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Abstract 

A generalized deformed algebra SU<Ê(2), characterized by a structure function Φ. is obtained. 

The usual SU(2) and SU ?(2) algebras correspond to specific choices of the structure function 

Φ. The action of the generators of the algebra on the relevant basis vectors, as well as the 

eigenvalues of the Casimir operator, are easily obtained. Possible applications in improving 

phenomenological nuclear models are discussed. 

1. Introduction 

Quantum algebras [1.2,3,4] (also called quantum groups) are nonlinear deformations of 

the corresponding Lie algebras, to which they reduce when the deformation parameter q 

is set equal to one. They are recently finding several applications in physics, especially 

after the introduction of the q-deformed harmonic oscillator [5,6]. Initially used for solving 

the quantum Yang-Baxter equation [7], they are now used in conformai field theory [8,9], 

quantum gravity [10.11], quantum optics [12.13,14,15], supersymmetric quantum mechanics 

[16], superintegrable systems [17], as well as in the description of spin chains [18,19], while 

in atomic physics attention has been focused on the hydrogen atom [20.21]. 

Resented by P. Kolokotronis 
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One of the earliest applications of quantum algebras in physics was the use of the SU, (2) 

symmetry for the description of rotational spectra of deformed nuclei [22.23.24], superde-

formed nuclei [25] and diatomic molecules [26,27,28], as well as for the description of the 

electromagnetic transition probabilities connecting these levels [29], It has been early re­

alized [23] that the deformation parameter r 2 (with q = elT) is connected to the softness 

parameter of the Variable Moment of Inertia (VMI) model, so that the deformation of the 

SU(2) algebra is a way of taking into account the streching effect in rotating nuclei and 

molecules. 

The introduction of the SU, (2) model has stimulated much work in the direction of 

applications of quantum algebras in nuclear and molecular physics. In molecular physic-

s attention has been focused on the description of vibrational spectra of diatomic and 

polyatomic molecules in terms of deformed oscillators [30,31,32,33,34,35.36,37], as well as 

on the construction of equivalent potentials giving the same spectrum as these oscillators 

[38.39,40,41,42]. In nuclear physics correlated fermion pairs in a single-j nuclear shell model 

have been described in terms of deformed bosons [43,44,45], and deformed versions of various 

exactly soluble nuclear models, such as the toy Interacting Boson Model in two dimensions, 

the Moszkowski model, the Lipkin model, have been constructed [46.47,48,49], in an effort 

to understand the effects of deformation on well known models. 

Although the SU, (2) model gives results which are in very good agreement with ex­

periment [22,23,25,26,27,28,29], improvements seem to be possible [50]. One way to try 

to improve the model is by introducing a generalized deformed SU(2) symmetry, possibly 

containing the SU, (2) symmetry as a special case. Such a symmetry is constructed in the 

present paper. It should be noticed that although several versions of generalized deformed 

oscillators [51,52.53], as well as unification schemes for them, have been introduced (see [16] 

for references), the study of generalized deformed algebras has just started [54,55,56.57]. 

In the present work we construct a generalized deformed SU(2) algebra, characterized by 

a structure function Φ. The usual SU(2) and SU, (2) algebras are obtained for specific forms 

of the structure function, but additional forms are possible. The present method allows for 

the determination of the action of the generators, on the basis vectors and of the eigenvalues 

of the Casimir operator in a simple way. Its possible usefulness in physical applications is 

also discussed. 
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2. Construction of a generalized deformed S U ( 2 ) algebra 

We start the construction of the algebra in a very general way, adding the necessary 

restrictions as we proceed. Consider a Hilbert space V, consisting of the tensor sum of the 

subspaces Vi, i.e. 

V = e£,Vi, (i) 

where the subspaces Vi are unitary subspaces of dimension 2/ + 1 and basis vectors \l,m > 

with / integer or half-integer (in what follows we will denote the set of integers and half-

integers by //) and m taking values from the set Si = {—I, — / + 1, . . . , / — 1. /}. The basis 

vectors are orthonormal, 

< l',m'\l.m > = 6u'6mm>, 

and cover V 
OO / 

Σ ]Γ \Lm >< l,m\ = 1. 
/=o 771=-/ 

In V we consider the operators J 0 , J+. J_, the action of which on the basis vectors is 

given by 

J0\l, m >= m\l,m >, m E Si, I € li, (2) 

J+\l,m>= A(l,m)\l,m + 1 > , m e Si, I £ It, (3) 

J + | / , / > = 0 , (4) 

J-=(J+Y, (5) 

where A{l,m) is a real entire function denned for m G [—U], l G [0, oo), satisfying the 

equations 

A(l,l)=0, (6) 

Α ( / , - / - 1 ) = Ό , (7) 

It is clear that of interest are the values of A(l, m) with / G /;, m G 5/ — {/}. 

^From eqs (2)-(5) we immediately obtain 

oo / 

Jo = 22 Σ m\l,m >< l,m\, (8) 
1=0 771=-/ 
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co ; 

J+ = Σ Σ A(l,m)\l,m+ 1 >< l,m\, 
1=0 m=-l 

χ l 

J - = Σ Σ A(l,m)\l,m >< l,m+ l\. 
1=0 m=-l 

Using eqs (8)-(10) one can easily prove that 

[Jo· J+] — J+, 

[Jo,J-] = -J-, 

J0V+ = J+(Jo + l ) n , 

J0"J_ = J.(J0-l)n. 

Then for every entire function A one has 

A(Jo)J+ =J+A(JQ + 1), 

A(J0)J. = J.A(Jo - 1). 

,̂From eqs (9)-(10) one easily obtains 

CO ί 

J+J- = Σ Σ W,m - l))2\Lm >< l,m 
1=0 m=-l 

co / 

J-J+ = Y^ Σ (A(/, m))2 |/, m >< l.m\. 
1=0 m = -t 

One can define an operator J such that 

J\l,m >= l\l.m >, m E Si, l 6 /;. 

Clearly one has 
CO / 

j = Σ Σ ^ i m > < ^ m ! i 
/=0 m = - / 

and 

(A(J. Jo))2\Lm >= (A(/,m))2|/,m > . 

Then eqs (17)-(18) can be written as 

J + J - = ( A ( J , J 0 - 1 ) ) 2 , 
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J.J+ = (A(J,Jo))2. (23) 

For the commutator of J+ with J_ one has from eqs (17), (18) that 

oo / 

[./+,</-] = Σ Σ ( ( A ( / , m - l ) ) 2 - ( A ( / , m ) ) 2 ) | / , m > < / , m | , (24) 
/=0 ro=-/ 

while from eqs (22), (23) one finds 

[J + , J_] = (A(J, Jo - l ) ) 2 - (A(J, Jo)) 2 . (25) 

In what follows we wish to restrict ourselves to operators Jo, J + , J_ which close an 

algebra by themselves, i.e. without involving J . Eqs (11), (12) already do not involve J , but 

eq. (25) does. We wish to restrict ourselves to algebras for which the right hand side (rhs) 

of eq. (25) is a function of Jo only. We assume that this function of J 0 can be written in the 

form B(Jo) ~ B(JQ — 1), i.e. we require that 

[ J + , J_] = £ ( J o ) - £ ( J o - l ) . (26) 

(For sufficient conditions under which a function of Jo can be written in the form B(JQ) — 

B(J0 — 1) see ref. [58].) By equating the rhs of eqs (25) and (26) and acting on the basis 

vector |/,m > we find that for every m G Si and / G // the following condition should be 

satisfied 

(A(l, m)f - (A{L m - l ) ) 2 = B{m - 1) - B(m). (27) 

This condition is satisfied if (A(l, m)) 2 is separable into the difference of a function of / and 

a function of m, i.e. 

(A(/,m)) 2 =C(l)-B(m), m € 5/, / G //. (28) 

^From eqs (6), (7) and (28) one easily sees that 

C(l) = B(l), (29) 

and 

B{1) =B(-l-l). (30) 
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The last equation implies that Β (I) is of the form 

Β(1) = Φ(1(1 + 1)). (31) 

This can be proven as follows: In eq. (30) one can put / = j — Ì . Then B(j —\) = B(—j — \)· 

Thus the function G(j) = B(j — | ) is an even function of ; , i.e. G(j) = G(—j). For every 

even function G(j) one can find a function F such that G(j) = F(j2), which implies that 

B(l) = F(l2 + I + \). As a result there is a function Φ(χ) = F ( x + \), for which eq. (31) is 

valid. (The inverse also holds: For every function of the form given in eq. (31). eq. (30) is 

satisfied, as one can trivially see.) 

^From eqs. (28), (29) and (31) one then finds that 

(A(/,m)) 2 =Φ(/(/ + 1)) -$(m{m + l)), m G Sh l e II (32) 

This can be written as 

(A(J.Jo))2 = *(J(J + 1)) - Φ μ 0 ( Λ + 1)), (33) 

because of the following general proposition: 

F(/,m) = 0, meSiJeliïï F{J, J0) = 0, (34) 

where F(/ , m) is any entire function. The proof of the proposition is simple. From F(l,m) = 

0 one has F(l,m)\l,m >= 0 and then F(J, JQ)\L m >= 0 for every m £ Si and / 6 /;, which 

implies that F(J,J0) = 0. The inverse is also proved through the same steps. 

^From eq. (33) it is clear that Φ(χ) must be an increasing function for χ > 0. Thus the 

restricted as described above algebra satisfies the relations 

[Jo.J+} = J+, [Jo,J-] = - J _ , (35) 

J_ J+ = Φ( J {J + 1)) - Φ( JQ(JO + 1)), (36) 

J+J. = Φ(J(J + 1)) - Φ(Λ(7 0 - 1)), (37) 

[J + , J_] = ^ J o ( J o + l ) ) - * ( J o ( J o - l ) ) , (38) 
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where Φ(χ) is any increasing entire function denned for χ > — \. This algebra is a general­

ization of SU(2), characterized by the function Φ. Therefore we are going to use for this the 

symbol SU,&(2). 

Using eqs (35)-(38) one can easily verify that the Casimir operator (which commutes 

with all the generators of the algebra) is 

C = J.J+ + ${Jo{Jo + 1)) = J+J- + HMJo - 1))· (39) 

^From eq. (36) one then has 

C = ${J(J + 1)). (40) 

^From this equation it is clear that the eigenvalues of the Casimir operator in the basis 

\l,m > are Φ(/(/ + 1)). with / = 0, 1/2, 1, 3/2, . . . . The action of the various operators on 

the basis vectors is summarized by 

J0\l,m >- m\l.m >. (41) 

J + | / , m > = ^/φ(/(/ + 1)) - # ( m ( m + l)) | f ,m + l >. (42) 

J_|/,m>= yjm{l + l)) -Φ(πι(πι - l ) ) | / , m - l >, (43) 

C\l,m>=${l(l + l))\l,m>. (44) 

We have therefore completed the construction of an algebra SU<$(2), which is a general­

ization of the SU(2) algebra characterized by the structure function Φ. 

3. Discussion 

Several comments on the mathematical and physical implications of the SU$(2) algebra 

of the previous section axe now in place: 

i) The usual SU(2) algebra is obtained for 

Φ(χ(χ •+• 1)) = x(x + 1). 

as one can see from eqs. (35)-(44). 

ii) The quantum algebra SU?(2), with commutation relations 

[Jo,J±] = ± J ± , [ J + , J _ ] = [2Jo]„ (45) 
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is obtained for 

Φ(χ(ζ + 1)) = [ζ],[χ + 1]„ (46) 

with q-numbers defined as 

q-q -q-1 

One can be persuaded that the function Φ(χ(χ + 1)) given in eq. (46) is really a function of 

the variable x(x + 1) (a fact that is not immediately obvious) by having a look at the Taylor 

expansions given in eqs. (10a) and (10b) of ref. [23]. 

iii) In ref. [54] the following formalism is used: 

[ J + . J _ ] = / ( J 0 ) . C = J _ J + + /i(Jo), (47) 

and the condition 

f(Jo) = h(Jo)-h(J0-l) (48) 

is found to hold. Similar formalisms have been used in [55.56,57]. These results correspond 

to 

h(J0) = <i>(J0(J0 + 1)), /(Jo) = $(Jo(Jo + 1)) - $(Jo(Jo - 1)), 

which automatically satisfy the condition of eq. (48). In the present method the extra results 

of eqs (42)-(44) are obtained at no toil. 

iv) It is clear that the rhs of eq. (38) is an odd function of Jo· This imposes an extra 

restriction on / ( J o ) of the previous formalism (eq. (47)), while it is automatically satisfied 

in the case of SU g(2), as one can easily see in eq. (45). 

v) In ref. [50] it has been argued that the Hamiltonian 

E{J) = a \jl + bJ{J + 1) - l] (49) 

gives better agreement to rotational nuclear spectra than the one coming from the SUg(2) 

symmetry [22,23]. Using the present technique one can construct an SU(&(2) algebra giving 

the spectrum of eq. (49) exactly. This algebra is characterized by the structure function 

$ ( J ( J + 1)) =a yjl + bJ{J + 1) - ll 

It is of interest to check if this choice of structure function also improves the agreement 

between theory and experiment in the case of the electromagnetic transition probabilities 

connecting these energy levels. In order to study this problem, one has to construct the 

relevant generalized Clebsch-Gordan coefficients [29]. Work in this direction is in progress. 
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