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CLUSTER APPROACH TO ATOMIC NUCLEI: 
ALPHA-CHAIN STATES IN 1 2 C 

G.S. Anagnostatos 

Institute of Nuclear Physics, 
National Center for Scientific Research " Demokritos", 

Aghia Paraskevi, Attiki, 15310 Greece 

1. INTRODUCTION 

Carbon 12 is among the 4N nuclei which are mainly studied by using the 
Bloch-Brink a-cluster model 1 and its variations. A common characteristic of 
many of these a-cluster models is that the α-particles involved in a specific 
nucleus are considered proformed and thus this nucleus appears in the frame
work of these models as an aggregate of α-particles subunits. Despite the 
apparent successes of these models, however, the wealth of nuclear reactions 
does not support this α-particle composition of nuclei even for the 4N nuclei. 
This serious handicap of these models has been overcome by considering that 
the alpha-particles involved may dissolve into nucléons since, for cluster sepa
rations reaching zero, antisymmetrization forces the cluster wave fuction into 
some shell model limit. Thus, the geometries in these improved α-cluster mod
els arise through the long-range effects of antisymmetrization and the mean 
field combined with a preference for simple underlying structures 1 _ 2 . Such 
structures in the literature range from three-dimensional3-4 high symmetry 
shapes to two-dimensional1 configurations and even to completely linear1 · 5 - 6 

arrangements. 

In the present study an alternative approach is considered where in
deed nucléons and not α-particles compose the nuclei and thus possible a-
particles and their spatial distributions in nuclei are derived. Specifically, the 
semiclassical7 part of the Isomorphic Shell Model is employed. The semiclassi-
cal instead of the quantum mechanical part 8 of the model is utilized since this 
part is closer to the α-cluster models and thus a comparison between them is 
easier and more comprehensive. An outline of the model is given in the next 
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section. Here, only a very brief comparison is attempted for the geometry 
involved in this model and that in the α-cluster models1'3. 

In the α-cluster models, several geometries are chosen for a particular 
nucleus based on symmetry arguments for the α particles involved and then 
the binding energy is used for the final selection of geometry. In the isomorphic 
shell model,however, a common geometry for all nuclei is derived by packing 
the nuclear shells7 (whose average forms result from the independent particle 
assumption) after taking the nucléon finite size into account. The part of this 
geometry utilized by the nucléons of a specific nucleus results from the search 
for the maximum binding energy, which defines the average form and size of 
the cluster structure representing the specific nucleus. 

The well studied α-cluster models1 of the nucleus and the isomorphic 
shell model 7 ' 8 appear, at first glance, as two completely independent ap
proaches of studying the atomic nucleus. However, there is a fundamental 
common feature that brings these two approaches very close to each other. 
This feature is the very fact that both models are based on the mean positions 
of their constituent particles (i.e.,of α-particles and of nucléons, respectively.) 
Thus, in a broader sense the isomorphic shell model may be thought that it 
provides the required dissolution of the α-particles into their nucléons which 
is common for all nuclei 7 · 8 and precisely consistent with the Pauli principle 
9 - 1 2 . After this important remark the two models may be viewed as two 
similar approaches converging into one. 

Demonstration of the above is successfully obtained here by taking throu
ghout this paper 1 2C as an example. The good results obtained in the present 
paper point to many other applications in the future refering to light, medium, 
and even heavy nuclei. 

2. T H E ISOMORPHIC SHELL MODEL 

The isomorphic shell model is a microscopic nuclear-structure model that in
corporates into a hybrid model the prominent features of single-particle and 
collective approaches in conjunction with the nucléon finite size.7'8 

The single-particle component of the model is along the lines of the con
ventional shell model with the only difference that in the model the nucléons 
creating the central potential are the nucléons of each particular nuclear shell 
alone, instead of all nucléons in the nucleus as assumed in the conventional 
shell model.8 That is, our Hamiltonian is analyzed into partial state-dependent 
Hamiltonians for neutrons (N) and for protons (Z) as follows, where crossing 
terms between partial Hamiltonians of different shells, have been omitted. 

H = jsjH + zH 

= NH1S + NH\V + NHU2S + · · · (1) 
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+ zH\s + zHip + zHids + · · · 

While a finite square-well or Woods-Saxon potential would be a more 
realistic choice of the potential, for reasons of simplicity, we take the harmonic 
oscillator (HO) potential without spin-orbit coupling, where the expressions of 
the mean square radius and of the energy eigenvalues, necessary in demonstrat
ing the model, are exceptionally simple and have closed mathematical forms. 
In addition, the appearance of the finite negative constants —yvK and —zV% in 
the neutron and the proton harmonic oscillator potentials below, reduces the 
boggling impression given when an infinite potential is used for determining 
total-binding energies. 

Thus, for each partial neutron or proton Hamiltonian we take 

NHi = NV{ + NTi = -NVi + ^m(Nuf)r2 + NTi (2) 

zHi = zVi + zTi = -ZVi + \πι{ζω1)Γ2 + ZT{ (3) 

That is, each harmonic oscillator potential has its own state-dependent 
frequency ω. These ω are not taken as adjustable parameters, but all are 
determined from the harmonic oscillator relation13 

where η is the harmonic oscillator quantum number and < r\ >1/2 is the av
erage radius of the relevant high fluximal shell determined by the semiclassical 
part of the model specified below. 

The solution of the Schrodinger equation with Hamiltonian (1), in spher
ical coordinates, is 

* n / m ( r , M ) = Ä n / ( r )F , m (M) , (5) 

where Υ™ (θ, φ) are the familiar spherical harmonics and the expressions for the 
Rni(r) are given in several books of quantum mechanics and nuclear physics, 
for example see Table 4-1 of Ref. 13. 

The only difference between our wave functions and those in these books 
is the different w's as stated in (2) - (3) above. Those of our wave functions, 
however, which have equal / value, because of the different hu>, are not or
thogonal, since in these cases the orthogonality of Legendre polynomials does 
not suffice. Orthogonality, of course, can be obtained by applying established 
procedures, e.g., the Gram-Schmidt process. 
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According to Hamiltonian (1), the binding energy of a nucleus with A 
nucléons in the case of orthogonal wave functions takes the simple form given 
by (6) 

BE = 1/2(V.A) - 3/4 ]T/iu;.-(n + 3/2) 
i=l 

(6) 

where V is the average potential depth8. The coefficients 1/2 and 3/4 take care 
of the double counting of nucléon pairs in determining the potential energy. 

Applications and details of the quantum mechanical part of the model 
are given in Ref. 8. Here an application of the semiclassical part (see Refs. 
7 and 14-19) in the place of the quantum mechanical part of the model is 
considered in the spirit of Ehrenfest 's theorem,20 which for the observables of 
position (R) and momentum (P) takes the form 

— < R > = — < Ρ > and (7) 
at m 

4- < P > = - < W(R) > (8) 
at 

The quantity < R > represents a set of three time-dependent numbers 
{< X >, < Y >, < Ζ >} and the point < R > (t) is the centre of the wave 
function at the instant t. The set of those points which correspond to the 
various values of t constitutes the trajectory followed by the centre of the 
wave function. 

From (7) and (8) we get 

rn^R =-< W ( R ) > (9) 

Furthermore, it is known that, for the special case of the harmonic oscil
lator potential assumed by the isomorphic shell model in (3), the following 
relationship is valid 

< W ( R ) > = [ W ( r ) ] r = < R > , where (10) 

[ - W ( r ) ] r = < R > = F (11) 

That is, for this potential the average of the force over the whole wave function 
is rigorously equal to the classical force F at the point where the centre of the 
wave function is situated. Thus, for the special case (harmonic oscillator) 
considered, the motion of the centre of the wave function precisely obeys the 
laws of classical mechanics. Any difference between the quantum and the 
classical description of the nucléon motion exclusively depends on the degree 
the wave function may be approximated by its centre. Such differences will 
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contribute to the magnitude of deviations between the experimental data and 
the predictions of the semiclassical part of the model employed here. 

Now, in the semiclassical treatment7 the nuclear problem is reduced 
to that of studying the centres of the wave functions presenting the con
stituent nucléons or, in other words, of studying the average positions of these 
nucléons7. For this study the following two assumptions are employed by the 
isomorphic shell model7. 

i) The neutrons (protons) of a closed neutron (proton) shell, considered at 
their average positions, are in dynamic equilibrium on the sphere 
presenting the average size of that shell. 

ii) The average sizes of the shells are determined by the close-packing 
of the shells themselves, provided that a neutron and a proton are rep
resented by hard spheres of definite sizes (i.e., rn = 0.974 fm and 
rp = 0.860 fm). 

It is apparent that assumption (i) is along the lines of the conventional 
shell model, while assumption (ii) is along the lines of the liquid-drop model. 

The model employs a specific equilibrium of nucléons, considered at their 
average positions on concentric spherical cells, which is valid whatever the law 
of nuclear force may be21: assumption (i). This equilibrium leads uniquely to 
Leech21 (equilibrium) polyhedra as average forms of nuclear shells. All such 
nested polyhedra are closed-packed, thus taking their minimum size: assump
tion (ii). The cumulative number of vertices of these polyhedra, counted suc
cessively from the innermost to the outermost, reproduce the magic numbers 
each time a polyhedral shell is completed7 (see the numbers in the brackets in 
Fig. 1 there and in this paper). 

For one to conceptualize the isomorphic shell model, he should first relate 
this model to the conventional shell model. Specifically, the main assumption 
of the simple shell model, i.e. that each nucléon in a nucleus moves (in an 
average potential due to all nucléons) independently of the motion of the 
other nucléons, may be understood here in terms of a dynamic equilibrium 
in the following sense.7 Each nucléon in a nucleus is on average in a dynamic 
equilibrium with the other nucléons and, as a consequence, its motion may 
be described independently of the motions of the other nucléons. 

From this one realizes that dynamic equilibrium and independent parti
cle motion are consistent concepts in the framework of the isomorphic shell 
model. 

In other words, the model implies that at some instant in time (reached 
periodically) all nucléons could be thought of as residing at their individual 
average positions, which coincide with the vertices of an equilibrium poly
hedron for each shell. This system of particles evolves in time according to 
each independent particle motion. This is possible, since axes standing for the 
angular-momenta quantization of directions are identically described by the 
rotational symmetries of the polyhedra employed.9-12 For example, see Ref. 
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11, where one can find a complete interpretation of the independent parti

cle model in relation t o the symmetries of these polyhedra. Such vectors are 

shown in Fig. 1 for t h e orbital angular-momentum quantization of directions 

involved in all nuclei up to Ν = 20 and Ζ = 20. 

Figure 1. The isomorphic shell model for the nuclei up to Ν — 20 and Ζ = 20. 

The high-symmetry polyhedra in row 1 (i.e. the zerohedron, the octahedron and the 

icosahedron) stand for the average forms for neutrons of (a) the I s , (c) the l p and 

(e) the ld2s shells, while the high-symmetry polyhedra in row 2 (i.e. the zerohedron, 

the hexahedron (cube) and the dodecahedron) stand for the average forms of (b) the 

Is , (d) the l p and (f) the l s 2 s shells for protons. The vertices of polyhedra stand 

for the average positions of nucléons in definite quantum states ( r , η , Z, m, s). The 

letters h stand for the empty vertices (holes). The ζ axis is common for all polyhedra 

when these are superimposed with a common centre and with relative orientations 

as shown. At the bottom of each block the radius Ft of the sphere exscribed to 

the relevant polyhedron and the radius ρ of the relevant classical orbit, equal to 

the maximum distance of the vertex-state (τ, n, /, m, s) from the axis n ö[" precisely 
representing the orbital angular momentum axis with definite n,l and m values, are 
given. Curved arrows shown help the reader to visualise for each nucléon round 
what axis is rotated, where close (open) arrows show rotations directed up (down) 
the plane of the paper. All polyhedra vertices are numbered as shown. The backside 
(hidden) vertices of the poluhedra and the related numbers are not shown in the 
figure. 
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Since the radial and angular parts of the polyhedral shells in Fig. 1 are 
well defined, the coordinates of the polyhedral vertices (nucléon average posi
tions) can be easily computed. These coordinates up to Ν = Ζ — 20, needed 
here for the application of the model on 1 2 C (see next section), are already 
published in footnote 14 of Ref. 14, and in footnote 15 of Ref. 15. These 
coordinates correspond to the relevant R values of the exscribed polyhedral 
spheres given in Fig. 1 (see bottom line at each block). 

According to the isomorphic shell model7, the nucléon average positions 
of a nucleus are distributed at the vertices of the polyhedral shells as shown, for 
example, in Fig. 1. The specific vertices occupied, for a given (closed- or open-
shell) nucleus at the ground state, form a vertex configuration (corresponding 
to a state configuration) that possesses a maximum binding energy {BE) in 
relation to any other possible vertex configuration. This maximum BE vertex 
configuration defines the average form and structure of the ground state of this 
nucleus. All bulk (static) ground-state properties of this nucleus (e.g. BE, 
rms radii, etc.) are derived as properties of this structure, as has been fully 
explained in Ref. 7 and will become apparent below. 

The quantities estimated by the model in the framework of its semiclas-
sical part ' - 1 4 · 1 6 (see next section) are potential energy V{j, Coulomb energy 
{Ec)ij\ average kinetic energy < Τ >nim', odd-even energy Es; binding energy 
EBE', collective rotational energy Erot] rms charge, mass and effective radii 
< r 2 > χ / 2 ; and electric quadrupole moment using (12)-(22). 

-(31.8538)r\y -(1.3538)r, ; 

Vij = 1.7(1017) 187 , (12) 
rij rij 

where the internucleon distances r^ are estimated following Fig. 1 or (the 
same) the corresponding coordinates of polyhedral vertices. 1 4 - 1 5 

(Echi = ~ , (13) 

where distances r^j are computed as explained above. 

2 r 

< Τ >nlm- 2 M 

1 + / ( / + i ) 

" m a x Pnlm 

(14) 

where i ? m a x is the outermost polyhedral radius (R) plus the relevant nucléon 
radius (i.e., rn = 0.974 fm or rp = 0.860 fm), i.e., the radius of the nuclear 
volume in which the nucléons are confined, M is the nucléon mass, />„/m is the 
distance of the vertex (π,/, τη) from the axis ηθψ (see Fig. 1 and Ref. 16). 

EBE = - Σ Va- Σ ~ - Σ <T>nlm -Es + Etot, (15) 
all nucléon all proton *J aH nucléons 

pairs p a i r s 
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where distances r^· are estimated as above and Es is a correction "odd-even" 
term familiar from the liquid drop model. Here E$ value is equal to zero for 
even-Z even-N nuclei for which the potential in (12) is exclusively derived14 

and thus no correction is needed, while for odd-A nuclei its value is taken 
equal13 to 80/A MeV, i.e. 

E, = % (16) 

Erat = 
h2i{i + i) 

2J 
(17) 

where J is the moment of inertia of the rotating part of the nucleus given by 
(18) 

Nr, NT. 

J = Σ mp2 - m Σ rf = mN^t < r2 >rot, (18) 

where iVrot is the number of nucléons participating in the collective rotation 
and 
< r2 > r o t is the rms radius of these nuclei. 

The term ETOt in (15) is meaningful for the ground state only for the 
cases where the angular speed ω due to independent particle motion is compa
rable (about equal) to that due to collective motion in such a way that these 
two motions are coupled even at the ground state, i.e., for these cases the 
adiabatic approximation is not valid. 

< r 2 > 1/2. E f = i R] + Σ £ ι g j + ^(0·8) 2 + ΛΓ(0.91)2 

Z + N 

I 1/2 

< S >1ΐ = EL ß 2 + ( 0 . 8 ) 2 - ( 0 . 1 1 6 ) ^ 

1/2 

(19) 

(20) 

where the subscripts ch and m refer to charge and mass, Ri is the radius of 
the ith proton or neutron average position from Fig. 1, Ζ and Ν are the 
proton and the neutron numbers of the nucleus, 0.8 and 0.91 fm are the rms 
radii of a proton and of a neutron, and -0.116 fm2 is the ms charge radius of 
a neutron.2 2 The 0.91 fm value for a neutron is taken from the 0.8 fm value 
for a proton by considering proportionality according to the sizes of their bags 
0.974 and 0.860 fm, respectively, i.e. 0.91 = 0.8(0.974/0.860). 

< r' >l£- [< s >m + < Γ2 > r o t ] 
1/2 

(21) 

eQLtr. = £ e < £ = e ^ J ? 2 ( 3 c o s 2 ^ - 1), (22) 
t = l 
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where Q' stands for the intrinsic quadrupole moment, Ä, is the radius of the 
i th proton average position, and θ{ is the corresponding azimuthal angle with 
respect to the quantisation axis. 

3. CALCULATIONS AND DISCUSSION 

In the α-cluster model of the nucleus referring to α-chain states, 1 2 C (N=3) 
is the key nucleus since an α-chain structure for Be8 (N=2) is apparent and 
since the appearance of such structure for heavier nuclei (N > 4) could be 
associated to 1 2 C structure particularly if the α-chain states of these heavier 
nuclei could be thought of as forming molecular structures of the type 1 2 C 
+{N - 3)a, either 1 2 C + 8Be or 1 2 C + 1 2 C . Thus in the following we will 
concentrate on 1 2 C . 

The average structure of 1 2 C , in the framework of the isomorphic shell 
model, comes from Fig.l by considering the states (Is and IP3/2) involved in 
this nucleus. Specifically, from Fig.l the average nucléon positions numbered 
1-2 (for Is neutrons), 3-4 (for Is protons), 5-8 (for IP3/2 neutrons), and 11-
14 (for lp3/2 protons) are depicted as shown in Fig.2(a) by employing the 
same numbers. Thus, Fig.2(a) contains part of Fig.l and so, as mentioned, all 
coordinates of the average nucléon positions involved are known.14'15 Further, 
Fig.2(b) is almost identical to Fig.2(a) and only slightly differs with respect to 
the average positions of the two Is protons (nos. 3-4). Specifically, due to the 
absence of lpi/2 neutrons in 12C (nos. 9-10) whose average positions together 
with those of lp3/2 neutrons (nos.5-8) determine the symmetry of the average 
positions for the Is protons, these two latter positions can relax getting closer 
to the average positions for the IP3/2 neutrons (nos. 5-8) in such a way that 
their corresponding nucléon bags come in contact.This relaxation of the two 
proton average positions leads to larger binding energy for 12C. 

Further in the model, each set of the following four nucléon average 
positions numbered (1-4), (5, 7, 11, 13) and (6, 8, 12, 14) consists of two 
protons and two neutrons with the same η and / quantum numbers which 
are close together for the instant depicted by Fig.2(a) and (b). Thus, in the 
model each of these three sets can be considered as an α-particle. Considering 
now the center of gravity for each of these α-particles, Fig.2(c) results, where 
indeed these three α-like particles are in a row forming a linear chain. For 
later moments, of course, each of the four nucléons composing any one of the 
above three α-particle like structures will evolve by following its independent 
particle motion. That is, each nucléon will rotate in an orbital round its own 
axis of orbital angular momentum vector as schematically shown by arrows in 
Fig.l. 

In the framework of the isomorphic shell model now the observables 
of rms charge radius and of binding energy can be estimated. Specifically, 
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from Eq.(20) since all fl, involved in Fig.2(a) and (b) are known7 (namely, 
Äis-protons = 1-554 fm, and i?ip-protons = 2.541 fm; see Figs.l(b) and (d)), 
the charge rms radius is computed equal to 2.37 fm for each of the Figs.2(a) 
and (b) (< r2 >*h

/2
exp = 2.37 fm). Also, from Eqs.(12)-(15) since all co

ordinates of the nucléon average positions14-15 and the radial distances in
volved in Figs.2(a) and (b) (namely in fm, # m a x = 2.511 + 0.974, pip-proton = 
2.075, pip-neutron = 2.511, also Erot = 0; see Figs. 1(c) and (d) are known14"15, 
the binding energy for Figs.2(a) and (b) are computed equal to 86.0 MeV and 
94.2 MeV, respectively. 

Fig.2(a) and (b) have been found to be the two average-nucleon-position 
configurations with the largest binding energies with respect to any other 
possible configuration for 12C involving s and ρ or even d states and coming 
from Figs.1(a) - (f). Thus, Fig.2(b) is associated with the ground state and 
Fig.2(a) with the 7.653 ± 0.3, J* - Of excited state 2 3 of 1 2 C possessing 
92.2 MeV and 84.55 MeV experimental binding energies,24 respectively. The 
inbetween excited s tate 2 3 at 4.4392 ± 0.3, J* = 2j", will be discussed shortly. 
Center-of-mass corrections are not included. * 

Figure 2. Average forms for C, according to the isomorphic shell model, com
posed of the average positions of the constituent nucléons. Part (a) stands for the 
first 0 + excited state at 7.65 MeV and part (b) for the ground state. Average nucléon 
positions are numbered as shown by using for the same position the same number 
as in Fig.l.Thus, one can observe that for the positions shown in Fig.l(a)-(d) those 
numbered (9)-(10) for neutrons and (15)-(16) for protons are the only not present 
in Fig.2. Fig.2(c) comes from either Fig. 1(a) or Fig. 1(b) when each of the three sets 
of four close-by nucléons (two neutrons and two protons) of same η and / numbered 
(1-4), (5, 7, 11, 13) and (6, 8, 12, 14) are assumed forming a sort of an a particle. 
Axes labelled 1, 2 and 3 stand for CI symmetry axes and those labelled RQ+ and 

R0+ for rotational axes referring to the first (0*) and to the second (O2") 0+ levels. 
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Table 1. Theoretical predictions and experimental values for the ground state 
(Of ) and first 0 + excited state (Of ) of 1 2 C . 

Approach 

Experiment 

Isomorphic 

shell model 

a-particle 
model0 

with forces 
VI, V2, Bl 

of 
o 2

+ 

of 
of 

0+ (triangle) 

Of (chain) 

Energy 

(MeV) 

92.26 

7.65 

94.2 

8.2 

VI 72.7 
V2 64.3 
Bl 62.0 
VI 
V2 
Bl 

rms 
charge 
radius 
(fm) 

2.40±0.25c 

2.37 

15.0 
8.7 
6.1 

2.37 

2.62 

Intrinsic 
quadrupole 

moment 
(fm)2 

± 2 1 d 

21 

21 

- 4 3 ' 
3.27e 

α See Ref. 3 
6 See Ref. 23 
c See Ref. 25 
d See Ref. 27 
e See Ref. 30 
' See text (Section 3) for other calculated values (e.g.-21.6 fm2) 

It is satisfying that the present predictions are close to the experimental 
values for the binding energies but also for the radii2 5. The comparison is 
even more to our favour if we consider the corresponding α-model predictions3 

given in Table 1. However, a more detailed comparison with α-cluster models 
is going to be made later. 

As seen from Figs.2(a) and (b), the deformation of the average shapes 
for the ground state and the Of excited state of 1 2 C is apparent. In these 
figures the axes of symmetry and the corresponding axes of rotation are also 
shown. Specifically, the axis of rotation labelled R0+ is perpendicular to both 
axes of symmetry labelled 2 and 3, while the axis of rotation labelled R0+ is 
defined from the proton average positions nos. 3 and 4 and is perpendicular 
to the axis of symmetry labelled 1. 

Since all coordinates involved in Figs.2(a) and (b) are known 1 4 - 1 5 , by 
applying Eq.(18) the relevant moments of inertia are estimated. Namely, 
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Ja=42.6 M.fm2 and 
J6=28.03 M.fm2 , 

where M stands for the nucléon mass and the contribution to the moment of 
inertia coming from the finite nucléon size has been empirically incorporated 
equal to 0.165 M.fm2 for each nucléon participating in the collective rotation. 

By assuming no variation of the moment of inertia with angular momen
tum and by applying Eq.(17) the bands corresponding to the rotational axes 
labelled Rn+ and i?n+ are those given in Table 2. 

The second band is what is usually considered by the α-cluster models3 

as corresponding to the linear α-chain states for 1 2 C . Of course, the existence of 
such a band is not clearly supported by the experimental data. 2 3 Its existence 
exclusively depends on whether in the future the J* for the state 10.3±3 MeV 
will be found to be 2 + in place of the present tentative2 3 assignment (0 + ) . 

What is really different between the present approach and the α-cluster 
models is the nature of the first band, i.e. of the ground-state band in Ta
ble 2. In these models α-particles are arranged at the corners of an equi
lateral triangle3 for the ground state of 1 2 C . Such triangular configuration 
of α-particles round the nuclear center is based on the assumption that the 
α-particle is a fundamental constituent of 1 2 C nucleus. In such a case by con
sidering any reasonable a — a interaction, the most compact structure (and 
thus with maximum binding energy) is that of an equilateral triangle and 
should be assigned to the ground state of 1 2 C . In the framework of the present 

Table 2. Rotational ground state and 0^ excited bands of 1 2 C . 

Band 

OJ-

OÎ 

Γ 

2+ 
4+ 
6+ 

0+ 
2+ 
4+ 

α See Ref. 23 
6 See Ref. 31 
c See Ref. 30 

Experiment0 

Γ 

2+ 
(4+) 

0+ 
(0+) 

Energy 
(MeV) 

4.44 
14.08 
28.9 

7.65 
10.3 

Isomorphic 
shell 

model 
(MeV) 

4.28 
14.28 
29.98 

7.65 
10.4 
16.9 

α-particle 
models6 

(MeV) 

2.76c 

7.65 
8.90 

12.1 
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model, however, nucléons and not α-particles are the constituents of any nu
cleus and it is the Pauli principle together with the maximum binding energy 
which determine what average nucléon positions are occupied and eventually 
what is the average shape of a specific nucleus. The good agreements between 
the experimental data and the predictions of the present model concerning 
the member states of the ground state band23 lend support to the present 
approach,where a linear instead of a triangular average shape for the ground 
state of 12C is employed. 

Finally, an estimation of the electric quadrupole moment of 12C is made 
which constitutes a very sensitive test of the angular distribution of the av
erage structure for any nucleus. Dealing with average values, the intrinsic 
quadrupole moment is given13 by (22) where, for Fig.2(b) representing the 
ground state of 12C each Ri has been specified7 above (see R values in Fig.l) 
and the corresponding Q{ is the azimuthal angle for the proton average position 
i with respect to the axis 1 (see Fig.2), which is the quantization axis for all 
vectors presenting quantization of direction9-12 for orbital angular momenta 
shown in Fig.l (namely,26 03,4 = 90° and θη.14 = 35° 15'52"). It is satisfying 
that the resulting value eQ[ntT = 21.0 fm2 is identical to the measured27 abso
lute value of the intrinsic quadrupole moment. The corresponding value com
ing from the α-cluster model3 used for the construction of Table 1 is -43 fm2, 
while more recent calculations28 give -21.6 fm2 and 4 1 -21.7fm2. Hence, the 
difference between the present model and the Bloch- Brink model concerning 
the electric quadrupole moment essentially lies in the sign of the Q'intr-

4. C O N C L U S I O N S 

In the present study of 1 2 C the isomorphic shell model7'8 has been employed as 
a cluster approach to atomic nuclei, where consideration of the nucléon finite 
size7 constitutes one of the main features of the model. This feature allows the 
packing and clusterization in a nucleus.7 What are really packed in the model 
are the shells themselves7 taken as entities. Thus, only nucléons necessary for 
the shell packing are in contact. That is, the model does not support general 
packing of nucléons which should lead to much higher density. It is satisfying 
that this packing of shells reproduces a magic number7 each time a saturated 
shell is added into the packing. The close reproduction of binding energies 
and sizes in many nuclei by both the quantum8 and semiclassical7 parts of the 
model lends support to the present approach and makes its results reliable. 

A prolate average shape with a sizable positive intrinsic quadrupole mo
ment is predicted for 12C which can be considered as a linear chain of three 
α-particles, when each two close-by pairs of neutrons and protons with the 
same η and / quantum numbers (sort of α-particle) are presented by their 
center of gravity. Such a linear α-chain has already been predicted by a-
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cluster models.3 However, here the α-chain stands for b o t h the excited 0* 
state 2 3 at 7.65 MeV (as in these models) and the ground state (instead of an 
equilateral triangle in these models3). The good agreements with experimental 
values for all observables examined, superior to those from α-cluster models, 
support the credibility of the present approach. Of course, the difference in 
the sign of the deformation cannot be ignored. However, despite much effort 
the quantitative experimental evidence is inconclusive28. Most of it derives 
from model-dependent analysis of electron scattering and hadron scattering 
data. Some of these analyses are inherently insensitive to the sign of the de
formation and there are indications that the values obtained are projectile 
dependent and also that the findings strongly depend on the assumption that 
the nuclear charge distribution is spheroidal.28 .Besides the sign the most re
cent estimation 2 8" 2 9 of |Qo| range from 21.6 to 24.0 fm2 which are in good 
agreement with our prediction of 21.0 fm2. 

The above conclusions are further strengthened by the fact that the iso
morphic shell model used here employs no adjustable parameters. It uses, of 
course, two numerical parameters for the sizes of neutron and proton bags 7 , 1 6 

and four parameters for the two-body potential1 4 employed, but these totally 
six parameters are universal parameters of the model constant for all prop
erties in all nuclei. In the present approach no ad hoc assumption has been 
made and all predictions are based on the isomorphic shell model, all of whose 
numerals necessary for its implementation have been published independently 
a long time ago. 
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