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Application of the quantum mechanical hypervirial theorems to
even-power series potentials

T. E. Liolios and M. E. Grypeos
Department of Theoretical Physics,University of Thessaloniki, Thessaloniki 54006,Greece

The class of the even-power series potentials:V(r) = —D + § Vil 2ht?
k=0

Vo = w? > 0, is studied with the aim of obtaining approximate analytic ex-
pressions for the energy eigenvalues, the expectation values for the potential
and the kinetic energy operator, and the mean square radii of the orbits of a
particle in its ground and excited states. We use the Hypervirial Theorems
(HVT) in conjunction with the Hellmann-Feynman Theorem (HFT) which
provide a very powerful scheme especially for the treatment of that type of
potentials, as previous studies have shown. The formalism is reviewed and
the expressions of the above mentioned quantities are subsequently given in
a convenient way in terms of the potential parameters and the mass of the
particle, and are then applied to the case of the Gaussian potential and to
the potential V(r) = E#[:—fi)' These expressions are given in the form of
series expansions, the first terms of which yield in quite a number of cases
values of very satisfactory accuracy.
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I. INTRODUCTION

Various approaches can be employed in an effort to obtain approximate
expressions for the energy eigenvalues and other quantities of interest for a
particle moving in a certain potential. Unfortunately the majority entails
cumbersome calculations of matrix elements or the ingenious deduction of
a trial function. The previous obstacles can be overcome by using the Hy-
pervirial Theorem! in conjunction with the Hellmann-Feynman theorem, the
"HVT-HFT” method, which could have been labeled as classical, had it not
been for the peculiarities of the potential we select each time. Consequently,
this method constitutes a very effective alternative to a pure perturbation or
variational treatment.

A multitude of authors has applied variations of this very method to a
good number of potentials?~1°. The results vary each time, according to
the susceptibility of the potential in question. The scheme makes use of a
perturbation parameter A which enables us to expand the potential as well
as the energy and the moments in a A-series. We traditionally adopt the first
non trivial term of our expanded potential as the unperturbed term of our
problem. The energy of the unperturbed Schroedinger equation will serve as
a parameter, in terms of which the other terms of the series will be calculated.

In the present work we consider a wide class of potentials of the form

V(r) = -=D + Z Vider2k+2 V4, = w? > 0. The general formalism for such

a class of potentlals is reviewed in the next section and subsequently a gen-
eral approximate expression for the energy eigenvalues is derived in terms
of the potential parameters and the mass of the particle. In Sec. III, the
corresponding general expressions for the expectation values of the kinetic
and the potential energy operator are derived, and also for the mean square
radius of the orbit of a particle in any bound state in the potential.

In Sec. V and Sec. VI, the derived expressions are applied to the
well known Gaussian potential and to the Poeschl-Teller(P.T)-type poten-
tial V(r) = '—:BI_Z—ﬁ) , respectively. The final section is devoted to a test of
the accuracy of the derived expressions by comparing their yielded values,
mainly with the corresponding results obtained with a numerical integration
of the Schroedinger equation. That is accomplished by taking as an example
the non-relativistic motion of a A—particle in a hypernucleus moving in a
Gaussian or in the above-mentioned P-T potential.
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II. DESCRIPTION OF THE "HVT-HFT” SCHEME FOR EVEN-

POWER POTENTIALS. DERIVATION OF A GENERAL AP-
PROXIMATE EXPRESSION FOR THE ENERGY EIGENVAL-
UES.

We consider a class of potentials V(r), which can be written in the form

V(r) = =D+ Y Vidkrtkt? (1)

k=0

where V, = w? > 0. It is obvious that certain anharmonic oscillators, like
for example the V(r) = 2kr? 4+ kyr™, which was studied in Ref. 3,(see also
p-339 of Ref.2a and references therein) belongs in that class. Furthermore,in
that class, there belongs a number of potentials encountered in applications.
Those potentials are of the form:

V(r)=-Df() 0<r<oo (2)

where D > 0 is the potential depth, R > 0 the potential radius and the

"potential form factor” f, (f(0) = 1), is an even analytic function of z = £.
Namely,

flz) =3 dya™ (3)
k=0
where di are the numbers:

1 d2k

dp = mmf(x) |z=0

k=0,1;2; s (4)
The radial Schrédinger equation, for the radial wave function upi=rRni(r),
then reads:

BRI+

—2,udr2 2_,; r2 +§:Vk’\kr2k+2 Uny =E‘n1 Uni (5)

k=0

where E, is the shifted energy eigenvalue E,;. That is

Enlz Enl + D (6)
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Setting

& RPII+1) | & k,.2k+2
LTy 7
V (7‘) Bn v + ICZ:%V;;/\ T ( )
the Hamiltonian becomes
I T I
H= —EE'T’— V (r) (8)

As a result the Schroedinger equation can now be written as:

R S ~
["‘ﬂ’d_rg‘*' \%4 (T)] Uni =FEni Uni (9)

The Hamiltonian J is now identical to the one used by Swenson and Danford3,
which means that we can make full use of the Hypervirial relation that they
obtained.Namely:
~ N 1 L wadV NG h? N-2
E'nl< LY —(N+1) <r e Dl T V>nl —_N(N_I) <r >l
2 dr 8u

(10)
If we expand the energy E,,, and the moments < rN¥ > in A-series we have
respectively:

Eu= Y E®)F (11)
=0
<V >u= Y CPAF (12)
k=0

Note that the indices (nl) on E*) and C 1(\;‘4)_2 (which follows) will be suppressed
for simplicity. According to the above definitions the unperturbed term of

our potential is
~(0) R2I(1+1)
Y e v

and the corresponding energy eigenvalue is

ﬁ2
E© = 2ua, " (14)

+ wir? (13)

r2
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which is, in fact, the energy of the Harmonic Oscillator. In the interest of
elegance we have adopted the following notation:

3
G = (2n+1+3) (15)

n=0,1,2,3,...(principal quantum number)

1=0,1,2,3,...(orbital quantum number)

Applying the Hellmann-Feynman theorem(HFT)'*!€ to our Hamiltonian we
get:

aEul a ﬁ
T (46}
After some trivial calculations we obtain:
B Z mVp Ciory) (17)

=0
Substituting (8) and (9) into (7) we get the familiar recurrence relation®:

N+1 - Nil+1) N(N-1)]*&
(k) k -q) _ (k)
c {ZE | 2#

N+2 = N F2) | & N +1 4 el
N+3 (k= N+4 N+k+2
"N+3VICN+41) N+1VQCN+6 By oreaall C}(\?-)i—k+2} (18)

where Cgk) = bok.

The recurrence relation (18) is used to evaluate the coefficients E(*) used
by (11). In fact what we need to do is evaluate the coefficients C{{used by
(12) and (17). We perform this calculation in a hierarchical manner® i.e., To
obtain E(M) in (11) we resort to (17) which readily yields

EM =y, c® (19)

We still need to calculate the C}O) coefficient which will be extracted from
(18). Indeed, (18) gives

G = (O)C(O) (20)
To calculate C{” we need to resort to (18) once more so that we get
a E(0)
cl9 = Y (21)
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E®M can be obtained by virtue of (19), (20) and (21).
The same pattern of calculations is adhered to, for each coefficient (either

E® or C{¥). Applying this very method to the class of potentials given by
1) we arrive at the following general expression (where b = £
2u

Euq=-D+E® + EM\+ E®OX 4 EON L EOX 4+ - (22)

Vi
= —D + 2wanb? + -8:)% [1242, - 4l(1+ 1) + 3] bA-

- 3';?5 [4a2,(17V;2 = 20V3w?) +121(1+1)(4Vaw? —3V;2) +6TV;2 — 100V3w?]b7 A2+
¥ m;w {80a,(75V; — 13214 Vow? + 56Vaw*) — 8aZ [121(1 + 1)(43V® — 84V} Vo +

+40V3w*) — 1707V + 2002 (177V4 Vo — 98Vaw?)] + [41(1 + 1) (11V2 — 36V Vow? +

+24Vaw?) — 3(171V — 42014 Vaw? + 280Vaw*)][41(1 + 1) — 3]} 62 X°—
Qni
v {48«:;{,[3563%4 — 8344V2Vaw? + 4032V} Vaw* + 16w*(131V, — 84Vjw?)]
—40a2,[41(1 + 1)(891V;* — 2280V;2Vow? + 1216V, Vaw* + 642V 2w* — 448V w®)
—17833V,* + 47288V;?Vow? — 28224V, Vaw® — 13264V, 2w* + 12096V,w5)
+48[I(1 + 1)?][303V,* — 1048V;?Vaw? + T04V; Vaw? + 16w*(23V;2 — 20Vjw?)]
—81(141)(28647V,* 85656V, Vow? +58048V; Vaw* +27120V;2w* —28480V,w®) +
305141V;* — 938248V,2Vpw? + 673344V, Vaw* + 16w* (1927712 — 22428V;w0?) } b5+
(23)
For potentials of the general form (2), the above expression may be rewritten

in terms of the depth and radius parameters. The relation which links the
coeflicients Vi with the coefficients di is the following (for A = %):

D
Vk = _Eidk"'l k= 0, 1,2, 3,... (24)

Thus, in that case, the expansion for the energy eigenvalue becomes :
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2anl(_Dd1)% 1 d; 2
—4l(1 b—
et 1242, — 411 +1) + 3]

E=-D+

_ (1.,11(—-.0(11)’:T {
32Dd3R3

1024Dd4R4
+12d1dads [295 — 841(1 + 1)) + 3d3 [1721(1 + 1) — 569] } + [41(1 +1) — 3] x

4a?; (20dyds — 17d2) + 4dyds [25 — 121(1 + 1)] + d3 [361(1 + 1) —

67)} b3 —

{802, (562 dy — 132dydads + 75d3) — 8a?{40d3ds [121(1 + 1) — 49] +

x{24d2dy [41(1 + 1) — 35] + 36dydyds [35 — 41(1 + 1)] + d3 [441(1 + 1) — 513] } b+...

(25)
It is of interest that Eq. (25) coincides with the corresponding one of Ref. 13
(If correction of a few misprints or minor errors is made!*). That corroborates
the validity of the above expressions for E,.
Eq. (25) is suitable to examine under which conditions the first terms of
the expansion lead to a good approximation for the energy eigenvalues. By
considering the ratio of successive terms we easily realise that the above

1
desirable condition is satisfied when the parameter s=1 = (u%;) ? is small

that is when the potential well is quite deep and wide.

According to the previous relations the expression for the lowest energy
level spacing (AE)L = Ey(n=0,l=1)— Eny(n = 0,1 =0) is easily derived.
The general form has been calculated up to the third order (A\?), and is as
follows:

(AE)L, = By, — By, = 2wb} Bp 5h “Ixb- — (fsv2 — TVw?) Mbi
5
iy (12711® - 2268V1V2w2 + 1008V3w4) A% — .. (26)

For potentials of the form (2) one can also write the relation above in terms
of the depth and radius parameters.

2(~Dd,)* 5d, 15(—Dd, )} N
AE bt - _
(AB)=——F TR T DR (7d1da - 645) b3
5
~ R (100842d, — 2268dy dyds + 1271d3) b* — ... (27)
1
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III. APPROXIMATE EXPRESSIONS FOR THE <V >,<T >
AND < r? >IN TERMS OF THE POTENTIAL PARAMETERS.

A great number of authors has applied the Hypervirial relations to specific
potentials only to obtain an asymptotic series for the energy eigenvalue,
the general expression of which has been derived in the previous section
for the class of the potentials considered. Nevertheless, the matter of the
expectation values (with respect to the energy eigenfunctions) of the kinetic
energy operator:i< T >,=< T > and of the potential energy operator <
V >,=< V >, as well as of the mean square radius of the orbit of a particle
in a given energy eigenstate:< r? >, =< r? >, remains to be settled. Below
we extract general expressions for those quantities.

As for the expectation value for the kinetic energy operator ,the applica-

tion of the Hellmann-Feynman theorem!®¢, according to which:
<T> OF
= —— 28
” o (28)
yields a A-series of the form:
<T>=Y TH) (29)
k=0

The relation between T®*) and E*%) can be easily extracted:
The E®) terms of the energy-series can be written as E®) = e(®)p*3* where
e(¥) is independent of the mass u. Therefore the energy series reads:

E=-D+Y M2k (30)

k=0
Differentiating the energy series with respect to u one obtains:

_= —— = — _— b
On = Bu 0b (w)?z( 2 ) ik (31)
Since g% = -% ,Eq. (31) can now be written as:

0E _ <_ ﬁ) 5 (ﬁizr_l) Byt 3k (32)

K k=0



Eventually we obtain the relation:

M/ k=o

By a simple inspection of (28) and (33), we can see that the coefficients for
the kinetic and total energy are related through the formula:

T = (’“_;f_l_) E® (34)

The expressions of E(*) follow immediately from expressions (22) and (23),
[or (25)].

On the other hand, since £ =< T > + < V >, we can readily extract a
similar A-series for the expectation value for of the potential energy operator:
This is obviously in the form:

<V>=-D+ )Y VE) (35)
k=0
where
-k
vk = (1_5__) EW®) (36)

By using relations (17) and (18) we can extract the coefficients C,(J') used
by (12) in order to evaluate the orbital mean square radii. The A—series for
the < r? > is:

< >u=CP + O + CPN 4PN 4

= Intpd ——[12a —4l(1+ 1)+ 3)bA+

w

L [20a2,(17V;2~12V,w?)+361(I+1)(4Vaw? —5V2)+355V;2—300V5w?] b3 A2 —

64w7

T wo {Bak/(75V;2 — 99V; Viw? + 28V3w?) — 8a2121(1 + 1)(43V2 — 63V; Vaw?+

+20V3w*) — 1707V + 2655V Vaw? — 980Vaw?) + 41(1 4 1)(11V;2 — 27V, Vaw?+
+12Vaw') — 3(171V;® — 315V; Vaw? + 140Vaw* [4l(1 + 1) — 3]} A% + ... (37)



For potentials of the form(2) the < r% >,; is expressed in terms of the depth
and radius as follows:

bt + 1242, — 41(1 +1) + 3] b—

<1t >Su= (—Ddl)% 8Dd2 [

anl Ddl -2 2 3
SiDd - {2002, (12d,d; — 17d3) + 12d,ds [25 — 121(1 + 1)) + 5d3 [361(1 + 1) — 67]} b —
1

R {80a%, (28d2d, — 99d1dyds + T5d3) — 8a2,{20d3d, [121(1 + 1) — 49] +

+9dydads [205 — 841(1 + 1)) + 3d3 [172(1 + 1) — 569] } + [41(1 + 1) — 3] X

x{12d2dy [A1(1 + 1) — 35] + 2Tdydyds [35 — 41(1 + 1)] + d5 [441(1 + 1) — 513]} b*+...
(38)

The same way we can obtain the moments of higher order.

IV. APPLICATION OF THE "HVT-HFT” SCHEME
TO THE GAUSSIAN POTENTIAL.

A member of the potential class in question is the Gaussian potential,
which is given by the formula:

V(r)= —De¥, 0<r<oo (39)

where D is the potential depth and R its radius. Such a potential as the
one discussed in the following section may be considered for example a first
approximation to the self-consistent potential for a nucleon in light nuclei, or
for a A—hyperon in light hypernuclei in non-relativistic Quantum Mechanics.
In such a case the potential radius R is expressed (in the framework of the
rigid core model) in terms of the mass number of the core nucleus by means

1
of the relation R = rgA2 where A, is the mass number of the core nucleus
(Ac = A —1). The expression for dj for the Gaussian potential is:

dy = ( A (40)

The energy \A-series for that particular potential has already been ob-
tained by Lai, up to A3 [6].
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In our study of the Gaussian potential, we not only derive the expectation
values of both the potential and the kinetic energy but also provide the
m.s.radii of the particle orbits states, < r? >,; Moreover, below,the total
energy is given up to A%

1/\2_

E, - —D+2aﬂ1wb%—%[12aﬁ,—4l(l+1 )+3)b

384w

2457&12 {1360an,+8an,[1—12ll+1)]+3[3 41(1+ 1)) [200(1 + 1) — 47} B2X°—

5898240& {208848‘1 + 3640a2, [121(1 + 1) — 1] — 86640[1(1 + 1))* +

+306600I(1 + 1) — 300383} b3 A* + ... (41)
where A = % and w? = &
According to (34) the A-series for the kinetic energy is:

= i 1 2 anl 2 242
< T >u= auwbi—— 1262, — 41(1+ 1) + 3] b = [44a2, — 1211 + 1) + 1] b2 )

e {13608t +8a2,[1 — 1200+ 1)) + 3[3 — 4101+ 1)) 20101+ 1) — 47} B2X°

(L2}

~ Sa5aa0a \208848ay, +3640a7, [121(1+ 1) ~ 1] — 86640(1(1 + 1)]*

+306600I( + 1) — 300383} bEA* + ... (42)

The corresponding one for the potential energy follows immediately from
<V >u= E,— < T >, Finally the expression for < r? >, is:

SN PP S N PP
<r? Su= b 4 [1202, - 41(1+1) + 3] bA+

3anl
256w3

{4400a}, + 842, [791 — 2761 (1 + 1)) +

[60a2, — 281 (1 + 1) + 45] bE2%+
6144w4

+3[B—4l(I+ D) [120(1 + 1)+ 23]} B2X% + ... (43)

The lowest energy level spacing can be given by (26) and is as follows:
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_ a1 5 5.0,8 475 g,
(AE)L = Bip — By, = 2wb} — 20— =Nb8 — oA — . (44)

V. APPLICATION OF THE "HVT-HFT” SCHEME TO THE
POTENTIAL: 2.
R

An interesting feature of the potential

-D

0= k)

0<r<oo (45)
which is a special case of the well-known Poeschl-Teller potential, is that
the corresponding Schroedinger eigenvalue problem can be solved exactly for
the s-states. That potential has been used rather extensively in studies of

hypernuclei'!. The exact analytic expression for the s-state energy eigenval-
ues is [11,12]:

2

h? 3 1 [8uDR?
no = — a=gtl——+1
Eo SuR? + ) 32 ot (46)
Note that for the energy eigenvalues
1
1 8uDR?\?
n=0,1,2,.. nm“<z[(1+“—hz£) —1]

For the same states exact analytic results are also available ,through the
application of the Hellmann-Feynman theorem, for < T > and < V > and
thus one can test safely whether the first terms of the corresponding ex-
pansions constitute a good approximation to the relevant quantities. The
expressions [11] for < T >n0 and < V >p can be written respectively:

2D (2n + 3)

<T>n0=EnO+D— 8DR2+1
72

n=0,1,2,.. (47)
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2D (2n + §)

<V >p=-D+— o n=0,1,2,.. (48)
The expressions for the coefficients dj. are:
do =1 (49)
dy = -1 (50)
2
dy = 3 (51)
17
T 2
=" (52)
62
dy = 315 (53)
1382
% = 14175 (34)

According to the previous analysis we have the following HVT-energy series
(again here A = 7 and w? = &)

En,=—D+2wanzb%—T1§ 1262, — 41(1 +1) + 3] bA+ [15 4l(l + 1) b3 A2—

I+ 1) [1263, — 411 + 1) + 3] 8242 — ——— {33280a%1(I + 1)~

T 94502 9072003
_ 2 243_ 1 4
12816[1(1 + 1)]* + 25 [440I(1 + 1) + 567] } b% A i {327200%,+
+8a3, [1445 — 8281(1 + 1)] + [3 — 41(1 + 1)) [10841(1 + 1) — 2445]} 5°)* +

(55)
If we set [ = 0 to the above expression,the ensuing expansion is summed up,
leading to a closed form result which is identical to relation (46). According
to relation (34) we can derive the expectation value of the kinetic energy in
the form of a A-series. Applying the same formalism:

< T >p= apuwbt — — [12a —4l(l+1) +3] bA - ol 2L [4l(1+1) - 15] 6327

——I(I+1) [12an, —4l(1+1) +3] B2 {83280a2,1(1 + 1) — 1281604~

04502 362880u3
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1
4158004
—8a2,[8281(1 + 1) — 1445] — [41(I + 1) — 3] [1084I(I + 1) — 2445]} B°X* + ...

(56)

—25632/% — 181607 + 110000 + 14175} b )* — I(1+1) {32720a}, —

Using Eqs. (37) we can obtain the < r? > A-series:

<r?>=2nlpr 4 Tleﬁ [12a§, —4l(l+1)+ 3] bA+
w

anl 2 2,2 1 4 2 -
toieg [B5a2, — 361(1 + 1) + 50| 63A? + TR {105840a%, + 2402, (4725
—15321(1 + 1)] 4+ [3 — 4l(1 + 1)] [22281(1 + 1) — 1575} B*X° + ... (57)

Finally, the expression for the lowest energy level spacing becomes:

90 16
27 27w?

VI. NUMERICAL RESULTS AND COMMENTS.

(AB)L = By, — By, = 2wb? A%b: —...  (58)

1 .0
Ab—-l—z‘)—kbz—

In this section we give numerical results for the Gaussian potential as
well as for the Poeschl-Teller-type one (45). The potential parameters we
use here for purposes of illustration were obtained by a least squares fitting
procedure to experimental 1s-state energies of a A—particle in hypernuclei
and are as follows[11]:

i) For the Gaussian potential:

D =34.16 MeV,ro=1.199 fm
ii) For the Poeschl-Teller type potential:
D =389 MeV,r, =0.986 fm

The results are displayed in the tables that follow by using the notation:
Ac:the mass number of the host nucleus
Ejvi:the total energy value obtained through the "HVT-HFT” scheme
using the terms given in the table.
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E,,:the total energy value from the analytic solution [Only s-states of the
P.T. potential (45)]

E,:the total energy value from a perturbation method [11c]. (Only for
the n = 0 states of the P.T.-type potential)

E;.i:the total energy value obtained through numerical integration.

Vi Vidk < p2k42 5

< V' >py:the expectation value for the potential energy through the
(HVT-HFT) scheme. '

< V >.n:the exact expectation value for the potential energy,given by
Eq. (48). (Only s states of the P.T.-type potential)

< V >ins:ithe expectation value for the potential energy obtained through
numerical integration.

<r?> ,%U,:the root-mean-square radius of the particle orbit,obtained through
the "HVT-HFT” scheme.

< r? >2 :The orbital radius,obtained through numerical integration.

The energy and < r? > series obtained through the present scheme are
provided on a term-by-tern basis, so that the accuracy ,for various hypernu-
clei, can be observed. Apparently,the first few terms of the HVT-series for
the s-state energies (total and potential energies), in the whole range of A.
values studied, practically coincide with the ones extracted through numeri-
cal integration,or calculated by means of the corresponding exact expression
in the case of the s-states of the P.T.-type potential (45).

For the lower excited states the accuracy of the HVT-energy values is in
general quite satisfactory, in particular for the heavier elements. We should
also keep in mind that the computation of various quantities through numer-
ical integration is also subject to certain inaccuracies, which are expected,
however, to be usually very small. We may also observe that the HVT-energy
eigenvalues with n=0, for the P.T.-type potential (45), are also in quite good
agreement with the values E,(see Table IV), obtained with the perturba-
tion method of Ref. 11c.The HVT values are in fact a little closer to those
obtained by numerical integration, in comparison to the E, ones.

.The reader can also observe that for the potential energy of the Poeschl-
Teller type potential two tables are provided, each employing a different
method of calculation for the < V > . Table V makes use of the statistical
moments as they are given by Eq. (12).In fact the moments < r2*+2 > are

truncated at a such a term that the terms V are all of order A® in precision.
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For example,we truncate < r? >,; so that the part used in Table V is
<P >y CO+CIN+COR+COR+CON +CN ... (59)

Therefore the term Voo VoA® < r? >, is of order A5, By comparing Tables II
and III one can see that the precision yielded by both methods is practically
identical. What makes the difference is the simplicity of the second, which
renders the first crude and time-consuming. In conclusion, the second method
used in this paper, applied for the extraction of both < T > and < V >,can
be linked directly to all the previous papers, which have calculated the energy
series for a great number of potentials. Thus one may obtain < T >as well
as < V > by modifying the HVT-energy coefficients in a way analogous to
that followed in the present paper. The remarks previously made regarding
the accuracy of the HVT energy quantities, also hold, to some extent, for
the orbital radii (Tables III and VII), although in that case the accuuracy
is less satisfactory, mainly for certain states and in particular for the lighter
elements.

We finally observe that the HVT values for both the energy quantities and
the orbital radii are, for a given state, more accurate for the heavier elements
than for the lighter ones. This is in accordance with our expectations since,as
was observed in Sec. II, in the former case the parameter s~! is smaller.
Furthermore the accuracy of the results depends on the state (being more
satisfactory for the lower states)
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[ TABLE I.THE TOTAL ENERGY FOR THE GAUSS POTENTIAL (see text)
A. [ n [ 1| E© [ EDXN ] EGN [ ECN [ EMN T EBIN | Enve | Eine
11 0|0 -5.24 | -5.098 -0.299 -0.057 -0.0116 -0.0011 -10.71 | -10.71
80 0|0 -1987 | -1.24 -0.036 | -0.0039 | -0.000341 | -0.00034 | -21.16 | -21.16
80 0 ]1]|-1035 -2.9 -0.15 -0.027 -0.0065 -0.0034 -13.44 | -13.45
80 0] 2| -0.835 -5.22 -0.390 -0.10 -0.035 -0.019 -6.61 -6.61
80 1|0 -0.83 -6.21 -0.435 -0.10 -0.033 -0.021 -7.67 -7.67
80 1|1 8.68 -9.86 -0.94 -0.29 -0.11 -0.086 -2.62 -2.66
120 0 | 0] -21.71 | -0.944 -0.023 -0.0019 -0.00017 -0.00004 | -22.68 | -22.68
120 | 0 | 1 | -13.41 -2.20 -0.100 -0.015 -0.0033 -0.00074 | -15.74 | -15.74
120 | 0 | 2 | -5.11 -3.96 -0.26 -0.058 -0.017 -0.006 -9.43 -9.43
120 | 0 | 3 3.17 -6.23 -0.53 -0.15 -0.059 -0.026 -3.83 -3.86
120 1 |0 | -5.11 -4.72 -0.30 -0.06 -0.016 -0.0047 -10.22 | -10.23
120 1 |1 3.17 -7.49 -0.622 -0.16 -0.060 -0.021 -5.19 -5.21

TABLE II.THE POTENTIAL ENERGY FOR THE GAUSS POTENTIAL (see text)

A [ n [T VO TVvOXTVEOXE TVEXN T VIOXN T VO [ <V oa | <V >ine
11 | 0| 0| 1444 0 0.149 | 0.057 | 0.017 | 0.0022 1947 -19.48
80 |00 7.1a 0 0.018 | 0.0033 | 0.00051 | 0.00003 26.99 -26.99
80 | 0 | 1| 11.90 ] -0.075 | -0.027 | -0.0098 | -0.0036 22.14 22.13
80 | 0 [ 2| 1666 0 0.197 | 0.010 | 00526 | 0.028 1711 17.08
(80 | 1|0 1666 0 0.27 0.10 0.049 0.023 717.09 17.07
80 | 1 | 1| 2142 0 0.47 0.29 0.17 0.14 11.68 11.44
120 ] 0 | 0 | 6.22 0 0.0119 | 0.0019 | 0.00025 | 0.00001 27.92 27.92
120 | 0 | 1 | 1037 [} 0.050 | 0.015 | 0.0049 | 0.0016 23.71 223.71
120 | 0 | 2 | 14.523 0 0.130 | 0.0058 | 0.0026 | 0.0012 -19.41 -19.40
120 | 0 | 3 | 18.66 0 0.268 | 0.153 | 0.090 0.055 14.92 1481
120 | 1 | 0 | 14.32 0 0.15 0.061 | 0.0248 | 0.010 19.39 19.38
120 | 1 | 1 | 18.86 0 0.311 | 0.167 | 0.090 0.049 1487 14.80
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TABLE III.THE ORBITAL RADIUS FOR THE GATUSS POTENTIAL (sese text)
Ac [ [ 1| 6P TclUa [l Tcln T et [ o838 | \/<r >aue | /<12 >ins
11 0|0 3.00 1.06 0.303 0.269 0.150 0.034 2.23 2.27
80 0|0 5.57 0.971 0.228 0.060 0.016 0.0045 2.62 2.62
80 0|1 9.29 2.26 0.77 0.304 0.149 0.054 3.58 3.53
80 0] 2] 13.01 4.08 1.81 0.933 0.654 0.303 4.36 4.6
80 1 /0| 13.01 4.85 2.31 1.209 0.667 0.381 4.73 4.7
80 1]1]|16.73 7.71 4.58 3.01 2.24 1.51 5.98 6.38
120 (0 | O 6.37 0.957 0.198 0.045 0.010 0.0026 2.75 2.75
120 | 0 | 1 | 10.51 2.25 0.66 0.226 0.098 0.0314 3.72 3.72
120 | 0 | 2 | 14.86 4.06 1.57 0.705 0.431 0.175 4.67 4.68
120 | 0 | 3 | 19.11 6.33 3.05 1.70 1.40 0.66 5.68 5.78
120 | 1 | O | 14.86 4.83 2.00 0.913 0.439 0.213 4.82 4.84
120 | 1 | 1 | 19.11 7.67 3.97 2.23 1477 0.870 5.94 6.08

TABLE IV.TEE TOTAL ENERGY FOR THE P.T. POTENTIAL (435) (see text)

Ac | n |l [ E® =D ECNT ERN T ECGIN T EW)Z E3)03 Enye Ean Es E..:

6 01]0 8.34 -16.27 0.99 0 -0.01 [¢] -6.44 -6.44 | -6.44 -6.44

9 0|0 1.6 -11.73 0.61 0 -0.004 0 -9.48 -9.48 -9.48 -9.48

11 0]0 1.64 -10.05 0.48 0 -0.003 0 -10.95 | -10.95 | -10.95 | -10.935
15 0|0 -5.50 -7.96 0.34 0 -0.001 0 -13.13 | -13.13 | -13.13 | -13.13
15 01 16.75 -18.57 0.26 -0.15 -0.0S81 -0.043 -1.84 -1.81 -1.91

31 0|0 -13.18 -4.72 0.15 0 0.0001 0 -17.75 | -17.75 | -17.753 | -17.75
31 01 3.95 -11.01 0.14 -0.05 -0.02 -0.009 -7.02 -7.01 -7.03

80 01]0 -20.38 -2.45 0.05 0 0.0C003 0 -22.76 | -22.76 | -22.76 | -22.76
8 | 0|1 -8.01 -3.72 0.04 -0.01 -0.004 -0.001 -13.70 -13.70 | -13.71
80 | 0|2 4.34 -10.30 -0.08 -0.07 -0.03 -0.013 -6.16 -6.14 -6.17
80 10 4.34 -12.26 0.13 0 0.0004 0 -7.78 -7.78 -7.78
80 11 16.69 -19.45 0.08 -0.049 -0.025 -0.013 -2.76 -2.78
120 0| 0O -22.74 -1.86 0.033 0 -0.0004 0 -24.57 | -24.37 | -24.57 | -24.57
120 | 0|1 -11.98 -4.34 0.03 -0.003 -0.002 -0.0005 | -16.30 -16.30 | -18.31
120 | 0 | 2 -1.21 -7.82 -0.054 -0.045 -0.015 -0.005 -3.159 -9.14 -9.16
120.| 0 | 3 9.33 -12.29 -0.255 -0.143 -0.062 -0.03 -3.22 -3.19 -3.27
12010 -1.21 -9.31 0.050 0 -0.0001 0 -10.43 | -10.43 -10.44
120 [ 1 |1 9.55 -14.77 0.05 -0.028 -0.013 -0.005 -5.218 -5.22
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TABLE V.IHE POTENIIAL ENERGY FOR THE P.I.POTENTIAL (45) (see text)

Ac | n | Vo i V2 Vi Vi Vs <V >hue | <V >an | <V Sine
6 0|0 65 -117 166 -135 81 -17.9 -15.51 -15.51 -15.50
9 0|0 45.40 -60.90 73.86 -63.21 | 31.51 | -6.74 -18.92 -18.92 -18.92
11 {0 |G 38.84 -45.44 50.64 -41.38 | 20.10 | -4.23 -20.38 -20.37 -20.38
15 |0 | O 31.16 -29.82 29.06 -22.02 | 10.24 | -2.10 -22.37 -22.37 -22.37
15 |0 |1 81.4 -131.84 | 155.75 | -120.93 | 54.17 | -10.52 -10.84 -10.57
31 [ 0] 0| 20134 | -12.54 8.83 -5.49 2.28 -0.43 -26.12 -26.12 -26.12
31 |01 44.73 -47.22 43.27 -29.05 | 11.93 | -2.19 -17.42 -17.40
8 |00 12.55 -4.79 2.20 -1.01 0.35 -0.06 -29.66 -29.66 -29.66
80 |01 24.80 -15.40 9.63 -5.01 1.82 -0.30 -23.45 -23.47
80 |01} 2 41.88 -39.24 30.42 -17.52 6.32 -1.04 -17.08 -17.04
80 |1 /0 46.95 -50.84 44.40 -27.65 | 10.84 | -1.78 -17.34 -17.34 -17.34
80 |11 80.17 | -120.14 | 124.33 | -83.28 | 32.27 | -5.47 -11.02 -10.97
1200 (0 10.47 -3.30 1.26 -0.51 0.16 -0.02 -30.84 -30.84 -30.84
120 0 | 1 20.03 -10.08 5.31 -2.50 0.83 -0.13 -25.44 -25.43
120 | 0 | 2 33.16 -24.34 16.16 -8.45 2.87 -0.45 -19.94 -19.93
120 {0 | 3 §2.14 -52.16 40.90 -22.87 7.89 -1.24 -14.24 -14.11
120 (1] 0 35.97 -31.34 23.49 -13.30 4.76 -0.78 -20.10 -20.10 -20.10
120 {1 | 1 58.04 -70.26 63.80 -39.51 | 14.58 | -2.39 .-14.64 -14.62

TABLE VI.THE POTENTIAL ENERGY FOR THE P.T. POTENTIAL (45) (see text)

Ac | n |t ] VO TVIDONTVORZ T VR [ VO [ VEIAS | <V Shet ] < Vooen | <V >
11 0|0 18.75 0 -0.24 0 0.0046 0 -20.33 -20.37 -20.3:‘3M
80 | 0|0 | 9.26 0 -0.029 0 0.00013 0 -29.66 -29.66 -29.66
80 [ 0|1 | 15.44 0 -0.022 | 0.014 | 0.0065 | 0.0025 -23.45 2347
80 |0 | 2 | 21.62 0 0.040 | 0.079 | 0.058 0.027 -17.07 17.04
80 | 1[0 | 2a.62 0 -0.068 0 0.0003 | - 0 17.34 17.34 17.34
80 [ 1] 1| 27.7 0 -0.040 | 0.049 | 0.038 0.026 -11.02 -10.97
1260 ] 0 | 0 | 8.07 0 0.019 0 0.00006 0 -30.84 -30.84 -30.34
120 | 0 | 1 | 13.48 0 -0.015 | 0.0084 | 0.0032 | 0.0011 -25.44 25.43
120 | 0 | 2 18.84 0 0.027 0.045 0.028 0.0119 -19.94 -19.93
120 0 | 3 24.22 0 0.127 0.143 0.118 0.0632 -14.22 -14.11
120 | 1 | 0 | 18.34 0 0.045 0 0.00016 0 -20.10 -20.10 -20.10
120 | 1 [ 1 | 29.60 0 0.042 0.123 0.10 0.076 “14.64 1452

123




TABLE VIIL.THE ORBITAL RADIUS FOR TEE P.T.POTENTIAL (45) (see text)

A a0 ] e [ ea ] cfar ] cfa3 | cat | cBas | /<2 >he <12 >ine
6 0|0 1.97 1.34 0.88 0.33 0.38 0.25 2.32 2.43
9 |0[0] 219 | 126 | 070 | 039 | 022 | 012 2.21 2.25
11 0|0 2.13 1.24 0.64 0.33 0.173 0.09 2.19 2.21
15 01]0 2.53 1.21 0.55 0.257 0.11 0.055 2.17 2.18
15 0|1 4.22 2.82 1.95 1.43 1.08 84 3.51 4.04
31 0|0 317 1.16 0.41 0.14 0.05 0.01 2.22 2.22
31 |0 1] 528 | 271 | 145 | 081 | 047 | 0.28 332 3.39
80 | 0| 0] 429 | 113 | 0.25 | 007 | 00l | 0.004 241 2.41
80 |0 | 1| 7.16 | 265 | 1.02 | 0.414 | 0.74 | 0.075 3.39 3.39
80 | 0] 2] 10.03] 477 | 2.46 | 135 | 0.8 | 047 446 455
80 | 1]0[1003] 569 | 3.06 | 163 | 087 | 047 467 472
80 | 1|1 ]128 | 902 | 604 | 419 | 290 | 2.03 6.10 6.53
120 [0 | 0] 490 | 113 | 0.25 | 0056 | 0012 | 0.002 2.52 2.52
120 [0 [ 1] 818 | 264 | 088 | 031 | 011 | 0.04 3.49 3.49
120 | 0 |2 | 1145 | 475 | 213 | 102 | 052 | 0.2 4.49 452
120 | 0 } 3 ] 14.72 7.47 4.19 2.55 1.64 1.10 5.63 5.87
120 | 1| 0 | 1145 | 566 | 266 | 123 | 057 | “0.27 467 4.70
120 {1 | 1 | 14.72 8.98 5.32 3.16 1.91 1.16 ° 5.94 6.10
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