above expressions for Eni. 
Eq. (25) is suitable to examine under which conditions the first terms of 
the expansion lead to a good approximation for the energy eigenvalues. By 
considering the ratio of successive terms we easily realise that the above 

desirable condition is satisfied when the parameter s _ 1 = ( 2 o ^ ) 2 ÌS sma^ 
that is when the potential well is quite deep and wide. 

According to the previous relations the expression for the lowest energy 
level spacing (AE)L = Eni(n = 0, / = 1 ) — Eni(n = 0,/ = 0 ) is easily derived. 
The general form has been calculated up to the third order (λ 3), and is as 
follows: 

(AE)L = Elp - Eu = Ίωύ + ^ λ δ - i l ( β ^ 2 - 7ν2ω
2) λ26§ + 

ωι 4α;5 ν ' 

+ ~ (1271VÎ3 - 2268V! VW2 + 1008V3u>4) λ362 - ... (26) 

For potentials of the form (2) one can also write the relation above in terms 
of the depth and radius parameters. 

Ddi)2 ι 5c?2 

~R 2
 ^UTB?" 4Dd3R3 

, Λ Β Λ 2(-Dd1)2 , 5d2 L l^-Dd^ , . J fij2Wa (AE)L = — — - ' 62 + —b — \ldid3 - 6cß) h 

r 

(ΐΟΟ&ζά, - 2268d1d2d3 + 1271<f3) 62 - ... (27) 
32Dd*R4 
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III. A P P R O X I M A T E EXPRESSIONS FOR T H E < V >, < Τ > 

A N D < r2 > I N TERMS OF THE P O T E N T I A L P A R A M E T E R S . 

A great number of authors has applied the Hypervirial relations to specific 
potentials only to obtain an asymptotic series for the energy eigenvalue, 
the general expression of which has been derived in the previous section 
for the class of the potentials considered. Nevertheless, the matter of the 
expectation values (with respect to the energy eigenfunctions) of the kinetic 
energy operator:< Τ >n/=< Τ > and of the potential energy operator < 
V >ni=< V >, as well as of the mean square radius of the orbit of a particle 
in a given energy eigenstate:< r 2 > n i = < r2 >, remains to be settled. Below 
we extract general expressions for those quantities. 

As for the expectation value for the kinetic energy operator ,the applica

tion of the Hellmann-Feynman theorem 1 5 , 1 6, according to which: 

<T> _d£ 
μ Ομ 

yields a λ-series of the form: 

oo 

< Γ > = ^ Λ λ (29) 
k=0 

The relation between T^ and E^ can be easily extracted: 

The E(k> terms of the energy-series can be written as E^ = e^b 2 where 
e ^ is independent of the mass μ. Therefore the energy series reads: 

00 

£ = -£> + f V ^ A * (30) 
fc=0 

Differentiating the energy series with respect to μ one obtains: 

S-SS-(δ) I ( ¥ ) ' * * * >'« 
Since g~ = — - ,Eq. (31) can now be written as: 

fA-ïièm-'"^ 
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Eventually we obtain the relation: 

-(-?)£ pry** (33) dE_ 

Βμ 

By a simple inspection of (28) and (33), we can see that the coefficients for 
the kinetic and total energy are related through the formula: 

r<*> = ( i t ! ) EW (34) 

The expressions of E^ follow immediately from expressions (22) and (23), 
[or (25)]. 

On the other hand, since Ε =< Τ > + < V >, we can readily extract a 
similar Λ-series for the expectation value for of the potential energy operator: 
This is obviously in the form: 

oo 

< ν >= -D + Σ v(k)xk (3 5) 
fc=0 

where 

vw = (LJL\ E(k) ( 3 6 ) 

By using relations (17) and (18) we can extract the coefficients Cpj used 
by (12) in order to evaluate the orbital mean square radii. The λ—series for 
the < r2 > is: 

< r2 >n,= c f > + d'h + ci2)x2 + ci3)x3 +... 

= Ί 7 ο Ι - £ ϊ [ 1 2 α ' ' " 4 / ( / + 1) + 3]6λ+ 

+ ^[20a 2

/(17 1l/ 1

2-12F 2a; 2)+36/(/+l)(4y 2u; 2-5V 1

2)+355y i

2-300V 2u; 2]6fA 2-
040; 

~2òL·^ ί 8 ^ 7 5 ^ " 9 9 ν ^ ω ' + 2 8 1 / 3" 4 ) - 8αϊ,12/(/ + 1)(43K1

3 - 63Vi V2u>2+ 

+20Vr

3a.4) - 1707V!3 + 265514 ν2ω
2 - 980V3u;4) + 4/(/ + 1)(1ΐνς3 - 27VÌ ν2ω

2+ 

+ 12V3a>4) - 3(1711^ - 315^ VW2 + 140ν3ω
4[4/(/ + 1) - 3]} δ2λ3 + ... (37) 
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For potentials of the form(2) the < r2 >n ; is expressed in terms of the depth 
and radius as follows: 

~atûpd*R~ ί20α"' ( 1 M l C / 3 ~ 1 7 ^ ) + nd'dz [25 " 12/(/ + 1)] + 5^2 [36/(/ + 1} ~ 6 7 ]} hì~ 

-2b6j^dsR2 {80a»< ( 2 8 ί ^ 4 - 9Mi<Ms + 75dl) - 8α'/{20^^ imi + 1) - 49] + 

+9did2d3 [295 - 84/(/ + 1)] + U\ [172/(7 + 1) - 569]} + [4/(Z + 1) - 3] χ 

x{\2d\dA [4/(Z + 1) - 35] + 27d1d2d3 [35 - 4/(/ + 1)] + d\ [44/(/ + 1) - 513]} 62+.·· 

<38> 
The same way we can obtain the moments of higher order. 

IV. APPLICATION OF THE "HVT-HFT" S C H E M E 
TO THE GAUSSIAN POTENTIAL. 

A member of the potential class in question is the Gaussian potential, 
which is given by the formula: 

V(r) = -DeÌF, 0 < r < oo (39) 

where D is the potential depth and R its radius. Such a potential as the 
one discussed in the following section may be considered for example a first 
approximation to the self-consistent potential for a nucléon in light nuclei, or 
for a Λ—hyperon in light hypernuclei in non-relativistic Quantum Mechanics. 
In such a case the potential radius R is expressed (in the framework of the 
rigid core model) in terms of the mass number of the core nucleus by means 

of the relation R = r0Ai where Ac is the mass number of the core nucleus 
(Ac = A — 1). The expression for dk for the Gaussian potential is: 

dk = 4 l ( 4 0 ) 

The energy λ-series for that particular potential has already been ob
tained by Lai, up to λ3 [6]. 
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In our study of the Gaussian potential, we not only derive the expectation 
values of both the potential and the kinetic energy but also provide the 
m.s.radii of the particle orbits states, < r2 >n,. Moreover, below,the total 
energy is given up to A4. 

Enl = - i )+2a n /u;6l- l [12a 2
/ -4/ ( /+lH3]6A-^[44aJ / -12/( /+l)+l]6tÀ 2 -

\— {1360<4 + 8α2, [1 - 121(1 + 1)] + 3 [3 - 4/(7 + 1)] [20/(/ + 1) - 47]} δ 2 λ 3 -
24576α;2 

a-ni 
{208848α4, + 3640α2, [12/(/ + 1) - 1] - 86640[/(/ + Ι)]2 + 

589824CL;3 

.l\4 

where λ = jp and ω2 = -j^ 

+306600/(/ + 1) - 300383} ό?λ4 + ... (41) 
2 = 2_ 

According to (34) the λ-series for the kinetic energy is: 

< Τ >nl= αη1ωύ--^ [l2a2, - 4/(/ + 1) + 3] *>\-^~ [44α2, - 121(1 + 1) + l] 6§\: 

λ— {l360aj, + 8a2, [1 - 121(1 + l)] + 3 [ 3 - 4/(/ + 1)] [201(1 + 1) - 47]} 62λ3 

2359296^3 {2 0 8 8 4 8 an/ + 3640a2, [12/(/ + 1) - 1] - 86640«/ + l)] 2 

12288a;2 

a-ni 

+306600/(/ + 1) - 300383} ό*λ4 + ... (42) 

The corresponding one for the potential energy follows immediately from 
< V >ni= Eni— < Τ >n,. Finally the expression for < r2 >nj is: 

< r2 >n,= ^ + - j - [l2a2, - 4/ (/ + 1) + 3l b\+ 
ω loa; L J 

+ | ^ j [ 6 0 a 2 , - 2 8 / ( / + l ) + 4 5 ] 6 h 2 + 

+ g ^ I {4400a4, + 8a2, [791 - 276/ (/ + 1)] + 

+3 [3 - 4/ (/ + 1)] [12/ (/ + 1) + 23]} 62λ3 + ... (43) 

The lowest energy level spacing can be given by (26) and is as follows: 
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{AE)L = Elp - Elt 

~ , ι 5 λ , 5 ,9,3. 475 
X3b2 - ... (44) 

-D 
cosh2(^)· 

V. APPLICATION OF THE "HVT-HFT" S C H E M E TO T H E 
POTENTIAL: 

An interesting feature of the potential 

-D 
V(r) = 

cosila) 
0 < r < oo (45) 

which is a special case of the well-known Poeschl-Teller potential, is that 
the corresponding Schroedinger eigenvalue problem can be solved exactly for 
the s-states. That potential has been used rather extensively in studies of 
hypernuclei11. The exact analytic expression for the s-state energy eigenval
ues is [11,12]: 

Et nO 
2/zÄ2 

Note that for the energy eigenvalues 

3 1 βμϋΒ? Λ 2n+2-2\rV-+1 (46) 

n = 0,l,2,... < ι + *§£)·-ι 

For the same states exact analytic results are also available ,through the 
application of the Hellmann-Feynman theorem, for < Τ > and < V > and 
thus one can test safely whether the first terms of the corresponding ex
pansions constitute a good approximation to the relevant quantities. The 
expressions [11] for < Γ >no and < V >„o can be written respectively: 

< Τ >n0= Eno + D- νφϊττ η = 0,1,2, (47) 
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2D (2η + fi 
< V >Μ= -D + Ι Μ η = 0,1,2,... (48) 

The expressions for the coefficients dk are: 

d0 = 1 (49) 

dx = - 1 (50) 

d2 = | (51) 

d3 = - g (52) 

<*< = § (53) 

According to the previous analysis we have the following HVT-energy series 
(again here λ = j$ and ω2 = j^): 

Eni = -Ό+2ωαη1ύ-±- ίΐ2α^ - 4/(7 + 1) + al 6 λ + ^ - [15 - 47(7 + 1)] bH2-

" 9 i b / ( / + 1} I 1 2 * - ^ + X> + 31 *λ" - 9Ö7Ä^ {332804/(7 + 1)-

-12816[7(7 + l)]2 + 25[440/(/ + 1) + 567]} tix*-—±-—l(l+i) {32720.4+ 

+8α 2

; [1445 - 828/(7 + 1)] + [3 - 4/(7 + 1)] [1084/(7 + 1) - 2445]} 63λ4 + ... 
(55) 

If we set / = 0 to the above expression,the ensuing expansion is summed up, 
leading to a closed form result which is identical to relation (46). According 
to relation (34) we can derive the expectation value of the kinetic energy in 
the form of a λ-series. Applying the same formalism: 

< Τ >nl= anlu>b* - 1 [l2a2, - 4/(/ + 1) + 3] 6λ - i=L [4/(7 + 1) - 15] 6*λ2-

:/(/+!) [ΐ2α2, - 47(7 + 1) + 3] 62Α3- "η /

 3 {33280α2

/7(/ + 1) - 12816/4-
945ω2 ν ' ' L ηί ν *> ' "J 362880L·; 3 
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-25632Z3 - 1816/2 + 11000/ + 14175J òiλ4 - — — -/(/ + 1) {32720οί,-
J 415800L·;4 ι-

-Sa2

nl [828/(/ + 1) - 1445] - [4/(/ + 1) - 3] [1084/(/ + 1) - 2445]} 63λ4 + ... 
(56) 

Using Eqs. (37) we can obtain the < r2 > λ-series: 

< r2 > = ^ + 1 f 1 2 eJ _ 4/(7 + 1) + 3] 6λ+ 
ω 12ur L J 

+ 9 ^ [8 5 a^ - 3 6 / ( / + 1 } + 5°1 6 ΐ λ 2 + 1 2 Ä 7 {10584«< + 24a»< [4725-
-1532/(/ + 1)] + [3 - 4/(Z + 1)] [2228/(/ + 1) - 1575]} 62λ3 + ... (57) 

Finally, the expression for the lowest energy level spacing becomes: 

(AE)L = Elp - Eu = 2ubï - f7Xb - j i -A 'ò ! - ^ λ 3 6 § - ... (58) 

VI. NUMERICAL RESULTS AND COMMENTS. 

In this section we give numerical results for the Gaussian potential as 
well as for the Poeschl-Teller-type one (45). The potential parameters we 
use here for purposes of illustration were obtained by a least squares fitting 
procedure to experimental ls-state energies of a Λ—particle in hypernuclei 
and are as follows[ll]: 

i) For the Gaussian potential: 

D = 34.16 MeV,r0 = 1.199 fm 

ii) For the Poeschl-Teller type potential: 

D = 38.9 MeV,r0 = 0.986 fm 

The results are displayed in the tables that follow by using the notation: 

Ac:the mass number of the host nucleus 
JS/iv t̂he total energy value obtained through the "HVT-HFT" scheme 

using the terms given in the table. 
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Ean:the total energy value from the analytic solution [Only s-states of the 
P.T. potential (45)] 

Ü^the total energy value from a perturbation method [lie]. (Only for 
the η = 0 states of the P.T.-type potential) 

Eint:the total energy value obtained through numerical integration. 

V: Vk\
k < r2k+2 > . 

< V >/i„t:the expectation value for the potential energy through the 
(HVT-HFT) scheme. 

< ν >an :the exact expectation value for the potential energy,given by 
Eq. (48). (Only s states of the P.T.-type potential) 

< ν >im:the expectation value for the potential energy obtained through 
numerical integration. 

< r 2 >£ r t : the root-mean-square radius of the particle orbit,obtained through 
the "HVT^HFT" scheme. 

< r2 >,?

nt:The orbital radius,obtained through numerical integration. 
The energy and < r 2 > series obtained through the present scheme are 

provided on a term-by-tern basis, so that the accuracy ,for various hypernu-
clei, can be observed. Apparently,the first few terms of the HVT-series for 
the s-state energies (total and potential energies), in the whole range of Ac 

values studied, practically coincide with the ones extracted through numeri
cal integration,or calculated by means of the corresponding exact expression 
in the case of the s-states of the P.T.-type potential (45). 

For the lower excited states the accuracy of the HVT-energy values is in 
general quite satisfactory, in particular for the heavier elements. We should 
also keep in mind that the computation of various quantities through numer
ical integration is also subject to certain inaccuracies, which are expected, 
however, to be usually very small. We may also observe that the HVT-energy 
eigenvalues with n=0, for the P.T.-type potential (45), are also in quite good 
agreement with the values Ep(see Table IV), obtained with the perturba
tion method of Ref. l ie .The HVT values are in fact a little closer to those 
obtained by numerical integration, in comparison to the Ep ones. 

.The reader can also observe that for the potential energy of the Poeschl-
Teller type potential two tables are provided, each employing a different 
method of calculation for the < V > . Table V makes use of the statistical 
moments as they are given by Eq. (12).In fact the moments < r2k+2 > are 
truncated at a such a term that the terms Vk are all of order λ5 in precision. 
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For example,we truncate < r 2 >n/ so that the part used in Table V is 

< r 2 > n / ~ Ci0) + Cfh + C<2)A2 + Ci3)X3 + C f λ 4 + C*5)À5 + ... (59) 

Therefore the term V0- VQX° < r2 > n / is of order λ5. By comparing Tables II 
and III one can see that the precision yielded by both methods is practically 
identical.What makes the difference is the simplicity of the second, which 
renders the first crude and time-consuming. In conclusion, the second method 
used in this paper, applied for the extraction of both < Τ > and < V >,can 
be linked directly to all the previous papers, which have calculated the energy 
series for a great number of potentials. Thus one may obtain < Τ >as well 
as < V > by modifying the HVT-energy coefficients in a way analogous to 
that followed in the present paper. The remarks previously made regarding 
the accuracy of the HVT energy quantities, also hold, to some extent, for 
the orbital radii (Tables III and VII), although in that case the accuuracy 
is less satisfactory, mainly for certain states and in particular for the lighter 
elements. 

We finally observe that the HVT values for both the energy quantities and 
the orbital radii are, for a given state, more accurate for the heavier elements 
than for the lighter ones. This is in accordance with our expectations since,as 
was observed in Sec. II, in the former case the parameter s - 1 is smaller. 
Furthermore the accuracy of the results depends on the state (being more 
satisfactory for the lower states) 

ACKNOWLEDGEMENTS 

Partial financial support from the Greek Ministry of Industry,Energy and 
Technology (Through project 360/91) is kindly acknowledged. 

119 



References 

[1] J.D.Hirschfelder,J.Cem.Phys.33,1462(1960) 

[2] (a) G.Marc and W.G.McMilllan,Adv.Chem.Phys.58,209(1985); (b) 
F.M.Fernandez and E.A.Castro, Hypervirial Theorems ,Lecture notes 
in Chemistry,Vol.43(Springer-Verlag) (1987); 

(c) M.S.Rae and E.R.Vrscay,J.Math.Phys.33,9(1992) 

[3] R.J.Swenson and S.H.Danforth,J.Chem.Phys.57,1734(1972) 

[4] J.Killingbeck,Phys.Lett.65A,87(1978) 

[5] M.Grant and C.S.Lai,Phys.Rev.A 20,718(1979) 

[6] C.S.Lai,J.Phys.A 16,L181(1983) 

[7] C.S.Lai,Phys.Rev.A 23,455(1981) 

[8] C.S.Lai,Phys.Rev.A 26,2245(1982) 

[9] C.S.Lai and H.E.Lin,J.Phys.A 15,1495(1982) 

[10] M.R.M Witwit,J.Phys.A 24,5291(1991) 

[11] (a) G. A. Lalazissis,M. E. Grypeos and S. E. Massen,Phys. Rev. C 

37,2098(1988); (b) G.A.Lalazissis,Ph.D thesis, Aristotle University of 

Thessaloniki(1989); (c) G.A.Lalazissis,Phys. Rev.C 48,198(1993) 

[12] N.Bessis,G.Bessis and Β Joulakian,J.PhysA 15,3679(1982) 

[13] L.K.Sharma,H.J.W.Muller-Kirsten et al.,J.Math.Phys 21,6(1980). 

[14] B.Kotsos,Private communication 

[15] R.P.Feynman,Phys.Rev.56,340(1979) 

[16] R.A.Bertlmann and A.Martin.,Nuclear Pysics Β 168,111(1980) 

120 



T A B L E I . T H E T O T A L E N E R G Y F O R T H E G A U S S P O T E N T I A L ( s e e t e x t ) 

Ar. 
11 

80 

80 

80 

80 

80 

120 

120 

120 

120 

120 

120 

η 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

1 

ί 1 Ei°J 
0 | -5.24 

0 

1 

2 

0 

1 

0 

1 

2 

3 

0 

1 

-19.87 

-10.35 

-0.835 

-0.835 

8.68 
-21.71 

-13.41 

-5.11 
3.17 

-5.11 
3.17 

ESl>\ 
-5.098 

-1.24 

-2.9 

-5.22 

-6.21 

-9.86 

-0.944 

-2.20 

-3.96 

-6.23 

-4.72 

-7.49 

£ W A * 

-0.299 

-0.036 

-0.15 

-0.390 

-0.455 

-0.94 

-0.023 

-0.100 

-0.26 

-0.53 

-0.30 

-0.622 

&*i\3 

-0.057 

-0.0039 

-0.027 

-0.10 

-0.10 

-0.29 

-0.0019 

-0.015 

-0.058 

-0.15 

-0.06 

-0.16 

£ W , \ 4 

-0.0116 

-0.000341 

-0.0065 

-0.035 

-0.033 

-0.11 
-0.00017 

-0.0033 

-0.017 

-0.059 

-0.016 

-0.060 

El-i>Xi 

-0.0011 

-0.00034 

-0.0034 

-0.019 

-0.021 

-0.086 

-0.00004 

-0.00074 

-0.006 

-0.026 

-0.0047 

-0.021 

EA„C 

-10.71 

-21.16 

-13.44 

-6.61 

-7.67 

-2.62 

-22.68 

-15.74 

-9.43 

-3.83 

-10.22 

-5.19 

Elnt 

-10.71 

-21.16 

-13.45 

-6.61 

-7.67 

-2.66 

-22.68 

-15.74 

-9.43 

-3.86 

-10.23 

-5.21 

T A B L E I I . T H E P O T E N T I A L E N E R G Y F O R T H E G A U S S P O T E N T I A L ( s e e t e x t ) 

Ac 
11 

SO 

80 

80 

80 

SO 

120 

120 

120 

120 

120 

120 

η 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

1 

I 

0 

0 

1 

2 

0 

1 

0 

1 

2 

3 

0 

1 

y(°) 
14.44 

7.14 

11.90 

16.66 

16.66 

21.42 

6.22 

10.37 

14.523 

18.66 

14.52 

18.S6 

vc υ λ 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

vw Χ2 

0.149 

0.013 

-0.075 

0.197 

0.27 

0.47 

0.0119 

0.050 

0.130 

0.268 

0.15 

0.311 

VW\* 

0.057 

0.0033 

-0.027 

0.010 

0.10 

0.29 

0.0019 

0.015 

0.0058 

0.153 

0.061 
0.167 

V^X* 

0.017 

0.00051 

-0.0098 

0.0526 

0.049 

0.17 

0.00025 

0.0049 

0.0026 

0.090 

0.0248 

0.090 

VW λ 5 

0.0022 

0.00003 

-0.0036 

0.028 

0.023 

0.14 

0.00001 

0.0016 

0.0012 

0.055 

0.010 

0.049 

< ν >κν< 
-19.47 

-26.99 

-22.14 

-17.11 

-17.09 

-11.68 

-27.92 

-23.71 

-19.41 

-14.92 

-19.39 

-14.37 

< y >.nt 
-19.48 

-26.99 

-22.13 

-17.08 
-17.07 

-11.44 

-27.92 

-23.71 

-19.40 

-14.81 

-19.38 

-14.80 
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T A B L E Π Ι . Τ Η Ε O R B I T A I R A D I U S F O R T H E G A U S S P O T E N T I A L ( s e e t e x t ) 

-4 c 

11 

80 

Su 

SO 

80 

80 

120 

120 

120 

120 

120 

120 

η 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

1 

I 

0 

0 

1 

2 

0 

1 

0 

1 

2 

3 

0 

1 

c\Q) 

3.00 
5.57 

9.29 

13.01 

13.01 

16.73 

6.37 

10.61 

14.86 

19.11 

14.86 

19.11 

CJl>A 
1.06 

0.971 

2.26 

4.08 

4.85 

7.71 

0.967 

2.25 

4.06 

6.3S 

4.83 
7.67 

C ^ A 2 

0.505 

0.22S 

0.77 

1.81 

2.31 

4.53 

0.198 

0.66 
1.57 

3.05 

2.00 
3.97 

c{3)x3 

0.269 

0.060 

0.304 

0.933 

1.209 

3.01 

0.045 

0.226 

0.705 

1.70 

0.913 

2.28 

d*h* 
0.150 

0.016 

C ^ A S 

0.034 

0.0045 

0.149 | 0.054 

0.654 
0.667 

2.24 

0.010 

0.098 

0.431 

1.40 

0.439 

1.477 

0.305 

0.3S1 

1.51 

0.0026 

0.0314 

0.175 

0.66 

0.218 
0.870 

\ / < r* >h„e 

2.25 

2.62 

3.58 

4.56 

4.73 

5.98 

2.75 

3.72 

4.67 

5.63 

4.32 

5.94 

y/< r 2 > , « . 
2.27 

2.62 

3.58 

4.6 

4.79 

6.38 

2.75 

" 3.72 

4.68 

5.78 

4.84 

6.08 

T A B L E r V . T E E T O T A L E N E R G Y F O R T H E P . T . P O T E N T I A L ( 4 5 ) (see t e x t ) 

Ac 
6 

9 

11 

15 

15 

31 

31 

SO 

80 

SO 

80 

80 

120 

120 

120 

120* 
120 

120 

η 
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0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

1 

/ 
0 

0 

0 

0 

1 

0 

1 

0 
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2 

0 

1 

0 

1 

2 

3 

0 

1 

&*> - D 
8.84 

1.64 

1.64 

-5.50 

16.75 

-13.13 

3.95 

-20.36 

-8.01 

4.34 

4.34 

16.69 

-22.74 

-11.98 

-1.21 

9.35 

-1.21 

9.55 

ESl>X 
-16.27 

-11.73 

-10.05 

-7.96 
-18.57 

-4.72 

-11.01 

-2.45 

-5.72 

-10.30 

-12.26 

-19.45 

-1.36 

-4.34 

-7.82 

-12.29 

-9.31 

-14.77 

EW.V-
0.99 

0.61 

0.4S 

0.34 

0.26 

0.15 

0.14 

0.05 

0.04 

-0.08 

0.13 

0.08 

0.038 

0.03 

-0.054 

-0.253 

0.090 

0.05 

E ^ A 3 | E'-*)A* 

0 

0 

0 

0 

-0.15 

0 

-0.05 

0 

-0.01 
-0.07 

0 

-0.049 

-0.01 

-0.004 

-0.003 

-0.001 

-0.0S1 

O.OOOi 

-0.02 

0.0C005 

-0.004 

-0.03 

0.0004 

-0.025 

0 | -0.0004 

-0.008 

-0.045 

-0.002 

-0.015 

-0.143 | -0.062 

0 | -0.0001 

-0.02S | -0.013 

E'^'y 

0 

0 

0 

0 

-0.043 

0 

-0.009 

0 

-0.001 

-0.013 

0 

-0.013 

0 

-0.0005 

-0.005 

-0.03 

0 

-0.005 

Eh,t 

-6.44 

-9.43 

-10.95 

-13.13 

-1.84 

-17.75 

-7.02 

-22.76 

-13.70 

-6.16 

-7.7S 

-2.76 
-24.57 

-15.30 

-9.159 

-3.22 

-10.43 

-5.21S 

Ear, 
-6.44 

-9.4S 

-10.95 

-13.13 

-17.75 

-22.76 

-7.78 

-24.57 

-10.43 

£ p 
-6.44 

-9.43 

-10.95 

-13.13 

-1.81 

-17.75 

-7.01 

-22.76 

-13.70 

-6.14 

-24.57 

-16.30 

-9.14 

-3.19 

£,r.r 
-6.44 

-9.48 

-10.95 

-13.13 

-1.91 

-17.75 

-7.03 

-22.76 
-13.71 

-6.17 

-7.78 

-2.78 
-24.57 

-16.31 

-9.16 
-3.27 

-10.44 

-5.22 
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TABLE V.THE POTENTIAL ENERGY FOR THE P.T.POTENTIAL (45) (see text) 

Ar 
6 
9 

11 

15 

15 

31 

31 

80 

80 

80 

80 

80 

120 

120 

120 

120 

120 
120 

η 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

1 

/ 
0 
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0 
0 

1 

0 

1 

0 

1 

2 

0 

1 

0 

1 

2 

3 

0 

1 

Vo 

65 

45.40 
38.34 
31.16 
81.4 

20.134 
44.73 
12.55 
24.80 
41.88 
46.95 
80.17 
10.47 
20.03 
33.16 
52.14 
35.97 
58.04 

Vi 
-117 

-60.90 
-45.44 
-29.82 

-131.84 
-12.54 
-47.22 
-4.79 

-15.40 
-39.24 
-50.84 

-120.14 
-3.30 

-10.08 
-24.34 
-52.16 
-31.34 
-70.26 

v2 
166 

73.86 
50.64 
29.06 

155.75 
8.83 

43.27 
2.20 
9.63 

30.42 
44.40 
124.33 
1.26 
5.31 

16.16 
40.90 
23.49 
63.80 

Vi 
-155 

-63.21 
-41.38 
-22.02 

-120.93 
-5.49 

-29.05 
-1.01 
-5.01 

-17.52 
-27.65 
-83.28 
-0.51 
-2.50 
-8.45 

-22.87 
-13.30 
-39.51 

V« 
81 

31.51 
20.10 
10.24 
54.17 
2.28 
11.93 
0.35 
1.82 
6.32 
10.84 
32.27 
0.16 
0.83 
2.87 
7.89 
4.76 
14.58 

Vs 

-17.9 
-6.74 
-4.23 
-2.10 

-10.52 
-0.43 
-2.19 
-0.06 
-0.30 
-1.04 
-1.78 
-5.47 
-0.02 
-0.13 
-0.45 
-1.24 
-0.78 
-2.39 

< v>hvt 
-15.51 
-18.92 
-20.38 
-22.37 
-10.84 
-26.12 
-17.42 
-29.66 
-23.45 
-17.08 
-17.34 
-11.02 
-30.84 
-25.44 
-19.94 
-14.24 
-20.10 

.-14.64 

< v> e n 
-15.51 
-18.92 
-20.37 
-22.37 

-26.12 

-29.66 

-17.34 

-30.84 

-20.10 

< V >int 
-15.50 
-18.92 
-20.38 
-22.37 
-10.57 
-26.12 
-17.40 
-29.66 
-23.47 
-17.04 
-17.34 
-10.97 
-30.84 
-25.43 
-19.93 
-14.11 
-20.10 
-14.62 | 

TABLE VI.THE POTENTIAL E N E R G Y FOR THE P.T. P O T E N T I A L (45) (see text) 
Ac 

11 

80 

80 
80 

80 

80 

120 
120 

120 

120 

120 

120 

η 

0 

υ 
υ 
υ 
1 

1 

u 
0 

0 

υ 
1 

1 

ι 
υ 
υ 
1 
2 

0 

1 

υ 
1 

2 

3 

0 

1 

V<.°J 
18.75 
9.26 
15.44 
21.62 
24.62 
27.79 
8.07 

13.48 
18.84 
24.22 
18.84 
29.60 

V ( D A 

0 

0 

0 

0 

0 

0 

0 J 
0 

0 

0 

0 

0 

vwx1 

-0.24 
-0.029 
-0.022 
0.040 
-0.068 
-0.040 
-0.019 
-0.015 
0.027 
0.127 
-0.045 
0.042 

VW Χ1 

0 

0 

0.014 
0.079 

0 

0.049 
0 

0.0084 
0.045 
0.143 

0 

0.123 

vwx* 
0.0046 

0.00013 
0.0065 
0.058 

0.0003 
0.038 

0.00006 
0.0032 
0.028 
0.118 

0.00016 
0.10 

W'X* 
0 

0 

0.0025 
0.027 

0 

0.026 
0 

0.0011 
0.0119 
0.0632 

0 

0.076 

< v >hvt -20.38 
-29.66 
-23.45 
-17.07 
-17.34 
-11.02 
-30.84 
-25.44 
-19.94 
-14.22 
-20.10 
-14.64 

< v >on -20.37 
-29.66 

-17.34 

-30.84 

-20.10 

< v>,nt 
-20.38 
-29.66 
-23.47 
-17.04 
-17.34 
-10.97 
-30.34 
-25.43 
-19.93 
-14.11 
-20.10 
-14.62 
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1 T A B L E V I I . T H E O R B I T A L R A D I U S F O R T H E P . T . P O T E N T I A L ( 4 5 ) ( s e e t e x t ) 

Ac 

6 

9 

11 
15 

15 
31 

31 

80 

80 

80 

80 

80 
120 

120 

120 

120 

120 
120 

η 

0 

0 
0 

0 

0 
0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 
1 

/ 
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0 

0 

0 

1 
0 

1 

0 

1 

2 

0 

1 

0 

1 

2 

3 

0 

1 

c\0> 

1.97 

2.19 

2.13 
2.53 

4.22 
3.17 

5.28 

4.29 

7.16 

10.03 

10.03 

12.89 

4.90 

8.18 

11.45 

14.72 

11.45 
14.72 

C^X 

1.34 
1.26 

1.24 

1.21 
2.82 

1.16 

2.71 

1.13 

2.65 
4.77 

5.69 
9.02 

1.13 

2.64 

4.75 

7.47 

5.66 
8.98 

ci2)\* 
0.88 
0.70 

0.64 
0.55 

1.95 

0.41 

1.45 

0.29 

1.02 
2.46 

3.06 

6.14 
0.25 

0.S8 

2.13 

4.19 

2.66 

5.32 

c?>x3 

0.58 

0.39 
0.33 

0.257 

1.43 
0.14 

0.81 
0.07 

0.414 

1.35 

1.63 

4.19 
0.056 

0.31 

1.02 

2.55 

1.23 

3.16 

C*4JA« 

0.38 
0.22 

0.173 

0.11 
1.08 

0.05 
0.47 

0.01 

0.174 

0.78 

0.87 

2.90 

0.012 

0.11 
0.52 

1.64 
0.57 

1.91 

C?}XS \ x/<r2> h „ t 

0.25 

0.12 

0.09 
0.055 

.84 
0.01 

0.28 

0.004 

0.075 
0.47 

0.47 

2.03 
0.002 

0.04 
0.27 

1.10 
•0.27 

1.16 ' 

2.32 

2.21 

2.19 
2.17 

3.51 
2.22 

3.32 

2.41 

3.39 

4.46 

4.67 

6.10 
2.52 

3.49 

4.49 

5.63 
4.67 

5.94 

N / < r 2 > l n t 

2.43 

2.25 

2.21 

2.18 

4 . 0 4 

2.22 

3.39 

2.41 

3.39 

4.55 

4.72 

6.53 

2 .52 

3.49 

4.52 

5 . 8 7 

4 .70 
6.10 
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