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CLUSTER APPROACH TO ATOMIC NUCLEI:
ALPHA-CHAIN STATES IN ’C

G.S. Anagnostatos

Institute of Nuclear Physics,
National Center for Scientific Research “ Demokritos”,
Aghia Paraskevi, Attiki, 15310 Greece

1. INTRODUCTION

Carbon 12 is among the 4N nuclei which are mainly studied by using the
Bloch-Brink a-cluster model ! and its variations. A common characteristic of
many of these a-cluster models is that the a-particles involved in a specific
nucleus are considered proformed and thus this nucleus appears in the frame-
work of these models as an aggregate of a-particles subunits. Despite the
apparent successes of these models, however, the wealth of nuclear reactions
does not support this a-particle composition of nuclei even for the 4N nuclei.
This serious handicap of these models has been overcome by considering that
the alpha-particles involved may dissolve into nucleons since, for cluster sepa-
rations reaching zero, antisymmetrization forces the cluster wave fuction into
some shell model limit. Thus, the geometries in these improved a-cluster mod-
els arise through the long-range effects of antisymmetrization and the mean
field combined with a preference for simple underlying structures !=2. Such
structures in the literature range from three-dimensional®~* high symmetry
shapes to two-dimensional! configurations and even to completely linear!:5—8
arrangements.

In the present study an alternative approach is considered where in-
deed nucleons and not a-particles compose the nuclei and thus possible a-
particles and their spatial distributions in nuclei are derived. Specifically, the
semiclassical” part of the Isomorphic Shell Model is employed. The semiclassi-
cal instead of the quantum mechanical part® of the model is utilized since this
part is closer to the a-cluster models and thus a comparison between them is
easier and more comprehensive. An outline of the model is given in the next
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section. Here, only a very brief comparison is attempted for the geometry
involved in this model and that in the a-cluster models®=.

In the a-cluster models, several geometries are chosen for a particular
nucleus based on symmetry arguments for the o particles involved and then
the binding energy is used for the final selection of geometry. In the isomorphic
shell model however, a common geometry for all nuclei is derived by packing
the nuclear shells” (whose average forms result from the independent particle
assumption) after taking the nucleon finite size into account. The part of this
geometry utilized by the nucleons of a specific nucleus results from the search
for the maximum binding energy, which defines the average form and size of
the cluster structure representing the specific nucleus.

The well studied a-cluster models! of the nucleus and the isomorphic
shell model "® appear, at first glance, as two completely independent ap-
proaches of studying the atomic nucleus. However, there is a fundamental
common feature that brings these two approaches very close to each other.
This feature is the very fact that both models are based on the mean positions
of their constituent particles (i.e.,of a-particles and of nucleons, respectively.)
Thus, in a broader sense the isomorphic shell model may be thought that it
provides the required dissolution of the a-particles into their nucleons which
is common for all nuclei "® and precisely consistent with the Pauli principle
9-12  After this important remark the two models may be viewed as two
similar approaches converging into one.

Demonstration of the above is successfully obtained here by taking throu-
ghout this paper 2C as an example. The good results obtained in the present
paper point to many other applications in the future refering to light, medium,
and even heavy nuclei.

2. THE ISOMORPHIC SHELL MODEL

The isomorphic shell model is a microscopic nuclear-structure model that in-
corporates into a hybrid model the prominent features of single-particle and
collective approaches in conjunction with the nucleon finite size.”"®

The single-particle component of the model is along the lines of the con-
ventional shell model with the only difference that in the model the nucleons
creating the central potential are the nucleons of each particular nuclear shell
alone, instead of all nucleons in the nucleus as assumed in the conventional
shell model.® That is, our Hamiltonian is analyzed into partial state-dependent
Hamiltonians for neutrons (N) and for protons (Z) as follows, where crossing
terms between partial Hamiltonians of different shells, have been omitted.

H=nNH+zH
=NH15+NH1p+NH1d2,+... (]_)
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+zHis+zHip+ zHigs + - -

While a finite square-well or Woods-Saxon potential would be a more
realistic choice of the potential, for reasons of simplicity, we take the harmonic
oscillator (HO) potential without spin-orbit coupling, where the expressions of
the mean square radius and of the energy eigenvalues, necessary in demonstrat-
ing the model, are exceptionally simple and have closed mathematical forms.
In addition, the appearance of the finite negative constants —nV; and —zV; in
the neutron and the proton harmonic oscillator potentials below, reduces the
boggling impression given when an infinite potential is used for determining
total-binding energies.

Thus, for each partial neutron or proton Hamiltonian we take

_ 1
NHi=nNVi+ NTi=-NVi+ Em(NW?)rz, +~nT; (2)

— 1
zH; = zVi+ zT; = -zV; + Em(zw?)’”z'FZTi (3)

That is, each harmonic oscillator potential has its own state-dependent
frequency w. These w are not taken as adjustable parameters, but all are
determined from the harmonic oscillator relation!3

e () (-+3)

where n is the harmonic oscillator quantum number and < r? >1/2 is the av-
erage radius of the relevant high fluximal shell determined by the semiclassical
part of the model specified below.

The solution of the Schrodinger equation with Hamiltonian (1), in spher-
ical coordinates, is

Unim (r, 0, ¢) = Rnl(")ylm(ov ¢)’ (5)

where Y;™ (0, ¢) are the familiar spherical harmonics and the expressions for the
R, (r) are given in several books of quantum mechanics and nuclear physics,
for example see Table 4-1 of Ref. 13.

The only difference between our wave functions and those in these books
is the different w’s as stated in (2) - (3) above. Those of our wave functions,
however, which have equal ! value, because of the different fiw, are not or-
thogonal, since in these cases the orthogonality of Legendre polynomials does
not suffice. Orthogonality, of course, can be obtained by applying established
procedures, e.g., the Gram-Schmidt process.
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According to Hamiltonian (1), the binding energy of a nucleus with A
nucleons in the case of orthogonal wave functions takes the simple form given

by (6)

A
> hwi(n +3/2) |, (6)

=l

BE =1/2(V.A) - 3/4

where V is the average potential depth®. The coefficients 1/2 and 3/4 take care
of the double counting of nucleon pairs in determining the potential energy.

Applications and details of the quantum mechanical part of the model
are given in Ref. 8. Here an application of the semiclassical part (see Refs.
7 and 14-19) in the place of the quantum mechanical part of the model is
considered in the spirit of Ehrenfest’s theorem,?® which for the observables of
position (R) and momentum (P) takes the form

d 1

E<R>_E<P> and (7)
d

EZ<P>=-<VV(R)> (8)

The quantity < R > represents a set of three time-dependent numbers
{< X >, <Y >,< Z >} and the point < R > (t) is the centre of the wave
function at the instant . The set of those points which correspond to the
various values of t constitutes the trajectory followed by the centre of the
wave function.

From (7) and (8) we get

d2
mFR = - < VV(R) > (9)
Furthermore, it is known that, for the special case of the harmonic oscil-
lator potential assumed by the isomorphic shell model in (3), the following
relationship is valid

< VV(R) >=[VV(r)lr=<r>, Where (10)

(-VV(r)lr=<r>=F (11)

That is, for this potential the average of the force over the whole wave function
is rigorously equal to the classical force F' at the point where the centre of the
wave function is situated. Thus, for the special case (harmonic oscillator)
considered, the motion of the centre of the wave function precisely obeys the
laws of classical mechanics. Any difference between the quantum and the
classical description of the nucleon motion exclusively depends on the degree
the wave function may be approximated by its centre. Such differences will
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contribute to the magnitude of deviations between the experimental data and
the predictions of the semiclassical part of the model employed here.

Now, in the semiclassical treatment’ the nuclear problem is reduced
to that of studying the centres of the wave functions presenting the con-
stituent nucleons or, in other words, of studying the average positions of these
nucleons”. For this study the following two assumptions are employed by the
isomorphic shell model”.

i) The neutrons (protons) of a closed neutron (proton) shell, considered at
their average positions, are in dynamic equilibrium on the sphere
presenting the average size of that shell.

ii) The average sizes of the shells are determined by the close-packing
of the shells themselves, provided that a neutron and a proton are rep-
resented by hard spheres of definite sizes (i.e., r, = 0.974 fm and
rp = 0.860 fm).

It is apparent that assumption (i) is along the lines of the conventional
shell model, while assumption (ii) is along the lines of the liquid-drop model.

The model employs a specific equilibrium of nucleons, considered at their
average positions on concentric spherical cells, which is valid whatever the law
of nuclear force may be?!: assumption (i). This equilibrium leads uniquely to
Leech?! (equilibrium) polyhedra as average forms of nuclear shells. All such
nested polyhedra are closed-packed, thus taking their minimum size: assump-
tion (ii). The cumulative number of vertices of these polyhedra, counted suc-
cessively from the innermost to the outermost, reproduce the magic numbers
each time a polyhedral shell is completed” (see the numbers in the brackets in
Fig. 1 there and in this paper).

For one to conceptualize the isomorphic shell model, he should first relate
this model to the conventional shell model. Specifically, the main assumption
of the simple shell model, i.e. that each nucleon in a nucleus moves (in an
average potential due to all nucleons) independently of the motion of the
other nucleons, may be understood here in terms of a dynamic equilibrium
in the following sense.” Each nucleon in a nucleus is on average in a dynamic
equilibrium with the other nucleons and, as a consequence, its motion may
be described independently of the motions of the other nucleons.

From this one realizes that dynamic equilibrium and independent parti-
cle motion are consistent concepts in the framework of the isomorphic shell
model.

In other words, the model implies that at some instant in time (reached
periodically) all nucleons could be thought of as residing at their individual
average positions, which coincide with the vertices of an equilibrium poly-
hedron for each shell. This system of particles evolves in time according to
each independent particle motion. This is possible, since axes standing for the
angular-momenta quantization of directions are identically described by the
rotational symmetries of the polyhedra employed.®~12 For example, see Ref.
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11, where one can find a complete interpretation of the independent parti-
cle model in relation to the symmetries of these polyhedra. Such vectors are
shown in Fig. 1 for the orbital angular-momentum quantization of directions
involved in all nuclei up to N =20 and Z = 20.
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Figure 1. The isomorphic shell model for the nuclei up to N = 20 and Z = 20.
The high-symmetry polyhedra in row 1 (i.e. the zerohedron, the octahedron and the
icosahedron) stand for the average forms for neutrons of (a) the 1s, (c) the 1p and
(e) the 1d2s shells, while the high-symmetry polyhedra in row 2 (i.e. the zerohedron,
the hexahedron (cube) and the dodecahedron) stand for the average forms of (b) the
1s, (d) the 1p and (f) the 152s shells for protons. The vertices of polyhedra stand
for the average positions of nucleons in definite quantum states (7, n,{,m, s). The
letters h stand for the empty vertices (holes). The z axis is common for all polyhedra
when these are superimposed with a common centre and with relative orientations
as shown. At the bottom of each block the radius R of the sphere exscribed to
the relevant polyhedron and the radius p of the relevant classical orbit, equal to
the maximum distance of the vertex-state (7, n, [, m, s) from the axis n0]" precisely
representing the orbital angular momentum axis with definite n,] and m values, are
given. Curved arrows shown help the reader to visualise for each nucleon round
what axis is rotated, where close (open) arrows show rotations directed up (down)
the plane of the paper. All polyhedra vertices are numbered as shown. The backside
{(hidden) vertices of the poluhedra and the related numbers are not shown in the
figure.
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Since the radial and angular parts of the polyhedral shells in Fig. 1 are
well defined, the coordinates of the polyhedral vertices (nucleon average posi-
tions) can be easily computed. These coordinates up to N = Z = 20, needed
here for the application of the model on '2C (see next section), are already
published in footnote 14 of Ref. 14, and in footnote 15 of Ref. 15. These
coordinates correspond to the relevant R values of the exscribed polvhedral
spheres given in Fig. 1 (see bottom line at each block).

According to the isomorphic shell model”, the nucleon average positions
of a nucleus are distributed at the vertices of the polyhedral shells as shown, for
example, in Fig. 1. The specific vertices occupied, for a given (closed- or open-
shell) nucleus at the ground state, form a vertex configuration (corresponding
to a state configuration) that possesses a maximum binding energy (BE) in
relation to any other possible vertex configuration. This maximum BE vertex
configuration defines the average form and structure of the ground state of this
nucleus. All bulk (static) ground-state properties of this nucleus (e.g. BE,
rms radii, etc.) are derived as properties of this structure, as has been fully
explained in Ref. 7 and will become apparent below.

The quantities estimated by the model in the framework of its semiclas-
sical part "'1*16 (see next section) are potential energy V;;, Coulomb energy
(E.)ij; average kinetic energy < T' >pm,; odd-even energy Es; binding energy
EgEg; collective rotational energy Epo; rms charge, mass and effective radii
< r? >1/2; and electric quadrupole moment using (12)—(22).

—(31.8538)r,; —(1.3538)r,;
Vi = 1.7(10'") < = 187 -, (12)
7‘,'_,' T,‘j

where the internucleon distances r;; are estimated following Fig. 1 or (the
same) the corresponding coordinates of polyhedral vertices.!4~1%
e
(Ec)ij = —, (13)

Tij
where distances r;; are computed as explained above.

!

<T >nim= 7
R?nax pnlm

(14)

where Rp.x is the outermost polyhedral radius (R) plus the relevant nucleon
radius (i.e., 7, = 0.974 fm or r, = 0.860 fm), i.e., the radius of the nuclear
volume in which the nucleons are confined, M is the nucleon mass, p,,, is the
distance of the vertex (n,/,m) from the axis ,6;* (see Fig. 1 and Ref. 16).

2
e
EBEz—- Z "/ij— Z —.—"— Z <T>nlm —-E6+Erot7 (15)
all nucleon a'proton "8 411 nucleons
pairs pairs
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where distances r;; are estimated as above and Ej is a correction “odd-even”
term familiar from the liquid drop model. Here Ejs value is equal to zero for
even-Z even-N nuclei for which the potential in (12) is exclusively derived!*
and thus no correction is needed, while for odd-A nuclei its value is taken
equal'® to 80/A MeV, i.e.

REI(I+1
Erot — %1 (17)

where J is the moment of inertia of the rotating part of the nucleus given by
(18)
Nrot rot

J= Z mp? = mZp, = mNpot < 2 >ro1y (18)

where N is the number of nucleons participating in the collective rotation
and
< 12 >0t is the rms radius of these nuclei.

The term Epo in (15) is meaningful for the ground state only for the
cases where the angular speed w due to independent particle motion is compa-
rable (about equal) to that due to collective motion in such a way that these
two motions are coupled even at the ground state, i.e., for these cases the
adiabatic approximation is not valid.

1/2
2 1 | ZE R+ TN, R+ Z(0.8)2 + N(0.91)
<r? >l ZTN y (19)

z 1/2
<r?>liz ;Euﬁ+msf—mnmﬁJ : (20)

VA Z

where the subscripts ch and m refer to charge and mass, R; is the radius of
the ith proton or neutron average position from Fig. 1, Z and N are the
proton and the neutron numbers of the nucleus, 0.8 and 0.91 fm are the rms
radii of a proton and of a neutron, and -0.116 fm? is the ms charge radius of
a neutron.?? The 0.91 fm value for a neutron is taken from the 0.8 fm value
for a proton by considering proportionality according to the sizes of their bags
0.974 and 0.860 fm, respectively, i.e. 0.91 = 0.8(0.974/0.860).

<SP [cr? s+ <1 5]’ (21)
z

eQinr. = ) _eQi =€ R}(3cos’6; — 1), (22)
1 i=1
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where @' stands for the intrinsic quadrupole moment, R; is the radius of the
ith proton average position, and 6; is the corresponding azimuthal angle with
respect to the quantisation axis.

3. CALCULATIONS AND DISCUSSION

In the o-cluster model of the nucleus referring to a-chain states, 12C (N=3)
is the key nucleus since an a-chain structure for Be® (N=2) is apparent and
since the appearance of such structure for heavier nuclei (N > 4) could be
associated to !2C structure particularly if the a-chain states of these heavier
nuclei could be thought of as forming molecular structures of the type 2C
+(N - 3)a, either '2C + 8Be or 2C + !2C. Thus in the following we will
concentrate on 12C.

The average structure of 12C, in the framework of the isomorphic shell
model, comes from Fig.1 by considering the states (1s and 1ps/;) involved in
this nucleus. Specifically, from Fig.1 the average nucleon positions numbered
1-2 (for 1s neutrons), 3—4 (for 1s protons), 5-8 (for 1p3/, neutrons), and 11~
14 (for 1ps/, protons) are depicted as shown in Fig.2(a) by employing the
same numbers. Thus, Fig.2(a) contains part of Fig.1 and so, as mentioned, all
coordinates of the average nucleon positions involved are known.'4'1® Further,
Fig.2(b) is almost identical to Fig.2(a) and only slightly differs with respect to
the average positions of the two 1s protons (nos. 3-4). Specifically, due to the
absence of 1p;/; neutrons in 12C (nos. 9-10) whose average positions together
with those of 1p3/2 neutrons (nos.5-8) determine the symmetry of the average
positions for the 1s protons, these two latter positions can relax getting closer
to the average positions for the 1ps/; neutrons (nos. 5-8) in such a way that
their corresponding nucleon bags come in contact.This relaxation of the two
proton average positions leads to larger binding energy for 2C.

Further in the model, each set of the following four nucleon average
positions numbered (1-4), (5, 7, 11, 13) and (6, 8, 12, 14) consists of two
protons and two neutrons with the same n and ! quantum numbers which
are close together for the instant depicted by Fig.2(a) and (b). Thus, in the
model each of these three sets can be considered as an a-particle. Considering
now the center of gravity for each of these a-particles, Fig.2(c) results, where
indeed these three o-like particles are in a row forming a linear chain. For
later moments, of course, each of the four nucleons composing any one of the
above three a-particle like structures will evolve by following its independent
particle motion. That is, each nucleon will rotate in an orbital round its own
axis of orbital angular momentum vector as schematically shown by arrows in
Fig.1.

In the framework of the isomorphic shell model now the observables
of rms charge radius and of binding energy can be estimated. Specifically,
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from Eq.(20) since all R; involved in Fig.2(2) and (b) are known” (namely,
Ris—protons = 1.554 fm, and Rip—protons = 2.541 fm; see Figs.1(b) and (d)),
the charge rms radius is computed equal to 2.37 fm for each of the Figs.2(a)

and (b) (< r? >ik{,2exp= 2.37 fm). Also, from Eqgs.(12)-(15) since all co-
ordinates of the nucleon average positions!*~!® and the radial distances in-
volved in Figs.2(a) and (b) (namely in fm, Rmax = 2.51140.974, p1p—proton =
2.075, p1p—neutron = 2.511, also Ero, = 0; see Figs.1(c) and (d) are known!4~15
the binding energy for Figs.2(a) and (b) are computed equal to 86.0 MeV and
94.2 MeV, respectively.

Fig.2(a) and (b) have been found to be the two average-nucleon-position
configurations with the largest binding energies with respect to any other
possible configuration for 2C involving s and p or even d states and coming
from Figs.1(a) - (f). Thus, Fig.2(b) is associated with the ground state and
Fig.2(a) with the 7.653 + 0.3, J™ = 0] excited state?® of 12C possessing
92.2 MeV and 84.55 MeV experimental binding energies,?* respectively. The
inbetween excited state?® at 4.439240.3, J" = 2'1'”, will be discussed shortly.
Center-of-mass corrections are not included. ~

Figure 2. Average forms for Ry, according to the isomorphic shell model, com-
posed of the average positions of the constituent nucleons. Part (a) stands for the
first 0 excited state at 7.65 MeV and part (b) for the ground state. Average nucleon
positions are numbered as shown by using for the same position the same number
as in Fig.1.Thus, one can observe that for the positions shown in Fig.1(a)-(d) those
numbered (9)-(10) for neutrons and (15)-(16) for protons are the only not present
in Fig.2. Fig.2(c) comes from either Fig.1(a) or Fig.1(b) when each of the three sets
of four close-by nucleons {two neutrons and two protons) of same 7 and | numbered
(1-4), (5, 7, 11, 13) and (6, 8, 12, 14) are assumed forming a sort of an « particle.
Axes labelled 1, 2 and 3 stand for C'2 symmetry axes and those labelled RO,* and

RO; for rotational axes referring to the first (0F) and to the second (05) 0% levels.
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Table 1. Theoretical predictions and experimental values for the ground state
(0F) and first 0% excited state (0F) of '2C.

rms Intrinsic
Approach Energy charge quadrupole
radius moment
(MeV) (fm) (fm)?
of 92.2° 2.4040.25° 3934
Experiment 07 7.65
Isomorphic  0F 94.2 2.37 21
shell model  0F 8.2 2.37 21
a-particle 0F (triangle) V1 727
model® V2 643
with forces Bl 62.0 2.62 -43/
V1, V2, Bl 0F (chain) V1 15.0 3.27°
V2 8.7
B1 6.1
¢ See Ref. 3
b See Ref. 23
¢ See Ref. 25
¢ See Ref. 27
¢ See Ref. 30

f See text (Section 3) for other calculated values (e.g.-21.6 fm?)

It is satisfying that the present predictions are close to the experimental
values for the binding energies but also for the radii?®*. The comparison is
even more to our favour if we consider the corresponding a-model predictions®
given in Table 1. However, a more detailed comparison with a-cluster models
is going to be made later.

As seen from Figs.2(a) and (b), the deformation of the average shapes
for the ground state and the 0F excited state of 12C is apparent. In these
figures the axes of symmetry and the corresponding axes of rotation are also
shown. Specifically, the axis of rotation labelled ROT is perpendicular to both
axes of symmetry labelled 2 and 3, while the axis of rotation labelled Ro;‘ is
defined from the proton average positions nos. 3 and 4 and is perpendicular
to the axis of symmetry labelled 1.

Since all coordinates involved in Figs.2(a) and (b) are known!4~1%, by
applying Eq.(18) the relevant moments of inertia are estimated. Namely,

52



Jo=42.6 M.fm? and
J,=28.03 M.fm?
where M stands for the nucleon mass and the contribution to the moment of
inertia coming from the finite nucleon size has been empirically incorporated
equal to 0.165 M.fm? for each nucleon participating in the collective rotation.
By assuming no variation of the moment of inertia with angular momen-
tum and by applying Eq.(17) the bands corresponding to the rotational axes
labelled Ro;‘ and Ro; are those given in Table 2.

The second band is what is usually considered by the a-cluster models®
as corresponding to the linear a-chain states for 12C. Of course, the existence of
such a band is not clearly supported by the experimental data.23 Its existence
exclusively depends on whether in the future the J™ for the state 10.3+3 MeV
will be found to be 2% in place of the present tentative?® assignment (0%).

What is really different between the present approach and the a-cluster
models is the nature of the first band, i.e. of the ground-state band in Ta-
ble 2. In these models o-particles are arranged at the corners of an equi-
lateral triangle® for the ground state of !2C. Such triangular configuration
of a-particles round the nuclear center is based on the assumption that the
a-particle is a fundamental constituent of 12C nucleus. In such a case by con-
sidering any reasonable o — « interaction, the most compact structure (and
thus with maximum binding energy) is that of an equilateral triangle and
should be assigned to the ground state of 2C. In the framework of the present

Table 2. Rotational ground state and 07 excited bands of 12C.

Isomorphic
Experiment® shell a-particle
Band J™ J"™ Energy model models®
(MeV) (MeV) (MeV)
2t 2F 4.44 4.28 2.76¢
0F 4% (4%) 14.08 14.28
6+ 28.9 29.98
ot ot 7.65 7.65 7.65
oF 2t (0%) 103 10.4 8.90
4% 16.9 12.1
@ See Ref. 23
b See Ref. 31
¢ See Ref. 30
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model, however, nucleons and not a-particles are the constituents of any nu-
cleus and it is the Pauli principle together with the maximum binding energy
which determine what average nucleon positions are occupied and eventually
what is the average shape of a specific nucleus. The good agreements between
the experimental data and the predictions of the present model concerning
the member states of the ground state band?® lend support to the present
approach,where a linear instead of a triangular average shape for the ground
state of 2C is employed.

Finally, an estimation of the electric quadrupole moment of 12C is made
which constitutes a very sensitive test of the angular distribution of the av-
erage structure for any nucleus. Dealing with average values, the intrinsic
quadrupole moment is given!®> by (22) where, for Fig.2(b) representing the
ground state of 12C each R; has been specified” above (see R values in Fig.1)
and the corresponding 6; is the azimuthal angle for the proton average position
i with respect to the axis 1 (see Fig.2), which is the quantization axis for all
vectors presenting quantization of direction®~!? for orbital angular momenta
shown in Fig.1 (namely,26 63 4 = 90° and 61,14 = 35° 15'52"). It is satisfying
that the resulting value eQ! . = 21.0 fm? is identical to the measured®” abso-
lute value of the intrinsic quadrupole moment. The corresponding value com-
ing from the a-cluster model® used for the construction of Table 1 is —43 fm?,
while more recent calculations?® give —21.6 fm? and*! -21.7fm%. Hence, the
difference between the present model and the Bloch- Brink model concerning
the electric quadrupole moment essentially lies in the sign of the Q’,,,.

4. CONCLUSIONS

In the present study of 12C the isomorphic shell model”® has been employed as
a cluster approach to atomic nuclei, where consideration of the nucleon finite
size” constitutes one of the main features of the model. This feature allows the
packing and clusterization in a nucleus.” What are really packed in the model
are the shells themselves’ taken as entities. Thus, only nucleons necessary for
the shell packing are in contact. That is, the model does not support general
packing of nucleons which should lead to much higher density. It is satisfying
that this packing of shells reproduces a magic number? each time a saturated
shell is added into the packing. The close reproduction of binding energies
and sizes in many nuclei by both the quantum® and semiclassical” parts of the
model lends support to the present approach and makes its results reliable.

A prolate average shape with a sizable positive intrinsic quadrupole mo-
ment is predicted for 2C which can be considered as a linear chain of three
o-particles, when each two close-by pairs of neutrons and protons with the
same n and [ quantum numbers (sort of a-particle) are presented by their
center of gravity. Such a linear o-chain has already been predicted by a-
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cluster models.> However, here the a-chain stands for both the excited 0F
state®® at 7.65 MeV (as in these models) and the ground state (instead of an
equilateral triangle in these models®). The good agreements with experimental
values for all observables examined, superior to those from a-cluster models,
support the credibility of the present approach. Of course, the difference in
the sign of the deformation cannot be ignored. However, despite much effort
the quantitative experimental evidence is inconclusive?®. Most of it derives
from model-dependent analysis of electron scattering and hadron scattering
data. Some of these analyses are inherently insensitive to the sign of the de-
formation and there are indications that the values obtained are projectile
dependent and also that the findings strongly depend on the assumption that
the nuclear charge distribution is spheroidal.?®.Besides the sign the most re-
cent estimation®®~2° of |@o| range from 21.6 to 24.0 fm? which are in good
agreement with our prediction of 21.0 fm?.

The above conclusions are further strengthened By the fact that the iso-
morphic shell model used here employs no adjustable parameters. It uses, of
course, two numerical parameters for the sizes of neutron and proton bags’+16

and four parameters for the two-body potential'* employed, but these totally

six parameters are universal parameters of the model constant for all prop-
erties in all nuclei. In the present approach no ad hoc assumption has been
made and all predictions are based on the isomorphic shell model, all of whose
numerals necessary for its implementation have been published independently
a long time ago.
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