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PARTICLE NUMBER DEPENDENCE OF SIZE AND ENERGY
QUANTITIES IN SODIUM CLUSTERS.

B.A.Kotsos and M.E.Grypeos
Department of Theoretical Physics
Aristotle University of Thessaloniki, GR 54006, Greece

Abstract

The efective radial electronic potentials for neutral sodium clusters, which
were determined by Ekardt on the basis of the local density approximation
and the jellium model, are parametrized by means of the (symmetrized)
Woods-Saxon and ”Wine-Bottle” symmetrized Woods-Saxon potentials with
the aim of investigating the dependence of size and energy quantities on the
cluster particle number. The potential parameters are determined by vari-
ous least-squares fitting procedures. It is found that for the radius R of the
above potentials, complex expressions are more appropriate than the stan-
dard one R = ro N'/3 for relatively small values of N. Furthermore, N-power
expansions are derived for those complex expressions of R, as well as for the
r.m.s. radius of the potential. It is also found that improved results in these
cases are obtained with an expression of the form R = roN'/3 4 b, which
is still very simple. There is also investigated the variation of energy quan-
tities, such as the single particle energies of the 1s and 1p states, the level
spacing |E1, — E1,| and the average energy level spacing, with respect to the
particle number N. Expressions for the first three of these quantities with
N-dependent terms of the form aN~%3 4+ BN~! give good results.
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1. Introduction

The knowledge of the mean field potentials for electrons in metal clusters
is needed in various calculations, such as in the case of single-particle level
densities, and electronic binding energies [1,2]. In practice, it is sometimes
convenient to use parametrized forms of these potentials, as in ref. [2] where
the shell and supershell structure were studied for Na clusters.

In this paper we consider in some detail the effective radial electronic po-
tential V,;¢(r) in the spherical and homogeneous jellium model as determined
by using the local-density approximation. The density functional theory of
Hohenberg, Kohn and Sham [3] has been used repeatedly in studies of metal-
lic clusters, such as those in refs. [4]-[8]. Ekardt used the above mentioned
method in his spherical-jellium- background model(SJBM) study of the metal
cluster work function , the self consistent determination of the charge density
and of the self consistent effective one-particle potential.

Ekardt’s potentials have been parametrized in ref. [2] by a spherical
Woods-Saxon (W-S) potential

Vo

_m, 0ST<OO (1)

Vws(r) =

with Vo = 6eV, R = roN'/3,ry = 2.254 and a = 0.744
Nishioka et al [2] have also considered another type of potential obtained
in ref. [9] through a combination of a semiclassical approximation and ap-
plication of the Kohn-Sham density functional method to a positive jelli-
um background. The inner part of this potential is slightly shallower while
the outer part is deeper than the Woods-Saxon potential. This potential of
”wine-bottle” shape has also been used in ref. [2] for the study of supershells.
In this paper we consider Ekardt’s effective potentials for neutral sodi-
um clusters and discuss a parametrization procedure, mainly by means of
symmetrized Woods-Saxon potentials as well as ”wine-bottle symmetrized
Woods-Saxon” ones, and determine their parameters through least squares
fittings. Our main objective is to investigate the variation of size and ener-
gy quantities of those clusters with respect to the particle number N. The
layout of the paper is as follows: In the next two sections we discuss the
above mentioned potentials, specify the notation and give some useful rel-
evant formulae. In section 4 we report the numerical results of the various
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least squares fittings and we investigate the way in which the potential radius
R and the root mean square radius of the potential varies with N by deriv-
ing the corresponding analytic expressions and their expansions in powers
of N. In section 5, the problem of the variation of such quantities as the
lower single particle energies and the energy level spacings with respect to
the particle number N is investigated and relevant analytic expressions are
also discussed. The final section is devoted to a summary and conclusions.

2. The symmetrized Woods-Saxon potential

The symmetrized Woods-Saxon potential we are using is the following:

Vor(r) = —Vofsr(r) = —%cosh(r‘;izrgh-i(-lz{):;z(}i/a) =
= - |[1 -%—e:z:pgr—%ﬁ-l]"1 +(1 -1-ez:p(———r-(—;—ﬁz]_1 -1, 0<r< o (2)

The form factor of this potential has the shape of the symmetrized Fermi
distribution which has been used to describe successfully the densities of
nuclei for a wide range of mass numbers [10]. The potential (2) has been
used pretty recently in analyses of hypernuclei [11] and also as a nuclear
single particle potential [12]. It is very closely related to the so-called ”cosh”
potential used in ref. [13] as a cluster-core potential in Nuclear Physics.

The potential (2), which, unlike the Woods-Saxon potential, has zero
slope at the origin, resembles somehow the Gaussian one for small values of
R/a, while for R/a >> 1 gets very close to the Woods-Saxon one.

One feature of the potential (2) is that its volume integral is given exactly
by the following simple analytic expression:

ca 4 Ta
2 _ 2
47r/0 Vsp(r)ridr| = 3 VoR¥[1 + ( R) ] (3)
The same holds for its m.s.radius:
3 7 7a
2 = - 2 Py i 2
<r°>sF 5R [1+3(R ] (4)

More generally, the n-th moment of potential (2) may be given analytically
[12]. In the case of the Woods-Saxon potential there are additional exponen-
tial terms. Thus, the expression of its n-th moment becomes more complex.
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Since the condition R/a >> 1 is well satisfied, both for nuclei and atomic
clusters, except for the very light ones, the symmetrized Woods-Saxon po-
tential gives results almost identical to the Woods-Saxon ones, even for small
values of the mass number and particle number N, respectively. The present
analysis corroborates also this fact.

3. The "Wine-bottle” symmetrized Woods-Saxon potential
Another parametrization of the effective potential, which seems to be
rather interesting, is the following one which is of "wine- bottle” shape

wr? sinh(R/a)
Viws(r) = —Vo(1 + —R—Z) cosh(r/a) + cosh(R/a)’

0<r<oo (5)

for suitable choices of the parameter w.

The volume integral of the potential (5) may be obtained analytically
though its expression is a little more complex than that of the potential (2).
The result of integration leads to:
4V 3 3w Ta, T ,ma.)
TR [(1+ )+ 1+ 20 + 23

(6)

It is immediately seen that for w = 0 this expression goes over to (3),
as should be the case. Analytic expressions for the various moments of the
potential may be also derived. The mean square radius for the ”Wine-bottle”
potential (5) is given by the expression:

4z /oo Vws(r)ridr
0

3(7 + 5w)R® + 35(2 + 3w)a’x?R* + 49(1 + 5w)a*nr*R? + 155a878w
7(5+ 3w) R4 + 35(1 + 2w)a?7w2R? + 49a4miw
(7)

We note that potential (2), or alternatively (5), should also be able to
roughly reproduce the effective potential in the inhomogeneous jellium mod-
el (14]. Moreover, potential (5) may also reproduce the modified jellium
potential of ref. [15]. We also note that the substitution of a higher degree
polynomial (or a suitable function of r) for (1+ w}%) in (5), is likely to repro-
duce the wavy character of the local equivalent potential of ref. [16] (see fig.
2, of this reference) for individual clusters. Finally, we may point out that

< 7‘2 >wW.B.=
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it would be of interest to also consider the possibility of parametrizations of
the form (2) or (5) of the average potential for the atom in the cluster, in
the spirit of ref. [17].

4. The particle number depedence of quantities related to the
radial extension of the effective electronic potential.

In this section we investigate the problem of the determination of the
explicit dependence of the radius R and of the root-mean-square radius
< r? >1/2 of the potentials (2) and (5) on the particle number. We considered
Ekardt’s effective local mean field potentials for the valence electrons in neu-
tral sodium clusters with particle numbers NV = 8,18,20,34,40,58,68,90,92,106,
132,138,168,186, 198 [7] and we performed ”a global least squares fit” of the
symmetrized Woods-Saxon potential to the potential values for all these clus-
ters by treating Vp, a and the parameter ro in R = roN'/3 as adjustable pa-
rameters. According to the size of each cluster, about 15-30 points covering
the interval where the potential differs practically from zero have been consid-
ered and the corresponding potential values were estimated from the figures of
ref. [7]. The best fit values are: Vp = 6.05eV, ro = 2.34 AA, a =0.79 AA.

The same procedure was repeated by adopting as R a fairly complex
function of N. That function results from the observation that to a good ap-
proximation, the volume integral of the symmetrized Woods-Saxon potential
for each cluster varies with V as eN +d = ¢(1 + -;"V—)N , where ¢ and d are
constants. That functional dependence is obvious from Fig.1.

Thus we may write, by means of (3):

R® + (am)’R =riN (8)

where 7§ = ro(1+ £)1° , rg = (%)% and g = ¢

In this way we arrive at an equation for R which is of the same form
as the one appearing in studies of nuclei or hypernuclei on the basis of the
rigid-core model (see ref. 11,12,18 and references therein). The difference
is that, in the present case, the parameter ry becomes ry and depends on
the particle number. Furthermore, instead of N, = N — 1,N appears now in

the equation. The third order equation (8) can be solved exactly [18,19] and
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one gets the following expression for the potential radius as a function of the
number of particles:

1/3 ma )61/ e
R_EI_/—S-TON 1+[1+ (’N1/3 ] +
4 7a 1/
+ [ L+ o7 (are) ]‘”] } (9a)

From this expression we may derive the following expansion by taking
also into account that ry depends upon NV.

R:ToNl/s{l ;(:a)ZN’Z/HﬂN b

oy —ogn - (9%)

We also note that the explicit dependence of the potential r.m.s. radius
on the particle number follows from expressions (4) and (9a). Furthermore,
the leading terms in an expansion of < r? >'/2 in powers of the particle
number are easily derived. The result is:

2 J1/2_ 3\1/2,, /3 5 ma g a3 B 1 Taiay sz
<r®>dp (5) roN {1+6(r0)1\« +31\/ 24(ro)N
56 ma
L. (10)

It is clear that in this generalized case, apart from the parameters Vj,
ro and a, there is an additional parameter 5. By using these parameters
as fitting parameters we get the following best fit values: Vo = 6.03eV,
ro =2.295A4, a = 0.7814 and B = 10.49. In this case a marked improvement
in the quality of the fit is observed in comparison to the one obtained with
the simple expression R = roN'/3,

A very similar quality of the fit is obtained if R is taken to be of the form

R=roN'"®+b (11)

62



The best fit values in the latter case are: Vo = 6.03¢V, ro = 2.104, b=
1.094, a =0.784.

The expansion in this case of the potential r.m.s. in powers of the particle
number is:

3 b 7, ma 76 ma
2 J1/2 __ 2172 1/3 iy Voo VE BTN AR V-3 Vo T A il P Vo
<rts¥i= G {1+ Lo L - DTNy
T8 49 ma,| Ta, .4
— = — 12
+[67‘8 72(7'0)}(7'0)1V ¥ (12)

It is seen that in this case the leading N-depedent term of the expansion
in curly brackets is proportional to N~1/3 while in the previous case it was
proportional to N~%/3. .

Another least squares fitting procedure we attempted aimed to consider
the average values of the potential depths V; and of the diffuseness parameters
a (Vo = 6.05¢V, @ = 0.794). The parameters in R (expression (11))
were determined by least squares fitting of the expression of < 2 >gr to
the corresponding values obtained by the fitting of the symmetrized W-S
potential to the values of V,¢¢(r) for individual clusters. The best fit values
in this case are: ro = 2.164, b= 0.795A.

It should be noted that the best fit values depend on the clusters consid-
ered. Thus, if among the values of N only those with N > 90 are included in
the fitting, the best fit values in the first of the above mentioned fitting pro-
cedures, with expression (11) for R, become: Vo = 6.01eV, ro = 2284, b=
0.114A and a = 0.87A. The improvement in the quality of the fitting, com-
pared to the one in which the expression R = rqN 1/3 is used becomes now
much smaller.

From our analysis we have realized that the fitting of Ves¢(r) by a (sym-
metrized) Woods-Saxon potential is on the whole fairly satisfactory in most
cases(see e.g. figures 2 and 3). All these results were obtained with the above
mentioned ”"global fitting” and expression (11) for R. In certain cases the
fitting is improved if the "Wine-bottle” symmetrized Woods-Saxon potential
is used. Different choices of w for the individual clusters seem, however, nec-
essary in many cases.It should be noted that in general the latter potential
does not give an improved fitting at least in the "global fitting” procedures.

In fig. 4 and 5 we have plotted the Woods-Saxon potential and the wine-
bottle potential (denoted by 1 in each figure) of ref. 10 used by Nishioka. et
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al [2] (see their fig. 1). In the same figures symmetrized Woods-Saxon and
Wine-Bottle symmetrized Woods-Saxon potentials, obtained in this work are
shown. It is seen that there is in both cases a marked difference in the surface
region.

Finally, in fig. 6 the variation of the radius of the (symmetrized) Woods-
Saxon potential with respect to N/3 is shown. The best fit values used are
those of the above mentioned ”global least squares fitting” and are given
after expression (11). The functional dependence of R on N*/3 is apparent.

Regarding the ”wine-bottle” symmetrized Woods-Saxon potential, the
adjustable parameters in the overall fitting were Vg, a, 70, f and w and their
corresponding best fit values: Vo = 5.882eV, ro = 2. 0544, a = 0.8364,
B =121 and w = 0.134.

In the case of the "wine-bottle” symmetrized Woods-Saxon potential, it
is more difficult to establish the dependence of the potential radius R on the
particle number. This matter is discussed in the appendix. If the expansion
of R derived there is used, the following expression for the r.m.s. radius of
the potential may be derived:

74+ 5w
5+ 3w

2

3
<7 > = (g ) ol

§N“1 + } (13)

If on the other hand, the expression (11) for R is used, we obtain:

13w? + 52w + 35, 7a
1+ - 1/3 222
{ (5+3 A 7+ 5w ()

To

T+ 5w
54+ 3w

<>l = G

)1/2 Nl/S{l + (_Ii_)N—l/S +
To
5(33w? + 90w + 49)a’r? N-23 _
6(7 + 5w)(5 + 3w)rd
_ 5(33w® + 90w + 49)a’7%b | _,
N - 14
607 +5w)(5 1303 T (14)
In fig. 7 the plot: R = f(N'/3), obtained with the best fit values of the

"global fitting” is shown. Moreover, by using these best fit values we plotted
some ”"Wine-bottle” potentials, which are compared to the ones by Ekardt
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Ref (7). The results show that for some of Ekardt’s potentials the ”Wine-
bottle” potential is a rather good approximation as in the case Nay9s (Fig.
8b), while for others, such as for Nago, this is not the case (Fig. 9).

We also performed three least squares fittings to < r* >w.g.:

a) For the Vj, a,w we used the average values V; = 5.841eV,@ = 0.87784
and W = 0.2643 while for the radius R we used the expression R = roN}/3+b,
N, = N — 1, where the fitting parameters were ro and b. We found ro =
2.1154 and b = 0.6953A.

b)For Vg, a, w, we used the same values as above, but for R the expression
was R = roN'/® + b. The fitting parameters were ro and b and their best fit
values: 7o = 2.140 A and b = 0.5428A.

c)We used V, = V, a = @ and the formula R = roN'/3 + b for the radius
and we treated ro, & and w as adjustable parameters. The best fit values
are: ro = 2.1574, b = 0.2684, w = 0.510.

The best quality of the fit among the above three cases was obtained
with the last set of values. Using these values we plotted the corresponding
potential for some clusters. It is obvious that for some of them the results
are rather good e.g. Najgs (Fig. 10) but for others, such as Nagp, this is not
the case (Fig. 11).

Additional fittings were performed with the "Wine-Bottle” symmetrized
Woods-Saxon potential using only the larger clusters (N > 90) in the global
fitting of the potential values. Among the several possibilities which were
tried, the one with R = roN/3 4 b gave the best quality of the fitting. The
best fit values were Vp = 6.027eV, ro = 1.9654, a = 0.8594, w = 0.102 and
b=1641A.

5. The dependence of energy quantities on the number of the
particles.

In this section we give numerical results for energy quantities, such as the
single-particle energies for the ground and the first excited state, the average
level spacing and the lowest energy level spacing and we discuss their vari-
ation with the particle number. In obtaining these results the symmetrized
Woods-Saxon potential was used and its parameters were determined either
by fitting to individual clusters or by means of the "global fitting” (cases I
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and II respectively) using expression (9a) for the potential radius R. The
corresponding values for R are those displayed in table 1.

In table 2 the ground-state (1s) single-particle energies calculated by
Ekardt [7] for a number of neutral sodium clusters with 8 < N < 198
are displayed, along with the values obtained by numerical solution of the
Schrédinger equation with the symmetrized Woods-Saxon potential in cases
I and II (see above and table 1) for the determination of the parameters. In
the same table the E;, energies calculated with the analytic expression

Ei,=-Vo+C N4+ C, N! (15)

are displayed. The parameters Cs, = 7.556eV and C,, = —3.295eV were
determined by least squares fitting to the values of case II. V4 is the potential
depth parameter (V; = 6.031eV). The variation of E;, with the particle
number N is shown in Fig. 12.

The energy values of the first excited state (1p) are displayed in table 3
and the corresponding plots are in figure 13.

The analytic expression in this case is

Eyp=-V+ CPIN—Z/a +Cp N7 (16)

The values of the parameters are: C,, = 16.059eV and C,, = 10.388eV.
Finally,in tables 4 and 5 and Figs. 14 and 15 respectively, the correspond-
ing results are given for the average spacing of the single particle levels of
each neutral sodium cluster AE,, and for the lowest energy level spacing
(LELS):|Ey, — Ey,| of each cluster. The corresponding analytic expression
18:
|Eyp — Ers| = 8.503N "2/ — 7.093N ! (17)
It is seen, on the basis of the previously mentioned results that there is in
general very good agreement between the energy values obtained by Ekardt
[7] and those obtained with the symmetrized Woods-Saxon potential, in both
cases, I and II. It is also seen that although fluctuations of these quantities
with the number of atoms NV are observed, the average trend of each of these
quantities is as expected. Furthermore, the analytic expressions(15),(16),(17)
give good results.
We also note that by using the ”Wine-Bottle” potential,for certain cluster-
s, such as Nagg, Najgs and Najgg for which this potential approximates rather
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well the corresponding Ekardt’s potential,the ground state single-particle en-
ergies are fairly close to those obtained with the symmetrized Woods-Saxon
potential. Note that the larger the cluster the smaller the difference.

We finally performed calculations of the ground state single-particle en-
ergies using the Woods-Saxon potential (with the parameters Vp = 6.031eV,
ro = 2.295 AA, a = 0.781 AA, f = 10.49). The reason for these additional
calculations of the ground state energy is that for the usual Woods-Saxon po-
tential (which, except for the light clusters, coincides with the symmetrized
one) an approximate closed form analytic expression can be given in terms
of the potential parameters. This is the following [18, 20]:

Rix? 1 1
E,, = —'Vo + =y I [(1 n 5"1)2] (18)
where N N N
S =12 Ko [y+¥(1+a Ko)]] /(Ko R) (19)

In this expression Ko= (225%)1/2, while the function ¥ is the logarithmic
derivative of the I' function.This may also be given in the terms of the fol-
lowing expansion:[21]

V(1+aKo)= -+ (-1)""j(n+1)(a Ko)*, aKo<l  (20)

n=1

" where j(n + 1), n = 1,2,... is Riemann’s zeta functions and v Euler’s
constant.(y=0.577). If the complex expression (9a) of R is used and its
expansion (9b) in terms of the particle number we arrive after some algebra
at the following expansion of Ey,:

272
Es ='—Vo+ﬁ

{'2N'5—2r’2(5 )N +[ (—) +3(5 )] SINTS —
[2[3 -2+2( ) St pa3 ) 0‘2]N s+} (21a)

where . "
§ = rgl [Ko —2a [’7 +¥(1+a KO)H
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If expression (11) is used for R, the following expansion of E;, in terms
of N arises:

Bir?

Ey,=-
! VO+2m

~=1
{rg2N-2/3 -2 [brgl+ S } rg: N7+

€

~=1 ~=1
3 [b2r0'2 +2r;t S +(S )2} rg?N—4/3 —

4 [637'0_3 + 3822 ST 43brg "1 (S + (5-1)3] ro~N"5/3 4 } (218)

It is seen from the above expressions that the ground state single-particle
energy eigenvalue depends more strongly on the potential depth V5 and the
potential radius parameter 7o and more weakly on the diffuseness parameter
a and the other parameters b and S appearing in the expression of R.The
heavier the cluster the weaker the influence of the latter parameters.In par-
ticular the parameter S does not appear at all in the first four terms of the
corresponding expansion.

It is also clear from the above expressions that the leading terms depend-
ing on N are of the order N~%/3 and N~*. This corroborates the validity of
expression (15) used earlier.

The numerical results obtained with expression (18) and the first three
terms of expression (21a), along with the Ekardt’s values and those with the
numerical solution of the Schrédinger equation are presented in Table 6. It
is seen that the above analytic expressions give in most cases satisfactory
results.

6. Summary and conclusions

In this paper an attempt was made to investigate in some detail the vari-
ation of quantities related to the radial extension of the electronic potential
and of energy quantities reffered to the single particle electronic states of
neutral sodium clusters with the number of atoms.This was done by con-
sidering the effective potentials obtained by Ekardt[7] and parametrizing
them by means of (Symmetrized) Woods-Saxon and ”Wine bottle” Sym-
metrized Woods-Saxon potentials. Two main least-squares fitting procedures
were used,although other possibilities were also considered:

1)”Global least squares fitting,” in which the analytic expressions of the
above potentials were fitted to potential values of all the clusters considered
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by Ekardt (8 < N < 198),treating Vo, a and the other parameters as fitting
parameters.

ii)”Fitting to the mean-square radii < 72 > of the above potentials”.In
this case, the average values of V;, a : V; and @ for the clusters considered
were used. The other parameters were determined by least-squares fittings
of the analytic expressions of < r? >(for each of the two potentials) to the
values of < r? > obtained by using as parameters those resulting by fitting
for each individual cluster the analytic expression (2) or (5) to values of the
effective potential.

It was found on the basis of the above treatments that in certain cases
the fitting is fairly satisfactory,while in others this is not the case.

The depedence of the potential radius R of the Symmetrized Woods-
Saxon or the "Wine-bottle” Symmetrized Woods-Saxon potential on the
particle number NV was established on the basis of the observation that the
volume integral of these potentials,which can be derived analytically,varies
with N like ¢N + d.This led to rather complex analytic expressions forR
and also for the r.m.s.radius< r? >!/2 of the potential.Expansions of these
quantities in powers of N were derived for each of those potentials. It was
found that additional correction terms to the standard expression R = ro N/3
for the Symmetrized Woods-Saxon potential which are, of the order N=1/3,
N~/ or higher appear now in R(see expression (9b)). Analogous comments
hold for the "Wine-bottle” Symmetrized Woods-Saxon potential and for the
r.m.s.radii of the potentials.It seems worth while to point out that with the
above expressions for R or with an expression of the form R = 7o N'/3 4+ b a
marked improvement in the quality of the fitting is observed and therefore
these expressions seem more appropriate to use in practice, than the one
R =ro N3 which is commonly used. To our knowledge, this is pointed out
for the first time , pertaining to atomic clusters.It should be noted,however,
that the observed improvement becomes very small if the analysis is confined
only to the heavier clusters (N > 90).

Another variation with the particle number N which was examined was
that of the energy of the lower electronic states,of the corresponding low-
est energy level spacing and of the average level spacing.It was found that
Ekardt’s results can be reproduced quite satisfactorily by the corresponding
results obtained with the numerical solutions of the Schrodinger equation
with the (Symmetrized) Woods-Saxon and the” Wine-bottle” Symmetrized
Woods-Saxon potential(using parameters either by fitting to individual clus-
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ters or those of the "global fitting”). Furthermore, it was realized that the
same conclusion holds if the simple analytic expressions (15) and (16), for
the energies of 1s and 1p states respectively, are used. Finally, a closed form
analytic expression for the E;, state in terms of the potential parameters
was considered(expression (18)) for the Woods-Saxon potential with good
results. The leading terms of the expansion of this expression in powers of N
(with either of the expressions for R) provide also justification for the use of
the expression(15).
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APPENDIX

In this appendix, we outline the derivation of the expression for the Wine-
bottle potential radius R as a function of the number of particles N. This is
based on the observation that the volume integral (6) varies with NV, like cN +
d , as was also found for the symmetrized Woods-Saxon one. The relevant
expression is, however, more complex, since the equation which follows from
(6) is now of fourth order:

(5 + 3w)R* + 5a®r%(1 + 2w)R? — 57> NR + Ta*r*w = 0 (A1)

The r{ is given by the same expression as in the symmetrized Woods-
Saxon potential. The above equation may be transformed into a third-order
one. Thus,the solution of (A.1) is given by the following expression:

R= % [\ fbr — ag + \/—a2 — 1+ 202 — 4a4J (A.2)

where
1[;1=(P+«/Q3+P2)1/3+(P—«/Q3+P2)1/3+M (A.3)
3(5 + 3w) '
and
p_ 2N [ 10a75(1312w° + 2976w? + 1110w — 25) (44)
2(5 + 3w)? 675(5 + 3w)r,° N? '
a*m*(352w? + 520w + 25)
Q=- 9(5 + 3w)? (4.5)
5alr?(1 4 2w) Tar*w
“= v 54w A8
From the above expression of R, the following expansion may arise:
5 5 a’r? B
B 13, N1/3 )1 1/3 9 -2/3 ; P ar-1
()" (1/3) (o) 0+ 20) N0 + 2N

15\ 432924w? + 4940w — 25 + 8L ar?

“1aG a0 (5 + 3w)? ( ra

)N—4/3 +
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B, 5 a’r?, 53
+9(5+3w)1 3(1 + 2w)( . YNT3% 4 (A7)

where

93(1312w? + 2976w? + 1110w — 25)? — 25(352w? + 520w + 25)°

75 )'° (A8)

L=(

It should be also noted that there is a marked dependence of the pa-
rameter w on N : w = w(N). We may also note that the first four or five
terms of this expansion give quite accurate values of R in the cases we have
investigated.
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Fig. 1. The volume integral of the Symmetrized Woods-Saxon potential
as a function of the number of particles N.The potential parameters of each
cluster were determined by least squares fitting of expression (2) to corre-
sponding values of V,¢; of ref[7].
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Fig. 2. The V.s4(r) of Ekardt [7] for N = 198(denoted by (x) points)
and the corresponding symmetrized Woods-Saxon one (solid line) plotted
with the best fit values of the "global fitting” and R = roN'/® + b.
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Fig. 3.The Vesf(r) of Ekardt [7] for V = 68 (denoted by (x) points) and
the corresponding symmetrized Woods-Saxon one (solid line) plotted with
the best fit values of the "global fitting” and R = roN/3 + b.
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Fig. 4. The Woods Saxon potential (No 1) with the parameters of ref
(2] for the cluster with N=1000 and the corresponding symmetrized Woods-
Saxon potential of this work (No 2) using the expression R = ro/N'/*+ b and
the best fit values: Vo = 6.014eV, 1o = 2.28A4 and b= 0.114;&,(1 = 0.87A.

Fig. 5. The wine-bottle-potential (No 1) for N = 1000 obtained with
the method of ref. [10] and used in ref. [2] and the ”"Wine-bottle” sym-
metrized Woods-Saxon potential (No 2) of this work using the expression
R = roN'/3 4+ b and the best fit values: Vo = 6.03¢V,ro = 1.974,b =

1.644,a = 0.864, w = 0.102,.
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Fig. 6. The variation of the radius R of the Symmetrized Woods-Saxon
potential with respect to the cubic root of the particle number N. The values
of R obtained by performing least squares fitting of Vsg(r) to the V.s/(r) of
Ekardt[7] for individual clusters are denoted by @, while those values obtained
by a "global least squares fitting” using the expression R = roN1/3 + b are
denoted by X. '
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Fig. 7. Plot of R = f(N'/?) with parameters obtained by a "global fit-
ting” of the values of the ”Wine-bottle” potentials to the values of Ekardt’s
[7] potentials.
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Fig. 8. The plotts V.sf(r) of Ekardt for N = 40 and N = 198 sodium
atoms (denoted by (x) points) and the corresponding ”Wine Bottle” poten-

tial (solid line) obtained using the expression A2 for the radius R and the best
fit values Vo = 5.882eV,ry = 2.054A4,a = 0.836A4,8 = 1.21 and w = 0.134
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Fig.9. The plots V.ss(r) of Ekardt for N = 20 and N = 90 sodium
atoms (denoted by (x) points) and the corrresponding ”Wine bottle” poten-
tial (solid line) obtained using the expression for the radius R = roN'/3 + %
and the best fit values of the "global fitting”. Vo = 5.882¢V,ry = 2.0544,a =
0.8364,b = 1.094 and w = 0.131.

81



10 12 14 16

=
1)
L
£
<0

2 st Ekarde [7] /‘

- x
—— LB
>
3 -

Fig.10. The plot of Ekardt potential for the Naygs cluster denoted by
(z) points and the corresponding ”Wine bottle” potential (solid line), which
is obtained with parameters determined by least squares fitting of < r? >w..
(see text).
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Fig.11. The plot of Ekardt potential for the Nago cluster denoted by (z)
points and the corresponding "Wine bottle” potential (solid line), which is
obtained with parameters determined by least squares fitting of < 72 >wp.
(see text).
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Fig. 12. The ground state single particle energy Ey, as a function of the
number of atoms N in the neutral cluster.
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Fig.13. The single particle energies of the 1p—state, as a function of the

number of atoms N in the neutral cluster.
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Fig.14. The average energy level spacing, as a function of the number of

atoms N in the neutral Na clusters.
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Fig.15. The lowest energies level spacing as a functlon of the number of
atoms /V in the cluster.
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SYMMETRISED WOODS-SAXON POTENTIAL
N Casel o Case II
Individual R (A) Global fit R.(&)
8 5.199 5.290
18 6.508 6.593
20 6.790 6.790
34 7.703 7.893°
40 8352 8.271
58 9.158 9.218
63 9.738 9.661
90 10367 10.500
” 10522 10.570
106 11.120 11.028
132 11.670 11782
138 11.988 11.942
168 12.561 12.677
186 13.031 13.077
198 13477 . 13205

Table 1. The values of the Symmetrized Woods-Saxon potential radius
R determined by fitting to individual clusters (case I: Individual R) or by
a "global fitting” (case II: global fit R) using the expression (9a) for R and
Vo,70,a, B as adjustable parameters.

1s-LEVEL (eV)

I . Casel Case I Analytic
N | BRI i vidual K| Global fit R Jexpression (15)
8 4.55 456 4.56 4,55
18 -5.10 -5.10 511 -5.11
20 5.15 512 512 517
34 -5.41 544 -5.45 -5.41
40 5.41 542 5.42 -5.46
58 -5.59 -5.60 -5.60 -5.58
63 -5.53 -5.53 -5.53 -5.62
%0 -5.76 576 577 -5.69
92 -5.63 -5.64 5.64 -5.69
106 -5.64 -5.67 5.65 572
132 -5.86 -5.87 5.87 5.76
138 -5.79 -5.80 579 -5.77
168 -5.91 -5.90 -5.91 -5.80
186 -5.92 592 -5.93 -5.82
193 -5.81 -5.83 5.82 -5.83

Table 2. The ground state (1s) single particle energies for neutral sodium
clusters calculated in ref. [7] along with those obtained through numerical
integration of the Schrédinger equation using the symmetrized Woods- Saxon
potential (cases I and II, as in table 1). In the last column the same energy
values obtained with the analytic expression (15) are also displayed.
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Ip-LEVEL (eV¥)

o Case [ ! Casz [T | Analyuc

N | Bkt ReCl7)Tndividual R | Global fit R | espression (16§
8 3352 3.33 332 3351
12 <4.21 420 475 1.27
20 <433 <439 439 57
34 4,74 476 4,75 -4.80
40 <94 4.95 <4.95 .92
53 -5.11 511 511 513
68 -5.18 -5.19 -5.19 B
%0 -5.35 536 3.3 -5.33
) -5.27 5.2 3.2 -535
106 538 3539 -5.39 -3.41
152 -3.49 549 549 -5.49
33 -3.358 -3.57 -5.37 5N
163 -5.60 -5.60 -5.60 .5.57
136 -5.65 -5.65 -5.66 539
193 -5.63 -5.66 -3.63 -3.61

Table 3. The single particle energies of the 1p—state for neutral sodium
clusters (see table 2). The analytic expression (16) has now been used.

AVERAGE SPACING (eV)

) Case ! | Cusa I

N |EkdtRef() Mpdividual R | - Global fit R,

s .23 1.3 1.3
18 0.98 0.98 0.99
20 0.78 0.77 0.77
34 0.57 0.58 0.58
a0 0.53 0.53 0.53
58 0.41 0.41 0.41
68 0.47 0.47 0.47
S0 0.38 0.39 0.38
73 0.31 0.31 0.31
106 035 0.37 0.37
152 0.51 0.51 0.51
158 0.24 0.23 0.28
168 0.27 0.27 0.27
136 0.28 0.28 0.28
198 0.25 0.26 0.26

Table 4. The average energy level spacing AE(av) for neutral sodium
clusters (see table 2).
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LELS (eV)

o Case [ ! Case Ii Analytic |

N B R T i idual R | Global it R |erpression (171
s 123 i 1.25 .29 1.24
18 nsy | 0. 0.85 0.34
0 077 073 0.73 0.80
3 0.67 i 0.6% 0.70 0.61
40 0.47 i 047 0.47 0.34
58 0.43 0.49 0.49 0.45

68 0.25 : 0,34 0.24 0.40 i

o0 041 i 0.4y 0.41 034 i

92 0.36 ! 0.26 0.36 0.3 {
106 0.26 l 0,28 020 03
132 ! W37 ' 0.38 0,38 u.zT
138 0.2) t 0.23 032 0.26
16s | 0.31 : 0.30 0.31 023
136 | 0.27 ! 0.27 0.27 0,23
198 | m16 ! 017 0.17 i 022

Table 5. The energy level spacing between 1p and 1ls states (lowest
energy level spacing:LELS) for sodium clusters (see table 2). The analytic
expression (17) has now been used.

WOODS-SAXON POTENTIAL
ls - LEVEL (eV)

S—— - e e b
q ! o : 12| Numerical] Exprossi 3 first terms! Analytic

N |! Ekardt Ref.[7) L E‘\pzrl b::.;mn of \3(-'\;}3;\:‘“0“ gcxPrCSSil)‘] us)!

$ | 455 <482 494 S15 | ass

13 -5.10 -5.32 =330 53560 ¢ 5.1

000 5us -5.40 2534 539 a7

o1 54l -5.52 -3.50 83 T a4l

] sl -3.33 -3.35 5360 1 2546
OSY o 589 -5.64 -5.64 565 | .5.5%

638 -3.53 -5.65 -5.67 -5.68 I -5.62
LoD -5.76 57 | AT 573, 5.9
92 -5.63 S0 573 534 ! 5.6
L o106 -5.64 -5.71 -5.75 536 1 572
R E -5.86 -5.80 S8 L 579 b 576

138 1 579 -5.82 -5.79 5800 L 597
eS| .50l -5.89 582 582 1 .ss0 |
| 186 -5.92 -5.90 -5.83 58 1 s
198 -5.81 -5.83 -5.84 584 -5.83

Table 6. The ground state (1s) single particle energies for neutral sodi-

um clusters, calculated in ref. (7], along with those obtained by the numerical
solution of the Schrodinger equation using the Woods-Saxon potential. Also

the same energies obtained by means of the analytic expressions (18) (21a)
and (13) are given.
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