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Abstract

Pairing in a single-j shell is described in terms of two Q-oscillators, one describing
the J = 0 fermion pairs and the other corresponding to the J # 0 pairs, the deformation
parameter T = In @ being related to the inverse of the size of the shell. Using these
two oscillators an SUq(2) algebra is constructed, while a pairing Hamiltonian giving the
correct energy eigenvalues up to terms of first order in the small parameter can be written in
terms of the Casimir operators of the algebras appearing in the Ug(2) D Ug(1) chain, thus
exhibiting a quantum algebraic dynamical symmetry. The additional terms introduced by
the Q-oscillator are found to improve the agreement with the experimental data for the

neutron pair separation energies of the Sn isotopes, with no extra parameter introduced.

* Presented by Dennis Bonatsos



1. Introduction

Quantum algebras (also called quantum groups) [1-4] are recently attracting much
attention in physics, especially after the introduction of the g-deformed harmonic oscillator
[5,6]. Applications in conformal field theory, quantum gravity, quantum optics, atomic
physics, as well as in the description of spin chains have already been reported. In nuclear
physics attention has been focused on the q-deformed rotator with SU,(2) symmetry and its
use for the description of rotational spectra and B(E2) transition probabilities of deformed
and superdeformed nuclei ([7-9] and references therein), as well as on the construction
of exactly soluble nuclear models with quantum algebraic dynamical symmetries 10,11].
Similar efforts have been made for the description of rotational [12-14] and vibrational ([15-
17] and references therein) spectra of diatomic molecules. In many cases the deformation
parameter ¢ turns out to be related to some well defined physical quantity. In the case of
the g-deformed rotator, for example, the deformation parameter has been related to the
softness parameter of the Variable Moment of Inertia (VMI) model [18].

For nuclear physics the description of correlated fermion pairs in terms of q-deformed
bosons is of particular interest for several reasons. Correlated fermion pairs in a single-
j nuclear shell or several non-degenerate j-shells ([19] and references therein) are known
to satisfy commutation relations which resemble boson commutation relations, containing
though corrections due to the presence of the Pauli principle. This fact has led to the
development of boson mapping techniques for the description of many fermion systems (see
[20] for an authoritative review). Boson mappings are of additional interest as a necessary
tool in building a bridge between the phenomenologically successful algebraic models of
nuclear collective motion, such as the Interacting Boson Model (IBM) ([21], see [22,23] for
recent overviews) and the shell model. Since g-bosons also satisfy commutation relations
different from the usual ones, it is reasonable to check to what extend correlated fermion
pairs can be described in terms of g-deformed bosons. For fermion pairs of J = 0 this
question has been answered in refs [24,25], where an approximate mapping of these fermion
pair operators onto Q-bosons [26-28] has been constructed, which correctly reproduces the
commutation relations and the pairing energies up to first order corrections in the smali

parameter T' = InQ, which is related to the inverse of the size of the single-j shell. The



same problem has been solved exactly in refs [25,29] through the use of a generalized
deformed oscillator [30]. The extension of this formaiism to pairs of J # 0 is of obvious
interest, since the J # 0 pairs are known to play an important role in the formation of
nuclear properties.

In the present work a first step in this direction is taken. First, it is realized that for
the description of pairing correlations in a single-j nuclear shell it suffices to represent the
J # 0 pairs by a Q-oscillator similar to the one used for the J = 0 pairs. The two oscillators
are then used for building a quantum algebraic dynamical symmetry. Finally, the higher
order terms introduced by the Q-oscillator are found to lead to improved agreement with
the experimental data, without the introduction of any new parameter.

2. Deformed oscillator description of J = 0 pairs

In the usual formulation of the theory of pairing in a single-j shell [31], fermion pairs

of angular momentum J = Q are created by the pair creation operators
1 .
St=— —1)y*mgt gt | 1
78 LV e m

where a;-*m are fermion creation operators and 22 = 2j + 1 is the degeneracy of the shell.

In addition, pairs of nonzero angular momentum are created by the Q — 1 operators
B} = ) (-1Y*™(jmj - m|J0)a}a}_., )
m>0

where (jmj — m[J0) are the usual Clebsch Gordan coefficients. The fermion number

operator is defined as

Np = Za}"ma,-m = E(a}‘majm + aj'_ma_,-_,,.). 3)
m m>0

The J = 0 pair creation and annihilation operators satisfy the commutation relation

Np
) 1 s
15,54 =1-2F, @
while the pairing Hamiltonian is
H =-GAs*s. ()



The seniority Vr is defined as the number of fermions not coupled to J = 0. If only pairs

of J = 0 are present (i.e. VF = 0), the eigenvalues of the Hamiltonian are

=)= Ne  Nr_Np
E(NF,VF—O)——GQ(2 +or =) (6)

For non-zero seniority the eigenvalues of the Hamoltonian are
G
E(Np,VF) = —Z-(Np —Vr)(2Q — Np — VF + 2). (7N

We denote the operators Np, Vp and their eigenvalues by the same symbol for simplicity.
In [24] it has been proved that the behaviour of the J = 0 pairs can be described,
up to first order corrections, in terms of Q-bosons. Q-bosons [26-28] are defined by the

commutation relations
[N, b%] = b, [N,b] = —b, bt — Qbth =1, (8)

where b (b) are Q-boson creation (annihilation) operators and N is the relevant number

operator. Q-numbers [26-28] are defined as

Q-1
= . 9
[z]e -1 9
For Q = €T their Taylor expansion is
T , S 2 T i 3 2
[z]q=x+§(z —z)+1—2(2N -3N +1)+§(N —2N*+N9)+... (10)
One can then easily see that
btb=[Nlg, b =[N +1]q. (11)
Making the mapping
St -t S — b, Np — 2N, (12)
the Hamiltonian of eq. (5) becomes
H(N,V =0) = —-GQb*b = —GQN]q. (13)



Using eq. (10) we see that it coincides with eq. (6) up to first order corrections in the

small parameter, which is identified as T = —2/(Q. Furthermore, the Q-bosons satisfy the

commutation relation

TIN? T3N3
+

2 5 +... (14)

b,b*) =[N+1g—-[Nlg=QV =1+TN +

which coincides with eq. (4) up to first order corrections in the small parameter, which is,
consistently with the above finding, identified as T' = —2/S). Therefore the fermion pairs
of J = 0 can be approximately described as Q-bosons, which correctly reproduce both the
pairing energies and the commutation relations up to first order corrections in the small
parameter.

3. Deformed oscillator description of J # 0 pairs

For the case of nonzero seniority, one observes that eq. (7) can be written as

_ Ve Vg Vg Nr Nr ﬂ
E(NF’VF)‘GQ(?+2Q"4Q Tt T ) (15)

i.e. it can be separated into two parts, formally identical to each other. Since the second
part (which corresponds to the J = 0 pairs) can be adequately described by the Q-bosons
b, b*, and their number operator N, as we have already seen, it is reasonable to assume
that the first part can also be described in terms of some Q-bosons d, d*, and their number

operator V (with Vg — 2V), satisfying commutation relations similar to eq. (8):
[V,d*] = dt, [V,d] = —d, ddt —Qdtd=1. (16)

From the physical point of view this description means that a set of Q-bosons is used for
the J = 0 pairs and another set for the J # 0 pairs. The latter is reasonable, since in the
context of this theory the angular momentum value of the J # 0 pairs is not used explicitly.
The J # 0 pairs are just counted separately from the J = 0 pairs. A Hamiltonian giving
the same spectrum as in eq. (15), up to first order corrections in the small parameter, can
then be written as

H(N,V) = GY[V]q - [N]e)- an

Using eq. (10) it is easy to see that this expression agrees to eq. (15) up to first order

corrections in the small parameter T' = —2/1).



Two comments concerning eq. (17) are in place:

i) In the classical theory states of maximum seniority (i.e. states with N = V') have
zero energy. This is also holding for the Hamiltonian of eq. (17) to all orders in the
deformation parameter.

ii) A landmark of the classical theory is that E(N,V)— E(N,V = 0) is independent
of N. This also holds for eq. (17) to all orders in the deformation parameter.

4. A deformed SU(2) algebra

Knowing the Schwinger realization of the SU,(2) algebra in terms of q-bosons 5,6}, one
may wonder if the operators used here close an algebra. It is easy to see that the operators

b*d, d*b and N — V do not close an algebra. Considering, however, the operators [32]
Jy =btQV/2d, j_ =dtQ V%, J= %(N -V, (18)
one can easily see that they satisfy the commutation relations [32,33]
[Jo, Je] = £Jx,  Jid- = Q7 VI_Jy = [2J0]e. (19)
Using the transformation
Jo=Jo,  Jy= QUM g L f U1/ (20)

one goes to the usual SU,(2) commutation relations

[Jo,J¢] = £Fs,  [Jy,J-] = [2J0],, (21)
where g-numbers are defined as
i 22)
zlg = :
e = T—0=

and ¢2 = Q.

It is clear that N + V is the first order Casimir operator of the Ug(2) algebra formed
above (since it commutes with all the generators given in eq. (18)), while N -V is the first
order Casimir operator of its Ug(1) subalgebra, which is generated by Jy alone. Therefore
the Hamiltonian of eq. (17) can be expressed in terms of the Casimir operators of the
algebras appearing in the chain Ug(2) D Ug(1) as

E(N,V)zGQ([a(vQ(z»;cl(vq(l))] _[c,(vq(z));cl(vau»] ) (29)
Q Q




i.e. the Hamiltonian has a Ug(2) D Ug(1) dynamical symmetry.

In ref. [34] a g-deformed version of the pairing theory was assumed, with satisfactory
results when compared to experimental data. The present construction offers some justi-
fication for this assumption, since in both cases the basic ingredient is the modification of
eq. (4). It should be noticed, however, that the deformed version of eq. (4) considered
in ref. [34] is different from the one obtained here (eq. (14)). A basic difference is that
in ref. [34] the deformed theory reduces to the classical theory for ¢ — 1, so that g-
deformation is introduced in order to describe additional correlations, while in the present
formalism the Q-oscillators involved for Q@ — 1 reduce to usual harmonic oscillators, so
that Q-deformation is introduced in order to attach to the oscillators the anharmonicity
needed by the energy expression (eq. (6)).

5. Comparison to experimental data

In the construction given above we have shown that Q-bosons can be used for the
approximate description of correlated fermion pairs in a single-j shell. The results obtained
in the Q-formalism agree to the classical (non-deformed) results up to first order corrections
in the small parameter. However, the Q-formalism contains in addition higher order terms.
The question is then born if these additional terms are useful or not. For answering this
question, the simplest comparison with experimental data which can be made concerns the
classic example of the neutron pair separation energies of the Sn isotopes, used by Talmi
[35,36).

In Talmi’s formulation of the pairing theory, the energy of the states with zero seniority
is given by [35,36]

N(N ~1)
et (24)

E(N)c( =NV, +

where N is the numbrer of fermion pairs and V;, A are constants. We remark that this

expression is the same as the one in eq. (6), with the identifications
Al(2V) = -1/9, A =2G, Ng =2N. (25)
The neutron pair separation energies are given by

AE(N + 1)t = E(N + 1)t — E(N)et = Vo (1 + %N) . (26)



Thus the neutron pair separation energies are expected to decrease linearly with increasing
N. (Notice from eq. (25) that A/V; < 0, since > 0.)

In our formalism the neutron pair separation energies are given by
AE(N +1)g = =GN +1]g — [N]g) = —GQN = -GV, (27)

Since, as we have seen, T is expected to be —2/1Q, i.e. negative and small, the neutron
pair separation energies are expected to fall exponentially with increasing N, but the small
value of T can bring this exponential fall very close to a linear one.

In Table 1 the neutron pair separation energies of the even Sn isotopes from 14Sn
to 13%Sn (i.e. across the whole sdg neutron shell) are shown. We have performed a least

square fitting of the energies using both theories. The quality of the fit was measured by

o= i(AE;(ezp) — AE;(th))?, (28)

i=1
i.e. by the sum of the squares of the differences between the experimental and theoretical
values. Furthermore, we have performed a least square fit of the logarithms of the energies,
since eq. (27) predicts a linear decrease of the logarithm of the energies with increasing

N. In this case the quality of the fit is measured by

o = i(ln AE;(ezp) — In AE;(th))>. (29)

i=1

Both fits give almost identical results. Eq. (27) (in which the free parameters are GQ and
T), gives a better result than eq. (26) (in which the free parameters are V5 and A/Vj)
for every single isotope, without introducing any additional parameter, indicating that the
higher order terms can be useful.

One should, however, remark that !6Sn lies in the middle of the sdg neutron shell.
If we fit the isotopes in the lower half of the shell (°4Sn to !'®Sn) and the isotopes
in the upper half of the shell (1'8Sn to !3°Sn) separately, we find that both theories give
indistinguishably good results in both regions. Therefore Q-deformation can be understood
as expressing higher order correlations which manifest themselves in the form of particle-

hole asymmetry.



Table 1
Neutron pair separation energies AE (in keV) for the Sn isotopes. N is the number of

valence neutron pairs. Experimental data (denoted by exp) are taken from ref. [37]. The
fits obtained with eq. (27) are denoted by Q, while the fits obtained with eq. (26) are
denoted by cl. The parameter values obtained in each fit, as well as the quality measures
of egs (28), (29) are also given.

nucleus

104Sn
1ossn
IOBSn
IIOSn
1128n
114Sn
llssn
llSSn
lZOsn
lZZSn
124sn
lzssn
IZSSn

130511

T
~GQ (keV)
A/Vo
Vo (keV)
1080 (keV)?
10730 (keV)?

N

© 00 = O O b W N

[ v S = B S S oY
[ B R Ve

AE
exp
22820
21960
20950
19900
18967
18046
17109
16271
15592
14987
14443
13926
13560
12900

AFE
Q
22778
21767
20801
19878
18995
18152
17347
16577
15841
15138
14466
13824
13210
12624

0.0454
23836

5.18

AE
cl
22277
21503
20728
19954
19179
18405
17630
16856
16081
15307
14532
13757
12983
12208

—0.0336
23052
25.30

InAE
exp
10.035
9.997
9.950
9.898
9.850
9.801
9.747
9.697
9.655
9.615
9.578
9.542
9.515
9.465

InAE
Q
10.029
9.985
9.940
9.895
9.851
9.806
9.761
9.716
9.672
9.627
9.582
9.538
9.493
9.448

—0.0447
23718

2.13

InAE
cl

10.000
9.966
9.931
9.894
9.856
9.817
9.776
9.733
9.688
9.641
9.592
9.541
9.486
9.429

—0.0324

22766

9.18




We have also attempted a fit of the neutron pair separation energies of the Pb isotopes
from 186Pb to 292Pb. In this case both theories give indistinguishably good fits. This result
is in agreement with the Sn findings, since all of these Pb isotopes lie in the upper half of
the pfh neutron shell. Unfortunately, no neutron pair separation energy data exist for Pb
isotopes in the lower part of the pfh neutron shell.

Concerning the values of T obtained in the case of the Sn isotopes (T = —0.0454,
= —0.0447), we observe that they are slightly smaller than the value (T' = —0.0488) which
would have been obtained by considering the neu.trons up to the end of the sdg shell as
lying in a single-j shell. This is, of course, a very gross approximation which should not
be taken too seriously. In the case of the Pb isotopes mentioned above, however, the
best fit was obtained with T' = —0.0276, which is again slightly smaller than the value of
T = —0.0317 which corresponds to considering all the neutrons up to the end of the pth
shell as lying in a single-j shell.

6. Discussion

In conclusion, we have shown that pairing in a single-j shell can be described, up to
first order corrections, by two Q-oscillators, one describing the J = 0 pairs and the other
corresponding to the J # 0 pairs, the deformation parameter T = In Q being related to the
inverse of the size of the shell. These two oscillators can be used for forming an SUg(2)
algebra. A Hamiltonian giving the correct pairing energies up to first order corrections
in the small parameter can be written in terms of the Casimir operators of the algebras
appearing in the Ug(2) D Ug(1) chain, thus exhibiting a quantum algebraic dynamical
symmetry. The additional terms introduced by the Q-oscillators serve in improving the
description of the neutron pair separation energies of the Sn isotopes, with no extra pa-
rameter introduced.

In ref. [29] a generalized deformed oscillator describing the correlated fermion pairs
of J = 0 exactly has been introduced. This generalized deformed oscillator is the same
as the one giving the same spectrum as the Morse potential [38,39], up to a shift in the
energy spectrum. The use of two generalized deformed oscillators for the description of
J = 0 pairs and J # 0 pairs in a way similar to the one of the present work is easy, while

the construction out of them of a closed algebra analogous to the SUg(2) obtained here is
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an open problem. On the other hand, the construction of a generalized deformed SU(2)
algebra, labelled as SUg(2) (where & is a function characterizing the deformation), has
been recently achieved [40,41]. The extension of the ideas presented here to the case of
the BCS theory is under investigation.

One of the authors (DB) is grateful to J. N. Ginocchio for useful discussions. Sup-
port from the DFG under contract No FA67/14-1 and the EC under contract number
SC1*/0131-C are gratefully acknowledged.
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