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Abstract

A generalized deformed algebra SUg(2), characterized by a structure function @, is obtained.
The usual SU(2) and SU,(2) algebras correspond to specific choices of the structure function
®. The action of the generators of the algebra on the relevant basis vectors, as well as the
eigenvalues of the Casimir operator, are easily obtained. Possible applications i mmproving

phenomenological nuclear models are discussed.

1. Introduction

Quantum algebras [1.2.3 4] (also called quantum groups) are nonlinear deformations of
the corresponding Lie algebras, to which they reduce when the deformation parameter g
is set equal to one. They are recently finding several applications in physics, especially
after the introduction of the g-deformed harmonic oscillator [5,6]. Initially used for solving
the quantum Yang-Baxter equation [7], they are now used in conformal field theory [8.9],
quantum gravity [10.11], quantum optics [12,13.14,15], supersymmetric quantum mechanics
[16], superintegrable systems [17], as well as in the description of spin chains [18,19], while

In atomic physics attention has been focused on the hydrogen atom [20.21].

!Presented by P. Kolokotronis
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One of the earliest applications of quantum algebras in physics was the use of the SU,(2)
symmetry for the description of rotational spectra of deformed nuclei [22.23 24], superde-
formed nuclei [25] and diatomic molecules [26,27,28], as well as for the description of the
electromagnetic transition probabilities connecting these levels [29]. It has been early re-
alized [23] that the deformation parameter 72 (with ¢ = €'") is connected to the softness
parameter of the Variable Moment of Inertia (VMI) model. so that the deformation of the
SU(2) algebra is a way of taking into account the streching effect in rotating nuclei and
molecules.

The introduction of the SU,(2) model has stimulated much work in the direction of
applications of quantum algebras in nuclear and molecular physics. In molecular physic-
s attention has been focused on the description of vibrational spectra of diatomic and
polyatomic molecules in terms of deformed oscillators [30,31,32,33,34,35.36,37], as well as
on the construction of equivalent potentials giving the same spectrum as these oscillators
[38.39,40,41 42]. In nuclear physics correlated fermion pairs in a single-j nuclear shell model
have been described in terms of deformed bosons [43,44 43], and deformed versions of various
exactly soluble nuclear models, such as the toy Interacting Boson Model in two dimensions.
the Moszkowski model, the Lipkin model, have been constructed [46 47,48.49], in an effort
to understand the effects of deformation on well known models.

Although the SU,(2) model gives results which are in very good agreement with ex-
periment [2223,2526,27,28,29], improvements seem to be possible [50]. One way to try
to improve the model is by imtroducing a generalized deformed SU(2) symmetry, possibly
containing the SU,(2) symmetry as a special case. Such a symmetry is constructed in the
present paper. It should be noticed that although several versions of generalized deformed

oscillators [51,52.53], as well as unification schemes for them, have been introduced (see [16]

d (
for references), the study of generalized deformed algebras has just started [54.55.56.57].

In the present work we construct a generalized deformed SU(2) algebra, characterized by
a structure function ®. The usual SU(2) and SU,(2) algebras are obtained for specific forms
of the structure function, but additional forms are possible. The present method allows for
the determination of the action of the generators.on the basis vectors and of the eigenvalues
of the Casimir operator in a simple way. Its possible usefulness in physical applications is

also discussed.
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2. Construction of a generalized deformed SU(2) algebra

We start the construction of the algebra m a very general way, adding the necessary
restrictions as we proceed. Consider a Hilbert space V, consisting of the tensor sum of the

subspaces V], ie.

V=a2V, (1)

where the subspaces V| are unitary subspaces of dimension 2/ + 1 and basis vectors |[,m >
with [ mteger or half-integer (in what follows we will denote the set of integers and half-
integers by ;) and m taking values from the set S; = {—I{,—I+1,...,1— 1,l}. The basis
vectors are orthonormal,

< l/. m'|lm >= 5[146mmr,

and cover V
0 |
Z Z lLm><[,m|=1.
1=0 m=—1

In V we consider the operators Jy, J,. J_, the action of which on the basis vectors is

given by
Jolllm>=m|llm>, meS, el (2)
Jill,m>=A(l,m)|llm+1> mesS, [€lI, (3)
Jell I >=0, (4)
I =l B, ()

where A(l,m) is a real entire function defined for m € [-1.1], | € [0,00), satisfying the

equations

A(ll) =0, (6)
Al.-1-1) =0, (7)

It is clear that of mterest are the values of A(l,m) with [ € [, m € S, — {{}.

(From egs (2)-(5) we immediately obtain

8

!
Jy= Z mll,m >< [, m|, (8)
m:—[

=

)



144

(I,m)|l,m+1><{mj|,

II
gMB&M8

!
L 4
i
oAl m)lm ><lm+1].
Using egs (8)-(10) one can easily pro—ve that
ENARA
Jo,J-]=—J_
el = (o + 1,
JoJ- = J-(Jo = 1)".
Then for every entire function A one has

A(Jo)s = JoA(Jo + 1),

A(J(])J_ = J.A(J() - 1).

(From eqs (9)-(10) one easily obtains

20 i
JiJo = Z S (A(Lm = 1)) lm >< I,m],
=0 m=-1
J_J+—ZZ Nl m><1,m|.
=) m=-I

One can define an operator J such that
Jlm>=llm> meS, lel.

Clearly one has

0 i
J=Y > lilim><im]

=0 m=-1

and

(A(J Jo)2 |l m >= (A(l, m))2 |l m > .

Then eqs (17)-(18) can be written as

JoJ_ = (A(J, Jo = 1)),

(19)
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J-J+ = (A(J, o))" (23)

For the commutator of J, with J_ one has from egs (17), (18) that
Ve, J] ‘Z Z ((A(t,m = 1))* = (A(Lm)?) [l m >< 1,m], (24)
1=0 m=-|

while from egs (22), (23) one finds
Vs, J-] = (A(J, Jo = 1) = (A(J, Jo))*. (23)

In what follows we wish to restrict ourselves to operators Jo, Jy, J_ which close an
algebra by themselves. i.e. without mvolving J. Egs (11), (12) already do not involve J, but
eq. (25) does. We wish to restrict ourselves to algebras for which the right hand side (rhs)
of eq. (25) is a function of Jy only. We assume that this function of J; can be written in the

form B(Jy) — B(Jo — 1), i.e. we require that
[J+,J-] = B(Jo) — B(Jo —1). (26)

(For sufficient conditions under which a function of Jy can be written in the form B(Jy) —
B(Jo — 1) see ref. [58].) By equating the ths of egs (25) and (26) and acting on the basis
vector |I,m > we find that for every m € S; and [ € I the following condition should be
satisfied

(A(L,m))? = (A(Lm = 1))* = B(m - 1) — B(m). (27)

This condition is satisfied if (A({,m))? is separable into the difference of a function of / and

a function of m, i.e.
(A(lLm))* =C() - B(m), meS, lel. (28)

JFrom eqs (6), (7) and (28) one easily sees that

and
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The last equation implies that B(l) is of the form
B(l) = ®(I(! +1)). (31)

This can be proven as follows: In eq. (30) one can put [ = j— % Then B(j — %) = B(—j— %)
Thus the function G(j) = B(j — %) is an even function of j, ie. G(j) = G(—Jj). For every
even function G(j) one can find a functioﬁ F such that G(j) = F(j2), which implies that
B(l) = F(I* + 1+ 1). As a result there is a function ®(z) = F(z + 1), for which eq. (31) is
valid. (The inverse also holds: For every function of the form given in eq. (31), eq. (30) is
satisfied, as one can trivially see.)

;From egs. (28), (29) and (31) one then finds that
(A(L.m))2 =9(l(l +1)) = ®(m(m +1)), meS, lel. (32)
This can be written as
(A(J.Jo))? = ®(J(J + 1)) = ®(Jo(Jo + 1)), (33)
because of the following general proposition:
Fll,m)=0, meS,leli« F(J,J)=0, (34)

where F(I,m) is any entire function. The proof of the proposition is simple. From F(l,m) =
0 one has F'(I.m)|{,m >=0 and then F(J, Jy)|l,m >=0 for every m € S and [ € [}, which
implies that F'(J, Jy) = 0. The inverse is also proved through the same steps.

(From eq. (33) it is clear that ®(z) must be an increasing function for z > 0. Thus the

restricted as described above algebra satisfies the relations

[Jo.J+] = J+. [JQ,J_] = —-J_. (35)
J_Jy = ®(J(J +1)) — (Jo(Jo + 1)), (36)
Jodo = ®(J(J +1)) — 8(Jo(Jo — 1)), (37)

e ] = 8(Jo(o + 1)) — B(Jo(o — 1), (38)
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where ®(z) is any increasing entire function defined for z > —;. This algebra is a general-
ization of SU(2), characterized by the function ®. Therefore we are going to use for this the
symbol SUg(2).

Using eqs (35)-(38) one can easily verify that the Casimir operator (which commutes

with all the generators of the algebra) is
C=J_J,+®Jo(Jo +1)) = JpJ- + (Jo(Jo — 1)). (39)

(From eq. (36) one then has

C=9%J(J+1)). (40)
(From this equation it is clear that the eigenvalues of the Casimir operator in the basis
ll.m > are ®(I(l +1)). with [ =0, 1/2, 1, 3/2, .... The action of the various operators on

the basis vectors is summarized by

Joll.m >=mll,m >, (41)

Tellym >= J8(I( + 1)) — B(m(m + 1))[l,m +1 >, (42)
J_|l,m >= /81 + 1)) = ®(m(m — 1))[l,m -1 >, (43)
Cll,m >=&(I(l + 1))|l,m > . (44)

We have therefore completed the construction of an algebra SUg (2), which is a general-

ization of the SU(2) algebra characterized by the structure function .

3. Discussion

Several comments on the mathematical and physical implications of the SUg(2) algebra

of the previous section are now in place:

i) The usual SU(2) algebra is obtained for -
Hz(z +1)) =zlz +1).

as one can see from egs. (35)-(44).

i) The quantum algebra SU,(2), with commutation relations

Uoodal = 275, [, J] = RJo),, (45)
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is obtained for

O(z(z +1)) = [gly[z + s, (46)
with g-numbers defined as
)y = L2
q-q"!

One can be persuaded that the function ®(z(z + 1)) given in eq. (46) is really a function of
the variable z(z + 1) (a fact that is not immediately obvious) by having a look at the Taylor
expansions given in egs. (10a) and (10b) of ref. [23].

iii) In ref. [54] the following formalism is used:
Ui J]=fJ).  C=J_Js+h(Jo). (47)

and the condition
F(Jo) = hJo) = A(Js — 1) (49)
is found to hold. Similar formalisms have been used in [55.56,57]. These results correspond
to
h(Jo) = ®(Jo(Jo + 1)),  f(Jo) = ¥(Jo(Jo +1)) — ®(Jo(Jo — 1)),

which automatically satisfy the condition of eq. (48). In the present method the extra results
of eqs (42)-(44) are obtained at no toil.

iv) It i1s clear that the rhs of eq. (38) is an odd function of Jo. This imposes an extra
restriction on f(Jy) of the previous formalism (eq. (47)), while it is automatically satisfied
in the case of SU,(2), as one can easily see in eq. (43).

v) In ref. [50] it has been argued that the Hamiltonian
E(J) =a[ 1+bJ(J+1)—1] (49)

gives better agreement to rotational nuclear spectra than the one coming from the SU,(2)
symmetry [22,23]. Using the present technique one can construct an SUg (2) algebra giving

the spectrum of eq. (49) exactly. This algebra is characterized by the structure function
B(J(J +1)) =a[ 1+bJ(J+1)—1J .

It is of nterest to check if this choice of structure function also improves the agreement

between theory and experiment in the case of the electromagnetic transition probabilities

connecting these energy levels. In order to study this problem. one has to construct the

relevant generalized Clebsch-Gordan coefficients [29]. Work in this direction is in progress.
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