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GR-15310 Aghia Paraskevi, Attiki, Greece
* Department of Physics, Aristotle University of Thessaloniki
GR-54006 Thessaloniki, Greece

Abstract

The symmetry algebra of the two-dimensional quantum harmonic
oscillator with rational ratio of frequencies is identified as a non-linear
extension of the u(2) algebra. The finite dimensional representation
modules of this algebra are studied and the energy eigenvalues are de-
termined using algebraic methods of general applicability to quantum
superintegrable systems.

The two-dimensional anisotropic harmonic oscillator with rational ratio
of frequencies is a well known example of a classical superintegrable system
[1]. It has a third integral of motion which is given implicitly as a function
of the energy [2], or as a polynomial function of the coordinates and the
momenta [3]. This oscillator is the natural generalization of the isotropic
harmonic oscillator, both of them widely used in many branches of physics.
The cases with ratio of frequencies 1/2 and 1/3 have been studied in [4] and
[5], respectively.

The quantum mechanical analogues of the isotropic and anisotropic oscil-
lators are well known completely solvable models. The symmetry algebra of

!Presented by C. Daskaloyannis
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the isotropic quantum harmonic oscillator in a space with constant curvature,
as well as the symmetry algebra of the corresponding Kepler problem, have
been identified in [6,7]. From the algebraic point of view, however, while
the many-dimensional analogue of the isotropic quantum oscillator can be
studied using the su(N) or sp(2N,R) algebras, even for the two-dimensional
anisotropic quantum oscillator the symmetry algebra is still missing. Since
1940 Jauch and Hill [3] have pointed out that “the two-dimensional anisotrop-
ic oscillator has the same symmetry as the isotropic oscillator in classical me-
chanics, but the quantum mechanical problem presents complications which
leave its symmetry group in doubt”. The case of ratio of frequencies equal
to 1/2 has been studied in [8], using the fact that the Hamiltonian is sep-
arable in parabolic coordinates. The algebra describing the symmetry is a
quadratic Lie algebra [9]. The importance of the quadratic extensions of
Lie algebras in the study of symmetries was pointed out by several authors
[10,11]. In the case of ratio of frequencies equal to 1/3 the Hamiltonian is
not separable, but the problem can be solved [12], the symmetry being de-
scribed by a cubic Lie algebra. About the general problem of rational ratio
of frequencies Jauch and Hill [3] noticed that “the difficulties encountered in
this relatively simple problem throw question on the true mterpretation of
classical multiply-periodic motions in quantum mechanics”.

In this letter we identify the symmetry algebra of the two-dimensional
anisotropic quantum harmonic oscillator, when the ratio of frequencies is a
rational number. The techniques used are related to the g-deformed oscil-
lator [13,14,15], introduced as a tool appropriate for constructing boson re-
alizations of quantum algebras (quantum groups) [16], which are non-linear
generalizations of the usual Lie algebras. Several mutually equivalent gener-
alizations of the concept of the deformed oscillator already exist [17], their
connection to N=2 supersymmetric quantum mechanics being also discussed
[18]. The formalism to be used here is the one of [19]. The usefulness of
non-linear generalizations of Lie algebras in the study of integrable systems
has been demonstrated in the case of the Calogero model [2021].

Let us consider the system described by the Hamiltonian:

1 1.2 y2
H:i(pﬁ+py2+m+7—§>, (1)

where m and n are two natural numbers mutually prime ones, ie. their great
common divisor is ged(m,n) = 1.
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We define the creation and annihilation operators:

__ z/m=ip _ z/m+ip
af_l75_z’ a_%?_”

(2)
_ y/n—ip _ y/ntip
bt = 7_1, b= TL
These operators satisfy the commutation relations:
[a,a*] = l, [b, bT] 1 other commutators = 0. (3)
m n

Using egs (2) and (3) we can prove by induction that:

o (@) =2 () Y] =209

Using the above properties we can define the enveloping algebra generated
by the operators:

Se=(a)"(®)", S_=(a"(8)",

(4)
Sozé(U—W), H=U+W.
These genarators satisfy the following relations:
[So, Si] = ﬂ:Si, [H, S,] = 0, for 1= 0, :*:, (5)

5.5- =] (U—— 2’“2; 1) 1 (W+ 262"1),

k=1 =1 n
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2 2k —1\ £ 20 —1
83 = W — :
-5 = (o550 fi (v -%57)
The above relations mean that the harmonic oscillator of eq. (1) is described
by the enveloping algebra of the non-linear generalization of the U(2) algebra
formed by the generators So, Sy, S- and H, satisfying the commutation

relations of eq. (5) and
[S—a S+] = meﬂ-(H7 SO o 1) - Fmvn(H’ SO),
(6)

2n

where  Frn(H, S0) = [ (H/2+ 50— %) [T (H/2 - S0+ %),

This algebra is a non-linear generalization of the U(2) algebra, of order m +
n — 1. In the case of m/n = 1/1 this algebra is the usual U(2) algebra, and
the operators Sg, Sy satisfy the commutation relations of the ordinary SU(2)

algebra.
The finite dimensional representation modules of this algebra can be
found using the deformed oscillator algebra [19]. The operators:

At=8,, A=S., N =S5 —-u, u= constant, (7)

where u is a constant to be determined, are the generators of a deformed
oscillator algebra:

VA=Al WAl =—A, AA=(HN), AA'=8HN +1).
The structure function @ of this algebra is determined by the function Fj, ,
in eq. (6):

SH,N) = Fpon(H,N +u) =
5 k-1) T : (8)
=1 (H/2+N+u—2271)£1;[1 (Hi2-N —u+%1L).

The deformed oscillator corresponding to the structure function of eq. (8)
has an energy dependent Fock space of dimension N + 1 if

®E,0) =0, ®E,N+1)=0, ®E,k)>0, for k=12,...,N. (9
The Fock space is defined by:
H|E,k>=E|E,k>, N|E,k>=kE k>, a|E,0>=0, (10)
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ANE k>= /O(E k +1)|E,k+1>, AE k>=/®E k)|Ek-1>.
(11)

The basis of the Fock space is given by:

|E, k >= _ (Af)k|E,0 > k=01,...N,
[k]!

where the “factorial” [k]! is defined by the recurrence relation:
O)=1, [k]!=®(E,k)k-1]

Using the Fock basis we can find the matrix representation of the deformed
oscillator and then the matrix representation of the algebra of egs. (5), (6).
The solution of eqs (9) implies the following pairs of permitted values for the
energy eigenvalue F and the constant wu:
1 -1
& (12)

2p —
E=N ,
F 2m ¥ 2n

where p=1,2,...,m,¢=1,2,...,n, and

1/%p-1 2-1 )
U—E( 2m 2n 14

the corresponding structure function being given by:
®(E,zr) = @{Z'q)(z‘) =
om -1 2%—1)n 2q-1 2-1

=1 2m 2m =1 n 2n
1 I'(mz+p) T((N—-z)n+qg+n)
mm™n"'(mz+p—-—m) T[((N —2z)n+q)

Il

In all these equations one has N = 0,1, 2,. .., while the dimensionality of the
representation is given by N +1. Eq. (12) means that there are m - n energy
eigenvalues corresponding to each N value, each eigenvalue having degen-
eracy N + 1. (Later we shall see that the degenerate states corresponding
to the same eigenvalue can be labelled by an “angular momentum”.) The
energy formula can be corroborated by using the corresponding Schrodinger
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equation. For the Hamiltonian of eq. (1) the eigenvalues of the Schrédinger
equation are given by:

1 1 1 1\ -
=—|ng+=)+- -1, 4
E ,m(n+2>+n<ny+2) K
where n, = 0,1,... and n, = 0,1,.... Comparing eqs (12) and (14) one

concludes that:

N = [nz/m] + [ny/n],

where [z] is the integer part of the number z, and
p=mod(ny,m)+1, ¢=mod(n,,n)+ 1.

The eigenvectors of the Hamiltonian can be parametrized by the di-
mensionality of the representation N, the numbers p,q, and the number

k=0,1,...,N:

H‘(p%’k>=(N+2pz;1+2qz;1)'<pj,vq>”“>’ (13)
N) ’“>=(’“+%(2pm1‘2qz—l ’(p DN
o k) =V Y ’““> )
)”“>=¢q’m|@,q)”“‘l>' 8

It is worth noticing that the operators Sp, S+ do not correspond to a
generalization of the angular momentum, Sy being the operator correspond-
ing to the Fradkin operator S,, — S,, [6,7]. The corresponding “angular
momentum” is defined by:

S-

L=—i(S5+-5.). (19)
The “angular momentum” operator commutes with the Hamiltonian:

[H,L]=0o.
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Let |[¢ > be the eigenvector of the operator L corresponding to the eigenvalue
£. The general form of this eigenvector can be given by:
1 Ck

£>=% Nk 20
o= 5 ey k) 20)

In order to find the eigenvalues of L and the coefficients c; we use the
Lanczos algorithm [22], as formulated in [23]. From egs (17) and (18) we find

N

k) =

(»,q) >

N N iFey @{;’,‘q)(k)
1)y —1

(»,9) > ‘k§1 V!

From this equation we find that:
o = (—1)F27* 2 B (0/V/2),

k

N .
LI 3= ¢l 5= ¢ t ok
| | kgovlk]!

'k N
1 N—-1 t%ck, /<I>(p’q)(k+1)

t

N
) " 1>
(21)

k=0 (k]!

where the function Hi(z) is a generalization of the “Hermite” polynomials,
satisfying the recurrence relations:

H_i(z) =0, Hy(z)=1,
Hiyi(z) = 2zHy (z) — ZQg’q)(k)Hk_l(x),

and the “angular momentum” eigenvalues £ are the roots of the polynomial
equation:

Hya (E/V2) = 0.

Therefore for a given value of N there are N + 1 “angular momentum”
eigenvalues /, symmetric around zero (i.e. if £ is an “angular momentum”
eigenvalue, then —/ is also an “angular momentum” eigenvalue). In the
case of the symmetric harmonic oscillator (m/n = 1/1) these eigenvalues
are uniformly distributed and differ by 2. In the general case the “angular
momentum” eigenvalues are non-uniformly distributed. Remember that to
each value of N correspond m - n energy levels, each with degeneracy N + 1.

In conclusion, the two-dimensional anisotropic harmonic oscillator with
rational ratio of frequencies equal to m/n is described dynamically by a non-
linear extension of the u(2) Lie algebra, the order of this algebra being m+n—
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1. The representation modules of this algebra can be generated by using the
deformed oscillator algebra. The energy eigenvalues are calculated by the
requirement of the existence of finite dimensional representation modules.
The deformed algebra found here to be the symmetry algebra of the planar
anisotropic quantum harmonic oscillator with rational ratio of frequencies
answers the question posed originally by Jauch and Hill [3] in 1940. The next
step should be the extension of the proposed algebra to the three-dimensional
and multi-dimensional anisotropic oscillator.
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