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Abstract

The symmetry algebra of the N-dimensional anisotropic quantum har-
monic oscillator with rational ratios of frequencies is constructed by a method
of general applicability to quantum superintegrable systems. The special case
of the 3-dim oscillator is studied in more detail, because of its relevance in
the description of superdeformed nuclei and nuclear and atomic clusters. In
this case the symmetry algebra turns out to be a nonlinear extension of the
u(3) algebra. A generalized angular momentum operator useful for labeling
the degenerate states is constructed, clarifying the connection of the present
formalism to the Nilsson model.

1Presented by C. Daskaloyannis
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1. Introduction

Quantum algebras [1, 2] (also called quantum groups) are nonlinear gen-
eralizations of the usual Lie algebras, to which they reduce in the limiting
case in which the deformation parameters are set equal to unity. From the
mathematical point of view they have the structure of Hopf algebras (3]. The
interest for applications of quantum algebras in physics was triggered in 1989
by the introduction of the q-deformed harmonic oscillator [4, 5, 6], althotigh
such mathematical structures have already been in existence (7, 8]. The g-
deformed harmonic oscillator has been introduced as a tool for providing a
boson realization for the quantum algebra suy(2). Since then several gener-
alized deformed oscillators (see [9, 10, 11, 12, 13] and references therein), as
well as generalized deformed versions of the su(2) algebra [14, 15, 16, 17, 18]
have been introduced and used in several applications to physical problems.

On the other hand, the 3-dimensional anisotropic quantum harmonic os-
cillator is of interest in the description of many physical systems. Its single
particle level spectrum is known [19, 20] to characterize the basic structure of
superdeformed and hyperdeformed nuclei {21, 22]. Furthermore, it has been
recently connected [23, 24] to the underlying geometrical structure in the
Bloch-Brink a-cluster model [25]. It is also of interest for the interpretation
of the observed shell structure in atomic clusters [26], especially after the
realization that large deformations can occur in such systems [27]. The 2-
dimensional anisotropic quantum harmonic oscillator is also of interest, since,
for example, its single particle level spectrum characterizes the underlying
symmetry of “pancake” nuclei [20].

The anisotropic harmonic oscillator in two [28, 29, 30, 31, 32, 33] and
three [34, 35, 36, 37, 38, 39, 40] dimensions has been the subject of several
investigations, both at the classical and at the quantum mechanical level.
The special cases with frequency ratios 1:2 [41, 42] and 1:3 [43] have also been
considered. The anisotropic harmonic oscillator is a well known example of a
superintegrable system, both at the classical and at the quantum mechanical
level [44, 45]. Although at the classical level it is clear that for the N-
dimensional anisotropic harmonic oscillator the su(N) or sp(2N,R) algebras
can be used for its description, the situation at the quantum level is not
equally clear [28].

In section 2 of this letter the symmetry algebra of the N-dimensional
anisotropic quantum harmonic oscillator with rational ratios of frequencies
is studied by a method of general applicability to superintegrable systems
[46], while in section 3 the case of the 3-dimensional oscillator is considered
in more detail, because of its importance for the description of nuclei and
possibly of atomic clusters. In the case of the 3-dim oscillator the symmetry
algebra turns out to be a nonlinear generalization of u(3). In addition a
generalized angular momentum operator is constructed, suitable for labelling
the degenerate states in a way similar to that used in the framework of the
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Nilsson model [47].
2. General case: the N-dimensional oscillator
Let us consider the system described by the Hamiltonian:

k

where m; are natural numbers mutually prime ones, i.e. their great common
divisor is ged(m;,m;) =1fori# jandi,j=1,...,N.
We define the creation and annihilation operators [28]:

o= F(2-in),

a= o5 (2 +ipe), (2)
U= L(m2+3) =aa), H=30

AV = S A S kgl k-

These operators satisfy the relations (the indices k¥ have been omitted):

at' U =(U-21)at or [U,(af)] (a")",
alU =U+2%)a or [U,(a)"]=-(a)",
ala =U-5, ad=U+3,
[(I,(I,? = l’ i ’ (3)
(a")" (@™ = F(m,U),
(a)™ (aT> == F(m U+1),
where the function F(m, z) is defined by:
’” 2p—1

p=1

Using the above relations we can define the enveloping algebra C, defined
by the polynomial combinations of the generators {I,H, Ak,AL,Uk} and
k=1,...,N —1, where:

AL = (al)™ (en)™,  Ax= (@)™ (a})"™". 5)
These operators correspond to a multidimensional generalization of eq. (2):
[H A =0, [H Al]=0, [HUJ)=0 k=1,....N—1. (6)

The following relations are satisfied for k # £ and k,6=1,...,N —1:

Uk, Ad = [Us, Af] = [, A = [A}, A]] =0, (7)
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while
UrAL = AL (U +1),
U Ar = A (U — 1),
N-1
.AI,.Ak = F(mk, Uk)F(mN,H - > U + 1), (8)
=1
t N-1
AcAL = F(mi, Ue + 1)F(my, H= T Up).
=1

One additional relation for k # ¢ can be derived:

N-1 N-1
F(my,H= Y U)AlAc=F(my,H =Y U +1)AAL  (9)
=1 =1

The algebra defined by the above relations accepts a Fock space repre-
sentation. The elements of the basis |E,p;,...,pn-1) are characterized by
the eigenvalues of the N commuting elements of the algebra H and Ui with
k=1,...,N —1. The elements A; and .A,Tc are the corresponding ladder
operators of the algebra. The following relations hold:

HlEvp]." "va—l> = EIE’ph"'va—l))
Uk |Eap17" '7pN—1> = Dk |Eap1)"'apN—l>)
'Ak IE’plv- . wpkv'-"pN—l) =

N-1
F(mu, pi) F(mn, E - z pe+1)|Ep1,...,pe—1,...,pn1),  (10)
AL |E,p1,...,pk,...,pN_1) =
N-1
F(mk’pk + 1)F(mNaE_ lgl pl) |Eap1a"'7pk+ 1,-- -1pN—1>-

Let p,ﬁnin be the minimum value of p; such that
A |E,p1,...,p,inin,...,pN_1> =0. (11)
From eq. (10) we find that we must have:
F(mk,p},nin) =0. (12)

Then py is one of the roots of the function F defined by eq. (4). The general
form of the roots is:

i 2qk -1
min
= — =i1yseu :
y 2mk ’ K ’ y Mg (13)

Each root is characterized by a number gx. The numbers g; also characterize
the representations of the algebra, as we shall see.
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The elements of the Fock space can be generated by successive applica-
tions of the ladder operators .4} on the minimum weight element

E.,0,...,0 > (14)
qQ,---3qky---5 9N

|E,piRin, . piinY = . E’[g]o} >=

The elements of the basis of the Fock space are given by:
E, {n} 1 s nk
e[ - [
2.7 + ] [a] el ,LIl (4)

where {n} = (ni1,n92,---,nn-1) and [q] = (q1,¢2,...,9n), while C'[q] are
normalization coefficients.
The generators of the algebra acting on the base of the Fock space give:

E, {0}
] > (15)

H E,{n} E E, {n} ’
Uk’ E[q{]n}>> i Jimn? E’[i]n}>’ o1 Wt (16)
4| 5 )=

= [Pl s B8+ )P, B E (et pB)) D)

Eny,...,ne+1,...,n8_1
qiy-+-3qky- 4N ’

Al Tl >

= \/F(mk,nk+Pkmln) (mN,E—ng1 (ne+pPm) +1).  (18)
E,nl,...,nk—l,...,nN_l >

qiy---yqks- -, 4N

The existence of a finite dimensional representation implies that after &
successive applications of the ladder operators A" on the minimum weight
element one gets zero, so that the following condition is satisfied:

N-1
Fmy,E-Z =Y p™) =0.

=1

Therefore:
E—-%— Z pmm
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where IR is the root of equation F(my,pil) = 0. Then

N
2qk—1
E=X+ ’ 19

In the case of finite dimensional representations only the energies given by
eq. (19) are permitted and the elements of the Fock space can be described
by using ¥ instead of E. The action of the generators on the Fock space is

described by the following relations:

i S,{n}>= o4 &gt | Zin}
(q] =i 2o (q) '
o | S} ey [ S0\ Ly oyl Y
’ = + = ’ ’ =1»'--7 -4
P ) = )| 55
At “!{n}>___
1 ld]
= F(mk,nk+%k—l+1)F(mN,E—l)_:,n +3§m&1) (21)
2y My, 1nk+11 yMIN-1
q1, sy Qky - y AN ’
T, {n}
A i =
“| g >
N—1
=/ F (e + Bt ) F(mn, £ = Some + 32t 1) (22)
=,
E,nl,..,,nk——l,...,nN_l
Qs « ws 3 Py =« 5w AN '

The dimension of the representation is given by

de E+N—1)_ E+1)(Z+2)---(Z+N-1)
_( ¥ B (N -1)! ’

It is clear that to each value of ¥ correspond mym;, ... my energy eigenvalues,

each eigenvalue having degeneracy d.
Using egs (3) we can prove that the algebra generated by the generators
a}, ag, Ny = myU, —1/2 is an oscillator algebra with structure function 9, 12]

®y(z) = T/MYs

i.e. with
1

Q(N) =0 - T
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This oscillator algebra is characterized by the commutation relations:
[Ng, az] = CLI, [Ng, a(] = aI, aIae = (I)[ (Ng) 5 agaI = <I>[ (N[ + 1) . (23)

There are in total N different oscillators of this type, uncoupled to each
other. The Fock space corresponding to these oscillators defines an infinite
dimensional representation of the algebra defined eqs (6-9). In order to see
the connection of the present basis to the usual Cartesian basis, one can use
for the latter the symbol [r] = (r,7s,...,7n). One then has

aI|[r])= \/<I>(n+1) P« Bl Lo « 0]

aellr]) = /®(re) Ir1, - s —1,...,TH),
Nel[r]) = rel[r]) -

The connection between the above basis and the basis defined by egs (20-22)

is given by:
i =| B ),

g, = [ri/my]
k=1,...,.N—1 (24)
— gy =mod (1, me) +1

N
2 = E [T[/m[]
=1

T¢ = Ngmy + mod (Tg,m()
¢=1,... N

where [z] means the integer part of the number z.

Using the correspondence between the present basis and the usual Carte-
sian basis, given in eq. (24), the action of the operators a} on the present
basis can be calculated for k=1,..., N —1:

E,{é}n} > = /e + qr/my

al

)

where
ng=mn¢ q=gq¢ forl#k,

=y + [qr/mu)
=X+ g/m],
q;c = mod (qk,mk) + 1,

while for the operator a; one has

al

2’[(5]12} >=\JE— ink +qn/mn

k=1

i)
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where
nk:nk, qL:qk, fork=1,...,N -1,

=3+ [gn/mn],
¢y =mod (gnv,mn)+ 1.

Similarly for the operators ai one can find fork=1,..., N - 1:

S {0} \ _ | T i)
[(J] >—\/k+(Qk 1)/ k [q’] >7

Ak

where
n2=ng, QEzqe’ foré;ék,

ny, = ne + [(ge — 2)/mu]
=S+ (g —2)/mq,
Q;c = mOd (qk - 2’mk) + 1)

while for the operator ay one has

an

E’[f,]”} > _ Jz _ ”g; v, 4 law— L)fmy

).

where
ny = Nk, a = Gk, fork=1,...,N —1,

T =T +|(gv - 2)/mn],
¢y =mod (gnv — 2,mn) + 1.

An important difference between the operators ag, aL used here and the

operators AE’) g A,(a)t used in refs [34, 36, 37, 40] has to be pointed out. The
operators used here satisfy the relations

1
fl=—"56
[almaz] o ks

i.e. they represent oscillators completely decoupled from each other, while
the operators of refs [34, 36, 37, 40] satisfy the relations

s t ) ot
(A9, AP =65, [AD, AV #6,

i.e. they represent oscillators not completely decoupled. Notice that (s) of
refs (34, 36, 37] ({A} of ref. [40]) is analogous to the [g] used in the present
work.

3. The 3-dimensional oscillator and relation to the Nilsson
model

In this section the 3-dim case will be studied in more detail, because of
its relevance for the description of superdeformed nuclei and of nuclear and
atomic clusters. The 3-dim anisotropic oscillator is the basic ingredient of
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the Nilsson model [47], which in addition contains a term proportional to the
square of the angular momentum operator, as well as a spln-orblt coupling
term, the relevant Hamiltonian being

HNilsson — Hosc - Zkﬁ g -§ == kl/i?,

where k, v are constants. The spin-orbit term is not needed in the case
of atomic clusters, while in the case of nuclei it can be effectively removed
through a unitary transformation, both in the case of the spherical Nilsson
model [48, 49, 50] and of the axially symmetric one [51, 52]. An alterna-
tive way to effectively remove the spin-orbit term in the spherical Nilsson
model is the g-deformation of the relevant algebra [53]. It should also be no-
ticed that the spherical Nilsson Hamiltonian is known to possess an osp(1|2)
supersymmetry [54].

In the case of the 3-dim oscillator the relevant operators of eq. (2) form a
nonlinear generalization of the algebra u(3), the q-deformed version of which
can be found in [55, 56, 57].

As we have already seen, to each ¥ value correspond m;myms energy
eigenvalues, each eigenvalue having degeneracy (X + 1)(Z + 2)/2. In order
to distinguish the degenerate eigenvalues, we are going to introduce some
generalized angular momentum operators, L; (1 = 1,2, 3), defined by:

L = e ()™ ()™ = ()™ (a)™). (25)
One can prove that
Li=i(A-A}), Ly=i(Al-4).
The following commutation relations can be verified:
[Ls, Lj) = ieije (F(mu, Uy + 1) = F(mg, Ur)) L. (26)

It is worth noticing that in the case of m; = my = m3 = 1 one has F(1,z) =
x — 1/2, so that the above equation gives the usual angular momentum
commutation relations.

The operators defined in eq. (25) commute with the oscillator hamiltonian
H and therefore conserve the number ¥ which characterizes the dimension
of the representation. Also these operators do not change the numbers ¢,
g2, g3 as we can see from eqs (21-22). The eigenvalues of these operators can
be calculated using Hermite function techniques.

Let us consider in particular the generalized angular momentum projec-

tion: ma m
Ly =i ((a)™ (a})™ = (a})™ (aa)™). (27)
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This acts on the basis as follows

Z,{n} >
L =
)l
= i(F (o 350) F (a3 +1)| 27 T ) -

Y +1,n—1 )

la]

_\/F(ml,n1+3§"Ll:—1+1)F(m2,ng+zgﬁ—l)

(28)
This operator conserves the quantum number

. Ny +ne . 1 3
M sop= il
J 2 J=5%3:43

In addition one can introduce the quantum number

n; —na
2
One can then replace the quantum numbers n;, n; by the quantum numbers

j, u, where g is the eigenvalue of the L3 operator. The new representation
basis one can label as

m =

¥, ¥
Ly| jyp ) =p|drie ). (29)
lq] > ld] >

This basis is connected to the basis of the previous section as follows

=, >: 2 clj, m, uj

B ] =1 30
][QT m=—j \/[J +m]y![j — m)y! > J (30)

lq]

where

2qr— 1
O =1, [t = b~ ! [l = F (mayn + 2821,

and the coefficients c[j, m, u] in eq. (30) satisfy the recurrence relation:
#C[ja m, u] o Z([.] - m]2C[j, m+ 11 #] - [J + mhc[ji m — la /‘L]) . (31)

These relations can be satisfied only for special values of the parameter u,
corresponding to the eigenvalues of Ls. It is worth noticing that in the case
of m; = my, which corresponds to axially symmetric oscillators, the possible
values turn out to be p = —2j, —2(5 —1),...,2(j —1),2j. In nuclear physics
the quantum numbers ny = ny; +np and A = +n,, +(ny —2), ..., £l or
0 are used [58]. From the above definitions it is clear that j = n,/2 and
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u = A. Therefore in the case of m; = ms,, which includes axially symmetric
prolate nuclei with m; : my : mg =1 :1: m, as well as axially symmetric
oblate nuclei with m; : my : m3 = m : m : 1, the correspondence between
the present scheme and the Nilsson model is clear.

In the case of axially symmetric prolate nuclei (m; = my = 1) one can
easily check that the expression

L* =L+ L2 + (F(m3,Us + 1) — F(ms,Us)) L3
satisfies the commutation relations
(L% =0, i=123.

Thus L? is the second order Casimir operator of the algebra closed by L,
L,, Ls.

4. Discussion

The symmetry algebra of the N-dim anisotropic quantum harmonic os-
cillator with rational ratios of frequencies has been constructed by a method
[46] of general applicability in constructing finite-dimensional representations
of quantum superinegrable systems. The case of the 3-dim oscillator has been
considered in detail, because of its relevance to the single particle level spec-
trum of superdeformed and hyperdeformed nuclei [19, 20], to the underlying
geometrical structure of the Bloch-Brink a-cluster model [23, 24], and pos-
sibly to the shell structure of atomic clusters at large deformations 26, 27].
The symmetry algebra in this case is a nonlinear generalization of the u(3)
algebra. For labeling the degenerate states, generalized angular momentum
operators are introduced, clarifying the connection of the present approach
to the Nilsson model.

In the case of the 2-dim oscillator with ratio of frequencies 2: 1 (m; =1,
m, = 2) it has been shown [59] that the relevant nonlinear generalized u(2)
algebra can be identified as the finite W algebra WS [60, 61]. In the case of
the 3-dim axially symmetric

oblate oscillator with frequency ratio 1 : 2 (which corresponds to the case
my = mg = 2, mg = 1) the relevant symmetry is related to O(4) [40, 62]. The
search for further symmetries, related to specific frequency ratios, hidden in
the general nonlinear algebraic framework given in this work is an interesting
problem.

One of the authors (DB) has been supported by the EU under contract
ERBCHBGCT930467. This project has also been partially supported by
the Greek Secretariat of Research and Technology under contract PENED
340/91.
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