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Abstract 

Pairing in a single-j shell is described in terms of two Q-oscillators, one describing 

the J — 0 fermion pairs and the other corresponding to the « 7 ^ 0 pairs, the deformation 

parameter Τ = In Q being related to the inverse of the size of the shell. Using these 

two oscillators an S U Q ( 2 ) algebra is constructed, while a pairing Hamiltonian giving the 

correct energy eigenvalues up to terms of first order in the small parameter can be written in 

terms of the Casimir operators of the algebras appearing in the U Q ( 2 ) D U Q ( 1 ) chain, thus 

exhibiting a quantum algebraic dynamical symmetry. The additional terms introduced by 

the Q-oscillator are found to improve the agreement with the experimental data for the 

neutron pair separation energies of the Sn isotopes, with no extra parameter introduced. 

* Presented by Dennis Bonatsos 
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1. Introduction 

Quantum algebras (also called quantum groups) [1-4] are recently attracting much 

attention in physics, especially after the introduction of the q-deformed harmonic oscillator 

[5,6]. Applications in conformai field theory, quantum gravity, quantum optics, atomic 

physics, as well as in the description of spin chains have already been reported. In nuclear 

physics attention has been focused on the q-deformed rotator with SUg(2) symmetry and its 

use for the description of rotational spectra and B(E2) transition probabilities of deformed 

and superdeformed nuclei ([7-9] and references therein), as well as on the construction 

of exactly soluble nuclear models with quantum algebraic dynamical symmetries 10,11]. 

Similar efforts have been made for the description of rotational [12-14] and vibrational ([15-

17] and references therein) spectra of diatomic molecules. In many cases the deformation 

parameter q turns out to be related to some well defined physical quantity. In the case of 

the q-deformed rotator, for example, the deformation parameter has been related to the 

softness parameter of the Variable Moment of Inertia (VMI) model [18]. 

For nuclear physics the description of correlated fermion pairs in terms of q-deformed 

bosons is of particular interest for several reasons. Correlated fermion pairs in a single-

j nuclear shell or several non-degenerate j-shells ([19] and references therein) are known 

to satisfy commutation relations which resemble boson commutation relations, containing 

though corrections due to the presence of the Pauli principle. This fact has led to the 

development of boson mapping techniques for the description of many fermion systems (see 

[20] for an authoritative review). Boson mappings are of additional interest as a necessary 

tool in building a bridge between the phenomenologically successful algebraic models of 

nuclear collective motion, such as the Interacting Boson Model (IBM) ([21], see [22,23] for 

recent overviews) and the shell model. Since q-bosons also satisfy commutation relations 

different from the usual ones, it is reasonable to check to what extend correlated fermion 

pairs can be described in terms of q-deformed bosons. For fermion pairs of J = 0 this 

question has been answered in refs [24,25], where an approximate mapping of these fermion 

pair operators onto Q-bosons [26-28] has been constructed, which correctly reproduces the 

commutation relations and the pairing energies up to first order corrections in the smali 

parameter Τ = In Q, which is related to the inverse of the size of the single-j shell. The 
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same problem has been solved exactly in refs [25,29] through the use of a generalized 

deformed oscillator [30]. The extension of this formalism to pairs of J φ 0 is of obvious 

interest, since the J φ 0 pairs are known to play an important role in the formation of 

nuclear properties. 

In the present work a first step in this direction is taken. First, it is realized that for 

the description of pairing correlations in a single-j nuclear shell it suffices to represent the 

J φ 0 pairs by a Q-oscillator similar to the one used for the J — 0 pairs. The two oscillators 

are then used for building a quantum algebraic dynamical symmetry. Finally, the higher 

order terms introduced by the Q-oscillator are found to lead to improved agreement with 

the experimental data, without the introduction of any new parameter. 

2. Deformed oscillator description of J = 0 pairs 

In the usual formulation of the theory of pairing in a single-j shell [31], fermion pairs 

of angular momentum J = 0 are created by the pair creation operators 

V " m>0 

where a+m are fermion creation operators and 2Ω = 2j + 1 is the degeneracy of the shell. 

In addition, pairs of nonzero angular momentum are created by the Ω — 1 operators 

BJ = E ( - l ) ' + m 0 m j - m |J0)a t r o at_ m , (2) 
m>0 

where (jmj — m|70) are the usual Clebsch Gordan coefficients. The fermion number 

operator is defined as 

NF = Σ aUaim = Σ (aîmaJm + aì-maJ-m )· (3) 
m m>0 

The 7 = 0 pair creation and annihilation operators satisfy the commutation relation 

15,5+1 = 1 - Ί Γ ' ( 4 ) 

while the pairing Hamiltonian is 

H = -GÜS+S. (5) 
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The seniority VF is defined as the number of fermions not coupled to J = 0. If only pairs 

of J = 0 are present (i.e. Vf = 0), the eigenvalues of the Hamiltonian are 

B M = 0) = -G S J(f+f£-§). (6) 
For non-zero seniority the eigenvalues of the Hamoltonian are 

E(NF, VF) = -j(NF - VF)(2Ü -NF-VF + 2). (7) 

We denote the operators NF, VF and their eigenvalues by the same symbol for simplicity. 

In [24] it has been proved that the behaviour of the J = 0 pairs can be described, 

up to first order corrections, in terms of Q-bosons. Q-bosons [26-28] are defined by the 

commutation relations 

[JV,6+] = 6+, [iV,o] = -6 , bb+-Qb+b=l, (8) 

where 6+ (6) are Q-boson creation (annihilation) operators and Ν is the relevant number 

operator. Q-numbers [26-28] are defined as 

H« = f f f (·) 
For Q — eT their Taylor expansion is 

M Q = * + f ( * 2 - *) + ^ ( 2 ^ 3 - 3JV2 + 1) + ^ ( J V 4 - 2NZ + N2) + . . . (10) 

One can then easily see that 

b+b = [N]Q, bb+ = [N + l]Q. (11) 

Making the mapping 

S+ -• 6+, S -» δ, JVF - 2ΛΓ, (12) 

the Hamiltonian of eq. (5) becomes 

H(N, V = 0) = -Gfìò+fc = -C7ß[JV]Q. (13) 
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Using eq. (10) we see that it coincides with eq. (6) up to first order corrections in the 

small parameter, which is identified as Τ = -2/Ω. Furthermore, the Q-bosons satisfy the 

commutation relation 

T2N2 T3N3 

[6,6+] = [N + 1]Q - [N]Q = QN = 1 + TN+ —^- + - j - + . . . , (14) 

which coincides with eq. (4) up to first order corrections in the small parameter, which is, 

consistently with the above finding, identified as Γ = —2/Ω. Therefore the fermion pairs 

of J — 0 can be approximately described as Q-bosons, which correctly reproduce both the 

pairing energies and the commutation relations up to first order corrections in the small 

parameter. 

3. Deformed oscillator description of J φ 0 pairs 

For the case of nonzero seniority, one observes that eq. (7) can be written as 

^w-«(£+§-3)-«(&+£-3). (15) 
i.e. it can be separated into two parts, formally identical to each other. Since the second 

part (which corresponds to the J — 0 pairs) can be adequately described by the Q-bosons 

b, 6+, and their number operator N, as we have already seen, it is reasonable to assume 

that the first part can also be described in terms of some Q-bosons d, d+, and their number 

operator V (with Vj? —• 2F), satisfying commutation relations similar to eq. (8): 

[V,d+) = d+, [V,d} = -d, dd+-Qd+d=l. (16) 

From the physical point of view this description means that a set of Q-bosons is used for 

the J = 0 pairs and another set for the J φ 0 pairs. The latter is reasonable, since in the 

context of this theory the angular momentum value of the J φ 0 pairs is not used explicitly. 

The J φ 0 pairs are just counted separately from the J = 0 pairs. A Hamiltonian giving 

the same spectrum as in eq. (15), up to first order corrections in the small parameter, can 

then be written as 

H(N,V) = GÇI([V)Q-[NÎQ)· (17) 

Using eq. (10) it is easy to see that this expression agrees to eq. (15) up to first order 

corrections in the small parameter Τ = —2/Ω. 
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Two comments concerning eq. (17) are in place: 

i) In the classical theory states of maximum seniority (i.e. states with Ν = V) have 

zero energy. This is also holding for the Hamiltonian of eq. (17) to all orders in the 

deformation parameter. 

ii) A landmark of the classical theory is that E(N, V) — E(N, V = 0) is independent 

of N. This also holds for eq. (17) to all orders in the deformation parameter. 

4. A deformed SU(2) algebra 

Knowing the Schwinger realization of the SU7(2) algebra in terms of q-bosons [5,6], one 

may wonder if the operators used here close an algebra. It is easy to see that the operators 

b+d, d+b and Ν — V do not close an algebra. Considering, however, the operators [32] 

J+=b+Q-v'2d, J-=d+Q-v'2b, Jo = \(N-V), (18) 

one can easily see that they satisfy the commutation relations [32,33] 

[Jo,J±] = ±J±, J+J- - Q-1 J-J+ = [2J0]Q. (19) 

Using the transformation 

Jo = Jo, J+ = QMWO-W) J + J J_ = < ;_Q(1/2)(J,-1/2) ) ( 2 0 ) 

one goes to the usual SUg(2) commutation relations 

[JoJ±] = ±J±, [J+J-] = [2Jo)g, (21) 

where q-numbers are defined as 

Η , - Τ ΐ . (22) 
q-q 

and q2 = Q. 

It is clear that Ν + V is the first order Casimir operator of the U Q ( 2 ) algebra formed 

above (since it commutes with all the generators given in eq. (18)), while Ν — V is the first 

order Casimir operator of its U Q ( 1 ) subalgebra, which is generated by Jo alone. Therefore 

the Hamiltonian of eq. (17) can be expressed in terms of the Casimir operators of the 

algebras appearing in the chain U Q ( 2 ) D U Q ( 1 ) as 

E(N,V) - CCI (\9MsWi -AW*))] [Ci(Pq(2)) + fi(fl|(l))] \ 
\i 2 JQ [ 2 J Q J ' 

(23) 
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i.e. the Hamiltonian has a U Q ( 2 ) D U Q ( 1 ) dynamical symmetry. 

In ref. [34] a q-deformed version of the pairing theory was assumed, with satisfactory 

results when compared to experimental data. The present construction offers some justi

fication for this assumption, since in both cases the basic ingredient is the modification of 

eq. (4). It should be noticed, however, that the deformed version of eq. (4) considered 

in ref. [34] is different from the one obtained here (eq. (14)). A basic difference is that 

in ref. [34] the deformed theory reduces to the classical theory for q —• 1, so that q-

deformation is introduced in order to describe additional correlations, while in the present 

formalism the Q-oscillators involved for Q —* 1 reduce to usual harmonic oscillators, so 

that Q-deformation is introduced in order to attach to the oscillators the anharmonicity 

needed by the energy expression (eq. (6)). 

5. Comparison to experimental data 

In the construction given above we have shown that Q-bosons can be used for the 

approximate description of correlated fermion pairs in a single-j shell. The results obtained 

in the Q-formalism agree to the classical (non-deformed) results up to first order corrections 

in the small parameter. However, the Q-formalism contains in addition higher order terms. 

The question is then born if these additional terms are useful or not. For answering this 

question, the simplest comparison with experimental data which can be made concerns the 

classic example of the neutron pair separation energies of the Sn isotopes, used by Talmi 

[35,36]. 

In Talmi's formulation of the pairing theory, the energy of the states with zero seniority 

is given by [35,36] 

E(N)cl = NVo + Α ^ Δ , (24) 

where Ν is the numbrer of fermion pairs and V0, Δ are constants. We remark that this 

expression is the same as the one in eq. (6), with the identifications 

Δ/(2ν0) = - 1 / Ω , A = 2G, NF = 2N. (25) 

The neutron pair separation energies are given by 

ΔΕ(Ν + l ) c / = E(N + l ) c , - E(N)cl = V0(l+ £N) . (26) 
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Thus the neutron pair separation energies axe expected to decrease linearly with increasing 

N. (Notice from eq. (25) t h a t A/V0 < 0, since Ω > 0.) 

In our formalism the neutron pair separation energies are given by 

AE(N + 1 ) Q = -Gtl([N + 1] Q - [N]Q) = -GÜQN = -GüeTN. (27) 

Since, as we have seen, Τ is expected to be —2/Ω, i.e. negative and small, t h e neutron 

pair separation energies are expected to fall exponentially with increasing N, but the small 

value of Τ can bring this exponential fall very close to a linear one. 

In Table 1 the neutron pair separation energies of the even Sn isotopes from 1 0 4 S n 

to 1 3 0 S n (i.e. across the whole sdg neutron shell) are shown. We have performed a least 

square fitting of the energies using both theories. The quality of the fit was measured by 

η 

σ = ]Γ(Δ£, · (βχρ) - AEi(th))2, (28) 

i=l 

i.e. by the sum of the squares of the differences between the experimental and theoretical 

values. Furthermore, we have performed a least square fit of the logarithms of the energies, 

since eq. (27) predicts a linear decrease of the logarithm of the energies with increasing 

N. In this case the quality of the fit is measured by 

η 

σ' = ^ ( l n AEi(exp) - In AEi(th))2. (29) 

i = l 

Both fits give almost identical results. Eq. (27) (in which the free parameters are Gii and 

Γ ) , gives a better result than eq. (26) (in which the free parameters are VQ a n d Δ/Vo) 

for every single isotope, without introducing any additional parameter, indicating that the 

higher order terms can be useful. 

One should, however, remark that 1 1 6 S n lies in the middle of the sdg neutron shell. 

If we fit the isotopes in the lower half of the shell ( 1 0 4 S n to 1 1 6 S n ) and the isotopes 

in the upper half of the shell ( 1 1 8 S n to 1 3 0 S n ) separately, we find that both theories give 

indistinguishably good results in both regions. Therefore Q-deformation can be understood 

as expressing higher order correlations which manifest themselves in the form of particle-

hole asymmetry. 
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Table 1 

Neutron pair separation energies AE (in keV) for the Sn isotopes. Ν is the number of 

valence neutron pairs. Experimental data (denoted by exp) are taken from ref. [37]. The 

fits obtained with eq. (27) are denoted by Q, while the fits obtained with eq. (26) are 

denoted by cl. The parameter values obtained in each fit, as well as the quality measures 

of eqs (28), (29) are also given. 

nucleus 

1 0 4 Sn 
1 0 6 Sn 
1 0 8 Sn 
1 1 0 Sn 
1 1 2 Sn 
1 1 4 Sn 
U 6 S n 
1 1 8 Sn 
1 2 0 Sn 
1 2 2 Sn 
1 2 4 Sn 
1 2 6 Sn 
1 2 8 Sn 
1 3 0 Sn 

Γ 

-Gii (keV) 

Δ/Vb 

Vo (keV) 

106σ (keV)2 

1 0 - V (keV)2 

Ν 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

AE 

exp 

22820 

21960 

20950 

19900 

18967 

18046 

17109 

16271 

15592 

14987 

14443 

13926 

13560 

12900 

AE 

Q 

22778 

21767 

20801 

19878 

18995 

18152 

17347 

16577 

15841 

15138 

14466 

13824 

13210 

12624 

-0.0454 

23836 

5.18 

AE 

cl 

22277 

21503 

20728 

19954 

19179 

18405 

17630 

16856 

16081 

15307 

14532 

13757 

12983 

12208 

-0.0336 

23052 

25.30 

1ηΔ£ 

exp 

10.035 

9.997 

9.950 

9.898 

9.850 

9.801 

9.747 

9.697 

9.655 

9.615 

9.578 

9.542 

9.515 

9.465 

1ηΔ£ 

Q 

10.029 

9.985 

9.940 

9.895 

9.851 

9.806 

9.761 

9.716 

9.672 

9.627 

9.582 

9.538 

9.493 

9.448 

-0.0447 

23718 

2.13 

inAE 

cl 

10.000 

9.966 

9.931 

9.894 

9.856 

9.817 

9.776 

9.733 

9.688 

9.641 

9.592 

9.541 

9.486 

9.429 

-0.0324 

22766 

9.18 

9 



We have also attempted a fit of the neutron pair separation energies of the Pb isotopes 

from 1 8 6 P b to 2 0 2 P b . In this case both theories give indistinguishably good fits. This result 

is in agreement with the Sn findings, since all of these Pb isotopes he in the upper half of 

the pfh neutron shell. Unfortunately, no neutron pair separation energy data exist for Pb 

isotopes in the lower part of the pfh neutron shell. 

Concerning the values of Γ obtained in the case of the Sn isotopes (Γ = —0.0454, 

= —0.0447), we observe that they are slightly smaller than the value (Γ = —0.0488) which 

would have been obtained by considering the neutrons up to the end of the sdg shell as 

lying in a single-j shell. This is, of course, a very gross approximation which should not 

be taken too seriously. In the case of the Pb isotopes mentioned above, however, the 

best fit was obtained with Τ = —0.0276, which is again slightly smaller than the value of 

Γ = —0.0317 which corresponds to considering all the neutrons up to the end of the pfh 

shell as lying in a single-j shell. 

6. Discussion 

In conclusion, we have shown that pairing in a single-j shell can be described, up to 

first order corrections, by two Q-oscillators, one describing the J = 0 pairs and the other 

corresponding to the J φ 0 pairs, the deformation parameter Τ = In Q being related to the 

inverse of the size of the shell. These two oscillators can be used for forming an S U Q ( 2 ) 

algebra. A Hamiltonian giving the correct pairing energies up to first order corrections 

in the small parameter can be written in terms of the Casimir operators of the algebras 

appearing in the U Q ( 2 ) D U Q ( 1 ) chain, thus exhibiting a quantum algebraic dynamical 

symmetry. The additional terms introduced by the Q-oscillators serve in improving the 

description of the neutron pair separation energies of the Sn isotopes, with no extra pa

rameter introduced. 

In ref. [29] a generalized deformed oscillator describing the correlated fermion pairs 

of J = 0 exactly has been introduced. This generalized deformed oscillator is the same 

as the one giving the same spectrum as the Morse potential [38,39], up to a shift in the 

energy spectrum. The use of two generalized deformed oscillators for the description of 

7 = 0 pairs and J φ 0 pairs in a way similar to the one of the present work is easy, while 

the construction out of them of a closed algebra analogous to the S U Q ( 2 ) obtained here is 
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an open problem. On the other hand, the construction of a generalized deformed SU(2) 

algebra, labelled as Sl^(2) (where Φ is a function characterizing the deformation), has 

been recently achieved [40,41]. The extension of the ideas presented here to the case of 

the BCS theory is under investigation. 

One of the authors (DB) is grateful to J. N. Ginocchio for useful discussions. Sup

port from the DFG under contract No FA67/14-1 and the EC under contract number 

SC1*/0131-C are gratefully acknowledged. 
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