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PARTICLE N U M B E R D E P E N D E N C E OF SIZE A N D E N E R G Y 
QUANTITIES I N SODIUM CLUSTERS. 

B.A.Kotsos and M.E.Grypeos 
Department of Theoretical Physics 

Aristotle University of Thessaloniki, GR 54006, Greece 

Abstract 

The effective radial electronic potentials for neutral sodium clusters, which 
were determined by Ekardt on the basis of the local density approximation 
and the jellium model, are parametrized by means of the (symmetrized) 
Woods-Saxon and "Wine-Bottle" symmetrized Woods-Saxon potentials with 
the aim of investigating the dependence of size and energy quantities on the 
cluster particle number. The potential parameters are determined by vari
ous least-squares fitting procedures. It is found that for the radius R of the 
above potentials, complex expressions are more appropriate than the stan
dard one R = roiV1/3 for relatively small values of N. Furthermore, N-power 
expansions are derived for those complex expressions of i?, as well as for the 
r.m.s. radius of the potential. It is also found that improved results in these 
cases are obtained with an expression of the form R = roiV1/3 -f 6, which 
is still very simple. There is also investigated the variation of energy quan
tities, such as the single particle energies of the Is and lp states, the level 
spacing \E\P — E\s\ and the average energy level spacing, with respect to the 
particle number N. Expressions for the first three of these quantities with 
N-dependent terms of the form aN~2^3 + βΝ~ι give good results. 
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1. Introduction 

The knowledge of the mean field potentials for electrons in metal clusters 
is needed in various calculations, such as in the case of single-particle level 
densities, and electronic binding energies [1,2]. In practice, it is sometimes 
convenient to use parametrized forms of these potentials, as in ref. [2] where 
the shell and supershell structure were studied for Ν a clusters. 

In this paper we consider in some detail the effective radial electronic po
tential Veff(r) in the spherical and homogeneous jellium model as determined 
by using the local-density approximation. The density functional theory of 
Hohenberg, Kohn and Sham [3] has been used repeatedly in studies of metal
lic clusters, such as those in refs. [4]-[8]. Ekardt used the above mentioned 
method in his spherical-jellium- background model(SJBM) study of the metal 
cluster work function , the self consistent determination of the charge density 
and of the self consistent effective one-particle potential. 

Ekardt's potentials have been parametrized in ref. [2] by a spherical 
Woods-Saxon (W-S) potential 

V W s ( r H - 1 + J ° _ f i ) / a , 0 < r < o o (1) 

with V0 = 6eV,R = r0N^3,r0 = 2.25Â and a = 0.74Â 
Nishioka et al [2] have also considered another type of potential obtained 

in ref. [9] through a combination of a semiclassical approximation and ap
plication of the Kohn-Sham density functional method to a positive jelli
um background. The inner part of this potential is slightly shallower while 
the outer part is deeper than the Woods-Saxon potential. This potential of 
"wine-bottle" shape has also been used in ref. [2] for the study of supershells. 

In this paper we consider Ekardt's effective potentials for neutral sodi
um clusters and discuss a parametrization procedure, mainly by means of 
symmetrized Woods-Saxon potentials as well as "wine-bottle symmetrized 
Woods-Saxon" ones, and determine their parameters through least squares 
fittings. Our main objective is to investigate the variation of size and ener
gy quantities of those clusters with respect to the particle number N. The 
layout of the paper is as follows: In the next two sections we discuss the 
above mentioned potentials, specify the notation and give some useful rel
evant formulae. In section 4 we report the numerical results of the various 
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least squares fittings and we investigate the way in which the potential radius 
R and the root mean square radius of the potential varies with ΛΓ by deriv
ing the corresponding analytic expressions and their expansions in powers 
of N. In section 5, the problem of the variation of such quantities as the 
lower single particle energies and the energy level spacings with respect to 
the particle number Ν is investigated and relevant analytic expressions are 
also discussed. The final section is devoted to a summary and conclusions. 

2. The symmetrized Woods-Saxon potential 

The symmetrized Woods-Saxon potential we are using is the following: 

sinh(R/a) 
VSF(T) = -VofSF(r) = -Vo 

cosh(r/a) + cosh(R/a) 

= -Vo [1 + exp- -] * + [1 + exp- -] l - 1 0 < r < oo (2) 

The form factor of this potential has the shape of the symmetrized Fermi 

distribution which has been used to describe successfully the densities of 

nuclei for a wide range of mass numbers [10]. The potential (2) has been 

used pretty recently in analyses of hypernuclei [11] and also as a nuclear 

single particle potential [12]. It is very closely related to the so-called "cosh" 

potential used in ref. [13] as a cluster-core potential in Nuclear Physics. 

The potential (2), which, unlike the Woods-Saxon potential, has zero 

slope at the origin, resembles somehow the Gaussian one for small values of 

R/a, while for R/a » 1 gets very close to the Woods-Saxon one. 

One feature of the potential (2) is that its volume integral is given exactly 

by the following simple analytic expression: 

j T VSF{rydr\ = Çv0A»[l + φ 2 ] (3) 4ττ 

The same holds for its m.s.radius 

< r2 >SF= |ß2[l + 5 φ 2 ] (4) 

More generally, the n-th moment of potential (2) may be given analytically 

[12]. In the case of the Woods-Saxon potential there are additional exponen

tial terms. Thus, the expression of its n-th moment becomes more complex. 
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Since the condition R/a » 1 is well satisfied, both for nuclei and atomic 
clusters, except for the very light ones, the symmetrized Woods-Saxon po
tential gives results almost identical to the Woods-Saxon ones, even for small 
values of the mass number and particle number TV, respectively. The present 
analysis corroborates also this fact. 

3. The "Wine-bottle" symmetrized Woods-Saxon potential 

Another parametrization of the effective potential, which seems to be 
rather interesting, is the following one which is of "wine- bottle" shape 

w'r2. sinh(R/a) „ ^ .„. 
VWB{r) = -Vo(l + — ) \ ' [ , 0 < r < o o 5 

R? coshyrja) + cosh(R/a) 

for suitable choices of the parameter w. 
The volume integral of the potential (5) may be obtained analytically 

though its expression is a little more complex than that of the potential (2). 
The result of integration leads to: 

I f°° 
4π / VWs(r)r2G?r 

I Jo 

^Votf 3tt\ . Λ w^ûxo 7 ,πα.Λ (l + T ) + (l + 2u,)(—) 2 + - t o ( — ) 4 

It is immediately seen that for w = 0 this expression goes over to (3), 
as should be the case. Analytic expressions for the various moments of the 
potential may be also derived. The mean square radius for the "Wine-bottle" 
potential (5) is given by the expression: 

2 _ 3(7 + 5w)R? + 35(2 + 3w)a2x2R4 + 49(1 + 5w)a4r4R2 + 155α6ττ6κ; 

<r >W.B- 7(5 + 3w)R4 + 35{l + 2w)a2x2R2 + 49a4r4w 

(7) 
We note that potential (2), or alternatively (δ), should also be able to 

roughly reproduce the effective potential in the inhomogeneous jellium mod
el [14]. Moreover, potential (5) may also reproduce the modified jellium 
potential of ref. [15]. We also note that the substitution of a higher degree 
polynomial (or a suitable function of r) for (l+w^) in (5), is likely to repro
duce the wavy character of the local equivalent potential of ref. [16] (see fig. 
2, of this reference) for individual clusters. Finally, we may point out that 
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it would be of interest to also consider the possibility of parametrizations of 

the form (2) or (5) of the average potential for the atom in the cluster, in 

the spirit of ref. [17]. 

4. The particle number depedence of quantities related to the 
radial extension of the effective electronic potential. 

In this section we investigate the problem of the determination of the 
explicit dependence of the radius R and of the root-mean-square radius 
< r2 >ll2 of the potentials (2) and (5) on the particle number. We considered 
Ekardt's effective local mean field potentials for the valence electrons in neu
tral sodium clusters with particle numbers Ν = 8,18,20,34,40,58,68,90,92,106, 
132,138,168,186, 198 [7] and we performed "a global least squares fit" of the 
symmetrized Woods-Saxon potential to the potential values for all these clus
ters by treating Vo, a and the parameter ro in R = r0N

1/3 as adjustable pa
rameters. According to the size of each cluster, about 15-30 points covering 
the interval where the potential differs practically from zero have been consid
ered and the corresponding potential values were estimated from the figures of 
ref. [7]. The best fit values are: V0 = 6.05eV, r 0 = 2.34 AA, a = 0.79 AA. 

The same procedure was repeated by adopting as R a fairly complex 
function of N. That function results from the observation that to a good ap
proximation, the volume integral of the symmetrized Woods-Saxon potential 
for each cluster varies with Ν as cN + d = c(l + ^)NÌ where c and d are 
constants. That functional dependence is obvious from Fig.l. 

Thus we may write, by means of (3): 

i?3 + (απ)2/? = r'$N (8) 

where r'0 = r 0 ( l + fo1* , r 0 = ( ^ ) ^ and β = J 
In this way we arrive at an equation for R which is of the same form 

as the one appearing in studies of nuclei or hypernuclei on the basis of the 
rigid-core model (see ref. 11,12,18 and references therein). The difference 
is that, in the present case, the parameter ro becomes r'0 and depends on 
the particle number. Furthermore, instead of Nc — Ν — 1,N appears now in 
the equation. The third order equation (8) can be solved exactly [18,19] and 
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one gets the following expression for the potential radius as a function of the 
number of particles: 

R= —r'N1'3 
4 . ττα 

1 + ' 1 + 27(^f^>' 
611/2 

1/3 

+ 

+ 
πα 

' - t 1 + 2 7 ^ 1 
νβιΙ/2 

1/3· 

(9α) 

From this expression we may derive the following expansion by taking 

also into account that r'0 depends upon N. 

R = roN1'3 (l - \(™γΝ->Ι3 + ξ iV-1 + L-fN^'3 + 
( 3 r 0 3 3 2 Γ0 

«3 TQ } (96) 

We also note that the explicit dependence of the potential r.m.s. radius 
on the particle number follows from expressions (4) and (9a). Furthermore, 
the leading terms in an expansion of < r 2 > l y / 2 in powers of the particle 
number are easily derived. The result is: 

< ? >#= (ΙγΙ\0Ν^ i l + \(™fN-V> + f Λ'"1 - h-YN-*l> -
o l ο r 0 ο 24 r0 

9 V o ; J 
(10) 

It is clear that in this generalized case, apart from the parameters Vo, 
r 0 and a, there is an additional parameter β. By using these parameters 
as fitting parameters we get the following best fit values: Vo = 6.03eV, 
r 0 = 2.295Â, a = 0.781Ä and β — 10.49. In this case a marked improvement 
in the quality of the fit is observed in comparison to the one obtained with 
the simple expression R = roiV1/3. 

A very similar quality of the fit is obtained if R is taken to be of the form 

R = r0N
l/3 + b (11) 
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The best fit values in the latter case are: VQ = 6.03eV, r0 = 2.10Â, 6 = 
1.09Â, a = 0.78Â. 
The expansion in this case of the potential r.m.s. in powers of the particle 
number is: 

< r> >S£- df'W3 (l + -ΛΤ^ + l{™fN-Vi _ Ι5.(ΞΪ)»#-> + 
• 5 ^ TQ υ rQ 6r 0 r 0 

+ 
762 49,™>.2 
6^~72 ( V 

(™)2^-4/3 + > Ì ( 1 2 ) 
ro J 

It is seen that in this case the leading iV-depedent term of the expansion 
in curly brackets is proportional to JV-1/3 ,while in the previous case it was 
proportional to N~2^3. 

Another least squares fitting procedure we attempted aimed to consider 
the average values of the potential depths VQ and of the diffuseness parameters 
α (Vo = 6.05eV, α = 0.79Â). The parameters in R (expression (11)) 
were determined by least squares fitting of the expression of < r2 >SF to 
the corresponding values obtained by the fitting of the symmetrized W-S 
potential to the values of Κ//(0 for individual clusters. The best fit values 
in this case are: ro = 2.16Â, 6 = 0.795Â. 

It should be noted that the best fit values depend on the clusters consid
ered. Thus, if among the values of Ν only those with Ν > 90 are included in 
the fitting, the best fit values in the first of the above mentioned fitting pro
cedures, with expression (11) for R, become: Vo = 6.01eV, r 0 = 2.28Â, 6 = 
0.114Â and a = 0.87Â. The improvement in the quality of the fitting, com
pared to the one in which the expression R = r0N

1^3 is used becomes now 
much smaller. 

From our analysis we have realized that the fitting of Vefj(r) by a (sym
metrized) Woods-Saxon potential is on the whole fairly satisfactory in most 
cases(see e.g. figures 2 and 3). All these results were obtained with the above 
mentioned "global fitting" and expression (11) for R. In certain cases the 
fitting is improved if the "Wine-bottle" symmetrized Woods-S axon potential 
is used. Different choices of w for the individual clusters seem, however, nec
essary in many cases.It should be noted that in general the latter potential 
does not give an improved fitting at least in the "global fitting" procedures. 

In fig. 4 and 5 we have plotted the Woods-Saxon potential and the wine-
bottle potential (denoted by 1 in each figure) of ref. 10 used by Nishioka et 
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al [2] (see their fig. 1). In the same figures symmetrized Woods-Saxon and 
Wine-Bottle symmetrized Woods-Saxon potentials, obtained in this work are 
shown. It is seen that there is in both cases a marked difference in the surface 
region. 

Finally, in fig. 6 the variation of the radius of the (symmetrized) Woods-
Saxon potential with respect to TV1/3 is shown. The best fit values used are 
those of the above mentioned "global least squares fitting" and are given 
after expression (11). The functional dependence of R on N1^3 is apparent. 

Regarding the "wine-bottle" symmetrized Woods-Saxon potential, the 
adjustable parameters in the overall fitting were V0ia,r0iß and w and their 
corresponding best fit values: VQ = 5.882eF, r0 = 2.054Â, a = 0.836Â, 
β = 1.21 and w = 0.134. 

In the case of the "wine-bottle" symmetrized Woods-Saxon potential, it 
is more difficult to establish the dependence of the potential radius R on the 
particle number. This matter is discussed in the appendix. If the expansion 
of R derived there is used, the following expression for the r.m.s. radius of 
the potential may be derived: 

If on the other hand, the expression (11) for R is used, we obtain: 

2 O/A. _ / 3 Μ / 2 / 7 + 5 ^ Μ / 2 _ ΛΓΐ/3/1 ,(Kpj-l/S ^ = ( ^ 1 / 2 ( o r ë ) 1 / 2 r o i V l / 3 { 1 + Î ) i V " 1 / 

5(33w2 + 90w + 49)a27T2
 2 / 3 _ 

6(7 + 5tu)(5 + Sw)r$ 

5(33^2 + 90u; + 49)a 2
7r 26 i V_ 1 + . (U) 

6(7 + 5w)(5 + 3u;)r3
) 

In fig. 7 the plot: R — /(iV1/3), obtained with the best fit values of the 
"global fitting" is shown. Moreover, by using these best fit values we plotted 
some "Wine-bottle" potentials, which are compared to the ones by Ekardt 
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Ref [7]. The results show that for some of Ekardt's potentials the "Wine-
bottle" potential is a rather good approximation as in the case Na198 (Fig. 
8b), while for others, such as for Na9Qi this is not the case (Fig. 9). 

We also performed three least squares fittings to < r2
 >W.B.'· 

a) For the Vo,a,u> we used the average values Vo = 5.841eV,a = 0.8778Â 
and w = 0.2643 while for the radius R we used the expression R = r0N^3-\-b, 
Nc = Ν — 1, where the fitting parameters were r 0 and b. We found r 0 = 
2.115Â and b = 0.6953Â. 

b)For Vo, a, w,we used the same values as above, but for R the expression 
was R — r0N

1/3 -f 6. The fitting parameters were r0 and 6 and their best fit 
values: r0 = 2.140Â_and 6 = 0.5428Â. 

c)We used Vo = V0, a = α and the formula R = roiV1/3 + b for the radius 
and we treated r 0 , b and iv as adjustable parameters. The best fit values 
are: r0 = 2.157Â, 6 = 0 .268Â,IU = 0.510. 

The best quality of the fit among the above three cases was obtained 
with the last set of values. Using these values we plotted the corresponding 
potential for some clusters. It is obvious that for some of them the results 
are rather good e.g. Nai98 (Fig. 10) but for others, such as Nago, this is not 
the case (Fig. 11). 

Additional fittings were performed with the "Wine-Bottle" symmetrized 
Woods-Saxon potential using only the larger clusters (iV > 90) in the global 
fitting of the potential values. Among the several possibilities which were 
tried, the one with R = roiV1/3 + 6 gave the best quality of the fitting. The 
best fit values were V0 = 6.027eV, r0 = 1.965Â, a = 0.859Â, w = 0.102 and 
6 = 1.641Â. 

5. The dependence of energy quantities on the number of the 
particles. 

In this section we give numerical results for energy quantities, such as the 
single-particle energies for the ground and the first excited state, the average 
level spacing and the lowest energy level spacing and we discuss their vari
ation with the particle number. In obtaining these results the symmetrized 
Woods-Saxon potential was used and its parameters were determined either 
by fitting to individual clusters or by means of the "global fitting" (cases I 
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and II respectively) using expression (9a) for the potential radius R. The 
corresponding values for R are those displayed in table 1. 

In table 2 the ground-state (Is) single-particle energies calculated by 
Ekardt [7] for a number of neutral sodium clusters with 8 < Ν < 198 
are displayed, along with the values obtained by numerical solution of the 
Schrödinger equation with the symmetrized Woods-Saxon potential in cases 
I and II (see above and table 1) for the determination of the parameters. In 
the same table the Eu energies calculated with the analytic expression 

Eu = -Vo + CaiN~2'z + CS2N~X (15) 

are displayed. The parameters Cai = 7.556eV and CS2 = —3.295eV were 
determined by least squares fitting to the values of case II. Vo is the potential 
depth parameter (Vo = 6.031 eV). The variation of E\a with the particle 
number Ν is shown in Fig. 12. 

The energy values of the first excited state (lp) are displayed in table 3 
and the corresponding plots are in figure 13. 

The analytic expression in this case is 

Elv = -Vo + CPlN~2'3 + CP2N-X (16) 

The values of the parameters are: CP l = 16.059eV and CP2 = 10.388eV. 
Finally,in tables 4 and 5 and Figs. 14 and 15 respectively, the correspond
ing results are given for the average spacing of the single particle levels of 
each neutral sodium cluster AEav and for the lowest energy level spacing 
(LELS^I-Eip — i?i s | of each cluster. The corresponding analytic expression 
is: 

\Eip - Els\ = 8.503iV-2/3 - 7.093ÌV1 (17) 

It is seen, on the basis of the previously mentioned results that there is in 
general very good agreement between the energy values obtained by Ekardt 
[7] and those obtained with the symmetrized Woods-Saxon potential, in both 
cases, I and II. It is also seen that although fluctuations of these quantities 
with the number of atoms Ν are observed, the average trend of each of these 
quantities is as expected.Furthermore, the analytic expressions(15),(16),(17) 
give good results. 

We also note that by using the "Wine-Bottle" potential,for certain cluster-
s, such as Na,2o, ΝαΧο6 and -/Va198 for which this potential approximates rather 
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well the corresponding Ekardt's potential,the ground state single-particle en

ergies are fairly close to those obtained with the symmetrized Woods-Saxon 

potential. Note that the larger the cluster the smaller the difference. 

We finally performed calculations of the ground state single-particle en

ergies using the Woods-Saxon potential (with the parameters Vo = 6.031eV, 

r 0 = 2.295 AA, a = 0.781 AA, β = 10.49). The reason for these additional 

calculations of the ground state energy is that for the usual Woods-Saxon po

tential (which, except for the light clusters, coincides with the symmetrized 

one) an approximate closed form analytic expression can be given in terms 

of the potential parameters. This is the following [18,20]: 

Els = -Vo + 
ftV 1 

2m e B? 

1 

(1 + S- 1 ) 2 

where 

5 " J = 1 - 2a Ko [7 + Φ(1 + a K0)} /{K0 R) 

(18) 

(19) 

In this expression Ko= (2 τ^ξνο)1/2

ι while the function Φ is the logarithmic 

derivative of the Γ function.This may also be given in the terms of the fol

lowing expansion: [21] 

Φ(1 + αΑΌ) = - 7 + Σ ( - 1 ) η + ^ ( η + 1 ) ( α Α ' ο ) η > aKo<\ (20) 
π=1 

where j(n + 1), η — 1,2,... is Riemann's zeta functions and 7 Euler's 

constant.(7=0.577). If the complex expression (9a) of R is used and its 

expansion (9b) in terms of the particle number we arrive after some algebra 

at the following expansion of .Ει,: 

Eu = -Vo+ 
h2T2 

2rne V ° 
Λ Γ 3 

— 1 

2r0-
2(S~V'+ i|(™)2 + 3(5 7 

Lo r 0 

~?N-

^ 0 - * + 2 ( ^ ) ' 5 - ν + 4 ( Γ ) ν 

where 

r 0 

5 - 1 = rö 1 

Ν' u.) (21α) 

r ~ - 1 
Ä'o —2α 7 + Φ(1 + α Ä'o) 
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If expression (11) is used for R, the following expansion of Els in terms 
of JV arises: 

Els = -Vo + ^ - { r ^ N - ^ - 2 brô x+ S 
,-i 

r-'N-1 + 

b2r-2 + 2br-1S~1 HS'')2 r~2N-^3 -

& V + 3 è V S"1 +36r 0 - 1 (5- 1 ) 2 + (S"1)3] r0-
2N~5/3 + ...} (216) 

It is seen from the above expressions that the ground state single-particle 
energy eigenvalue depends more strongly on the potential depth V0 and the 
potential radius parameter fo and more weakly on the diffuseness parameter 
a and the other parameters b and β appearing in the expression of .R.The 
heavier the cluster the weaker the influence of the latter parameters.In par
ticular the parameter β does not appear at all in the first four terms of the 
corresponding expansion. 

It is also clear from the above expressions that the leading terms depend
ing on Ν are of the order jV-2/3 and iV-1. This corroborates the validity of 
expression (15) used earlier. 

The numerical results obtained with expression (18) and the first three 
terms of expression (21a), along with the Ekardt's values and those with the 
numerical solution of the Schrödinger equation are presented in Table 6. It 
is seen that the above analytic expressions give in most cases satisfactory 
results. 

6. Summary and conclusions 

In this paper an attempt was made to investigate in some detail the vari
ation of quantities related to the radial extension of the electronic potential 
and of energy quantities reffered to the single particle electronic states of 
neutral sodium clusters with the number of atoms.This was done by con
sidering the effective potentials obtained by Ekardt[7] and parametrizing 
them by means of (Symmetrized) Woods-Saxon and "Wine bottle" Sym
metrized Woods-Saxon potentials.Two main least-squares fitting procedures 
were used,although other possibilities were also considered: 

i)"Global least squares fitting," in which the analytic expressions of the 
above potentials were fitted to potential values of all the clusters considered 
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by Ekardt (8 < Ν < 198),treating V0, a and the other parameters as fitting 
parameters. 

ii)"Fitting to the mean-square radii < r 2 > of the above potentials".In 
this case, the average values of Vo, a : VQ and a for the clusters considered 
were used. The other parameters were determined by least-squares fittings 
of the analytic expressions of < r 2 >(for each of the two potentials) to the 
values of < r 2 > obtained by using as parameters those resulting by fitting 
for each individual cluster the analytic expression (2) or (5) to values of the 
effective potential. 

It was found on the basis of the above treatments that in certain cases 
the fitting is fairly satisfactory,while in others this is not the case. 

The depedence of the potential radius R of the Symmetrized Woods-
Saxon or the "Wine-bottle" Symmetrized Woods-Saxon potential on the 
particle number Ν was established on the basis of the observation that the 
volume integral of these potentials,which can be derived analytically,varies 
with iV like cN + d.This led to rather complex analytic expressions fori? 
and also for the r.m.s.radius< r 2 >ll2 of the potential.Expansions of these 
quantities in powers of Ν were derived for each of those potentials. It was 
found that additional correction terms to the standard expression R = roiV1/3 

for the Symmetrized Woods-Saxon potential which are, of the order iV-1/3, 
jV~2/3 or higher appear now in i?(see expression (9b)). Analogous comments 
hold for the "Wine-bottle" Symmetrized Woods-Saxon potential and for the 
r.m.s.radii of the potentials.lt seems worth while to point out that with the 
above expressions for R or with an expression of the form R = r0N

1'3 -f b a 
marked improvement in the quality of the fitting is observed and therefore 
these expressions seem more appropriate to use in practice, than the one 
R = roiV1/3, which is commonly used. To our knowledge, this is pointed out 
for the first time , pertaining to atomic clusters.lt should be noted,ho we ver, 
that the observed improvement becomes very small if the analysis is confined 
only to the heavier clusters (iV > 90). 

Another variation with the particle number Ν which was examined was 
that of the energy of the lower electronic states,of the corresponding low
est energy level spacing and of the average level spacing.lt was found that 
Ekardt's results can be reproduced quite satisfactorily by the corresponding 
results obtained with the numerical solutions of the Schrödinger equation 
with the (Symmetrized) Woods-Saxon and the"Wine-bottle"Symmetrized 
Woods-Saxon potential(using parameters either by fitting to individual clus-
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ters or those of the "global fitting"). Furthermore, it was realized that the 
same conclusion holds if the simple analytic expressions (15) and (16), for 
the energies of Is and \p states respectively, are used. Finally, a closed form 
analytic expression for the E\a state in terms of the potential parameters 
was considered (expression (18)) for the Woods-Saxon potential with good 
results.The leading terms of the expansion of this expression in powers of Ν 
(with either of the expressions for R) provide also justification for the use of 
the expression(15). 
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A P P E N D I X 

In this appendix, we outline the derivation of the expression for the Wine-
bottle potential radius R as a function of the number of particles N. This is 
based on the observation that the volume integral (6) varies with N, like cN-\-
d , as was also found for the symmetrized Woods-Saxon one. The relevant 
expression is, however, more complex, since the equation which follows from 
(6) is now of fourth order: 

/3 
(5 + 3w)R4 + 5α2ττ2(1 + 2w)R2 - hr'^NR + 7α*π4χν = 0 ( A l ) 

The r'Q is given by the same expression as in the symmetrized Woods-
Saxon potential. The above equation may be transformed into a third-order 
one. Thus,the solution of (A.l) is given by the following expression: 

*-l \/Φ\ - a2 + γ -a2 -φι + 2\ΙΦΙ - 4α4 

where 

rh=(p+jö^)113+(P- JQÜTV»+^^y 

and 

p = ^r'0
6N2 

2(5 + 3wy 

10a67T6(1312u;3 + 2976w2 + 1110™ - 25) 

Q = -

675(5 + 3w)r'0
bN2 

a4TT4{352w2 + 520™ + 25) 

9(5 + 3w)2 

a2 = 
5a27T2(l+2^) 7a47r4u; 

a.4 = 
5 -f 3w 5 + 3iw 

From the above expression of i?, the following expansion may arise 

(Λ.2) 

(A3) 

(A.4) 

(A.5) 

(A6) 

R=( ^rr0N^h-m(^ ) 1 ' 3 (1+2™)( 
2^-2 

απ ß )ΛΓ2/3 + ζ-Ν-1 

TQ 3 

1 5 4 / 32924w2 + 4940™-25 + SL a ¥ 4 / 3 

144 (5 + 3u/ (5 + 3™)2 ( ~4 ^ + r 4 
r 0 
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+î^1/3{1+2w){aJi)N'5l3+-i <A7> 
where 

_ / 9
3 (1312TÌ; 3 + 2976u>2 + ÌUOw - 25)2 - 25(352w2 + 520w + 2 5 ) 3

λ 1 / 3 

1 - ( 25 } ( } 

It should be also noted that there is a marked dependence of the pa
rameter w on Ν : w = w(N). We may also note that the first four or five 
terms of this expansion give quite accurate values of R in the cases we have 
investigated. 
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Fig. 1. The volume integral of the Symmetrized Woods-Saxon potential 
as a function of the number of particles AT.The potential parameters of each 
cluster were determined by least squares fitting of expression (2) to corre
sponding values of Veff of ref[7]. 
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Fig. 2. The Veff(r) of Ekardt [7] for Ν = 198(denoted by (x) points) 

and the corresponding symmetrized Woods-Saxon one (solid line) plotted 

with the best fit values of the "global fitting" and R = r0N
1/3 + b. 
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Fig. 3.The Veff(r) of Ekardt [7] for Ν = 68 (denoted by (x) points) and 
the corresponding symmetrized Woods-Saxon one (solid line) plotted with 
the best fit values of the "global fitting" and R = r0N

1/3 + b. 
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Fig. 4. The Woods Saxon potential (No 1) with the parameters of ref 

[2] for the cluster with N=1000 and the corresponding symmetrized Woods-

Saxon potential of this work (No 2) using the expression R = roiV1/3 + b and 

the best fit values: V0 = 6.014eV,ro = 2.2SÂ and 6 = Ο.ΙΗΑ,α = 0.87Â. 
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Fig. 5. The wine-bottle-potential (No 1) for Ν = 1000 obtained with 
the method of ref. [10] and used in ref. [2] and the "Wine-bottle" sym
metrized Woods-Saxon potential (No 2) of this work using the expression 
R = ΓοΛΓ1/3 + b and the best fit values: V0 = 6.03eV,r0 = 1.97Â,6 = 
1.64A,e = 0.86A,u> = 0.102,. 
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Fig. 6. The variation of the radius R of the Symmetrized Woods-Saxon 
potential with respect to the cubic root of the particle number N. The values 
of R obtained by performing least squares fitting of Vsr{r) to the K//(r) oi 
Ekardt [7] for individual clusters are denoted by Q, while those values obtained 
by a "global least squares fitting" using the expression R = rQN1^3 + b are 
denoted by * . 
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Fig. 7. Plot of R = f(N1/3) with parameters obtained by a "global fit
ting" of the values of the "Wine-bottle" potentials to the values of Ekardt's 
[7] potentials. 
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Fig. 8. The plotts Veff(r) of Ekardt for Ν = 40 and ΛΓ = 198 sodium 

atoms (denoted by (x) points) and the corresponding "Wine Bottle" poten

tial (solid line) obtained using the expression A2 for the radius R and the best 

fit values VQ = 5.882eV,r0 = 2.054Â,a = 0.836A, 0 = 1.21 and w = 0.134 
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Fig.9. The plots Veff(r) of Ekardt for ΛΓ = 20 and Ν = 90 sodium 
atoms (denoted by (x) points) and the corrresponding "Wine bottle" poten
tial (solid line) obtained using the expression for the radius R = roiV1/3 + 6 
and the best fit values of the "global fitting". V0 = 5.882eV,r0 = 2.054Â,a = 
0.836Â, 6 = 1.09Â and w = 0.131. 
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Fig. 10. The plot of Ekardt potential for the Na^s cluster denoted by 

( i ) points and the corresponding "Wine bottle" potential (solid line), which 

is obtained with parameters determined by least squares fitting of < r2 >W.B. 

(see text). 
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Fig .11 . The plot of Ekardt potential for the Na.90 cluster denoted by (x) 
points and the corresponding "Wine bottle" potential (solid line), which is 
obtained with parameters determined by least squares fitting of < r2 >W.B. 
(see text). 
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Fig. 12. The ground state single particle energy Eu as a function of the 
number of atoms Ν in the neutral cluster. 
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Fig. 13. The single particle energies of the lp—state, as a function of the 

number of atoms Ν in the neutral cluster. 

84 



AEav(ev) 

χ - ΔΕαν=*Ν) 
\\\ 
\-\ X - - Ekardt Ref[7j 
\\^\ %g Individual R 

V\x " Global fit R 

ν \ 
V κ 

x v<: 

"v.. £ 

X 1- Ï . 9 ! 

0 20 40 60 80 100 120 140 160 180 200 
Ν 

Fig. 14. The average energy level spacing, as a function of the number of 
atoms Ν in the neutral Ν a clusters. 
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Fig.15. The lowest energies level spacing as a function of the number of 
atoms Ν in the cluster. 
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SYMMETRISED WOODS-SAXON POTENTIAL 

Ν 

S 

18 
20 
34 
40 
58 
68 
90 
92 

106 
132 
138 
168 
186 
198 

Case I 
Individual R (A) 

5.199 
6.508 
6.790 
7.703 

8.352 
9.158 
9.738 

10367 

10.522 
11.120 
11.670 
11.988 
12.561 
13.031 
13.477 

Case Π 
Global fit R. (A) 

5.290 
6.593 
6.790 
7.893 
8.271 
9.218 
9.661 

10.500 
10.570 
11.028 
11.782 
11.942 
12.677 
13.077 
13.205 

Table 1. The values of the Symmetrized Woods-Saxon potential radius 
R determined by fitting to individual clusters (case I: Individual R) or by 
a "global fitting" (case II: global fit R) using the expression (9a) for R and 
Vo,r0,a,ß as adjustable parameters. 

Is-LEVEL(eV) 

Ν 

8 
18 
20 
34 
40 
58 
68 
90 
92 

106 
132 
138 
168 
186 
198 

EkaidtRef.[7] 

-4.55 
-5.10 
-5.15 
-5.41 
-5.41 
-5.59 
-5.53 
-5.76 
-5.63 
-5.64 
-5.86 
-5.79 
-5.91 
-5.92 
-5.81 

Case I 

Individual R 

-4.56 
-5.10 
-5.12 
-5.44 
-5.42 
-5.60 
-5.53 
-5.76 
-5.64 
-5.67 
-5.87 
-5.80 
-5.90 
-5.92 
-5.83 

Case Π 
Global fit R 

-4.56 
-5.11 
-5.12 
-5.45 
-5.42 
-5.60 
-5.53 
-5.77 
-5.64 
-5.65 
-5.S7 
-5.79 
-5.91 
-5.93 
-5.82 

Analytic 
expression (15) 

-4.55 
-5.11 
-5.17 
-5.41 
-5.46 
-5.58 
-5.62 
-5.69 
-5.69 
-5.72 
-5.76 
-5.77 
-5.80 
-5.82 
-5.83 

Table 2. The ground state (Is) single particle energies for neutral sodium 
clusters calculated in ref. [7] along with those obtained through numerical 
integration of the Schrödinger equation using the symmetrized Woods- Saxon 
potential (cases I and II, as in table 1). In the last column the same energy 
values obtained with the analytic expression (15) are also displayed. 
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Ip-LEVEL (eV) 

Ν 

S 

IS 

20 

34 

40 

53 

68 

90 

92 
106 

132 

138 

163 

1S6 

m 

Bcaidi Ref. [7] 

-3.32 

-4.21 

•4.3Z 

-4.74 

-4.94 

-5.11 

-5.1» 

-5.35 

-5.27 

•5M 

-5.49 

-5.51 

-5.60 

-5.65 

-5.65 

O s e I 

Individual R 
-3.33 

-4.20 

-i.39 

-4.76 

-4.95 

-5. .11 

-5.19 

-5.36 

-5.23 

-5.39 

-5.49 

-5.-57 

-5.60 

•5.65 

-5.66 

O S G I I 

Global fit R 
-3.32 

-4.26 

-4.39 

-4.75 

-4.95 

-5.11 

-5.19 

•536 

-5.23 

-5.39 

-5.49 

-5.57 

-5.60 

-5.66 

-5.65 

Analytic 

repression (16) 

-3.31 

-4.27 

-4.37 

-4. SO 

-4.92 

-5.13 

-5.22 

-5.35 

-5.35 

-5.41 

-5.49 

•5.5\ 

-5.57 

•5.59 

-5.6t 

Table 3. The single particle energies of the lp—state for neutral sodium 

clusters (see table 2). The analytic expression (16) has now been used. 

AVERAGE SPACING (eV) 

Ν 

S 

IS 

20 

34 

40 

53 

63 

90 

92 
106 

132 

13S 

168 

136 

193 

Efcsrdi Ref(7) 

1.23 

0.93 

0.73 

0.57 

0.53 

0.41 

0.47 

0.38 

0.31 

0 3 5 

0.31 

0.24 

0.27 

0.28 

0.26 

Case I 

Individual R 
1.23 

0.98 

0.77 

0.5S 

0.53 

0.41 

0.47 

0.39 

0.31 

0.37 

0.31 

0.23 

0.27 

0.28 

0.26 

Casali 

Global fit R. 
1.23 

0.99 

0.77 

0.58 

0.53 

0.41 

0.47 

0.33 

0.31 

0.37 

0.31 

0.23 

0.27 

0.28 

•0.26 

Table 4. The average energy level spacing Δ£(αυ) for neutral sodium 
clusters (see table 2). 
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LELS (eV) 

H ! 

» i is i 
20 

34 I 

40 

5S 
65 
90 

y : 
10Λ 

132 

13» 

16S 
ÌS6 

I9à 

EkanJi Ret 

1.23 
0.S-9 

0.77 

0.67 
0.47 
0.4:1 
0.35 
0.41 
0.36 
0.26 
0.37 
0.21 
0.3. 
0.27 
0.16 

! Case I 1 
( / | ; Individual R | 

i 1.23 | 
O.s*; 

j 0.73 

! 0.6b 
i 0.47 
• 0.49 

0.34 
! 0.40 
j 0.36 
! 0.2 S 
| 0.3a 
! 0.23 
; 0.30 
! 0.27 

! O.'17 

Caso 11 

. Global fit R 1 
1.24 
0.S5 
0.73 

0.70 
0.47 

0.49 
0.34 
0.41 
0.36 
0.2C 
0.38 
0.22 
0.31 
0.27 
0.17 

Analytic i 
expression I I7'l 

1.24 ; 
0.S4 ! 

o.so ! 
0.61 ' 
0.54 \ 

0.45 
0.40 | 
11.34 
0.34 

. «...31 
...27 
0.2Λ 

0.23 

0.23 

0.22 

T a b l e 5. The energy level spacing between lp and Is states (lowest 
energy level spacing:LELS) for sodium clusters (see table 2). The analytic 
expression (17) has now been used. 

WOODS-SAXON POTENTIAL 

Is-LEVEL (eV) 

Γ 

r 

τ 
,\ Ì Ekardt Ref.[7] 

8 
18 
20 
34 

40 
58 

6S 

90 

92 

106 

132 
13S 
16S 
186 
198 

Numerical 
Intearutior 

-4.55 
-5.10 
-5.15 
-5.41 
-5.41 
-5.59 
-5.53 
-5.76 
-5.63 
-5.64 
-5.S6 
-5.79 
-5.91 
-5.92 
-5.81 

-4.S2 
-5.32 
-5.40 
-5.52 
-5.55 
-5.64 
-5.65 
-5.7.1 
-5.72 
-5.71 
-5 .SO 
-5.82 
-5.89 
-5.90 
-5.88 

Expression 
(IS) 

-4.94 
-5.30 
-5.34 
-5.50 
-5.55 
-5.64 
-5.67 
-5.72 
-5.73 
-5.75 
-5.7S 
-5.79 
-5.S2 
-5.83 
-5.S4 

3 first terms j Analytic | 
of expansion! pression (15;| 

(2 lai i v ι 

-5.15 

-5.36 

-5.39 

-5.53 

-5.56 

-5.65 

-5.68 

-5.73 

-5.74 

-5.76 

-5.79 

-5 .SO 

-5.S2 

-5.S4 

-5.S4 

-4.55 

-5.11 

-5.17 

-5.41 

-5.46 

-5.58 

-5.62 

-5.69 

-5.69 

-5.72 

-5.76 

-5.77 

-5.30 

-5.82 

-5 .S3 

Table 6. The ground state (1$) single particle energies for neutral sodi
um clusters, calculated in ref. [7], along with those obtained by the numerical 
solution of the Schrödinger equation using the Woods-Saxon potential. Also 
the same energies obtained by means of the analytic expressions (18) (21a) 
and (15) are given. 
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