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THE NUCLEON MOMENTUM DISTRIBUTION IN LIGHT 
NUCLEI 

K. N. Ypsilantis, M. E. Grypeos 
Theoretical Physics Department 

Aristotle University of Thessaloniki 
GR-54006 Thessaloniki, Greece 

Abstract 

The nucléon momentum distribution in light nuclei is studied by means 
of a single particle potential model which consists of an attractive harmonic 
oscillator potential Va — ^τηω2τ2 and also of a repulsive one of the form 
Vr = ^-, Β > 0. The latter simulates to some extend effects which would 
result if short range correlations were included (e.g. by a Jastrow factor) in 
a nuclear wave function, having as uncorrelated part a Slater determinant 
of harmonic oscillator orbitals. The main advantage of this model is that 
it leads to fairly simple analytic expressions for the momentum distribution 
of light nuclei and also for the density distributions and the elastic form 
factors. These expressions are quite useful in obtaining, for example, the 
asymptotic form of η(Ιο) for large k from which it is seen that the steep 
decrease of the nucléon momentum distribution observed with the harmonic 
oscillator model in this region is improved. Numerical results using various 
least squares fittings are obtained and discussed for a number of nuclei of the 
Is, lp shell. 
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1. Introduction 

The nucléon momentum distribution //(A;) in nuclei is a quantity of par
ticular interest in Nuclear Physics and has received considerable theoretical 
attention in the past and recent years. Ref. [1-5] are very useful reviews of 
this and of related subjects. 

The nucléon momentum distribution contains information on the mean-
field aspects of the nuclear many-body wave functions, and also on the effects 
of short-range nucleon-nucleon correlations which is complementary to that 
characterizing the density distribution in the r-space p{r). For example η(k) 
is much more sensitive to the finite size effects than p(r). Thus, for 208P&, 
there is a factor of two between the calculated η(^ at k = 0 and the nuclear 
matter value. On the other hand, the value of the density p(r) at r = 
0 is very close to the saturation value of nuclear matter [6]. We finally 
mention that both η(^ and p(r) can be related to measured quantities in 
electron scattering, though for the former much less experimental information 
is available in comparison to the latter. 

Various theoretical approaches have been used for the calculation of the 
nucléon momentum distribution, which are appropriate for the study of light 
or medium and heavy nuclei and also nuclear matter (see for example refs. 
[3,6-23]). Many of these approaches are based on many-body techniques, 
which are usually quite complicated, in contrast to those using well-known 
single-particle models which are admittedly much simpler. However, the 
latter ones seem to lead to values of 7/(&) which are unrealistically small in 
the region of large values of k. The agreement between the values obtained 
with many body approaches is not always sufficiently satisfactory but it is 
a characteristic feature of them to lead to larger values of the momentum 
distribution in the above mentioned region, compared to those obtained with 
the single particle models. 

It is usefull to recall that a single-particle wave function (Slater deter
minant) cannot reproduce simultaneously the charge form factor and the 
momentum distribution of a correlated system [19]. As our first results for 
4He [24] indicate, however, one might be able to considerably improve the 
values of tf{k), calculated with an harmonic oscillator single particle wave 
function, in which the parameters have been fixed by fitting to the experi
mental charge form factor. This is achieved by suitably modifying the single 
particle potential. 
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The purpose of this paper is to use a modified harmonic oscillator po
tential, which contains a short-range repulsion and calculate the nucléon 
momentum distribution of light nuclei by determinig the parameters mainly 
by fitting of the calculated elastic charge form factor to the corresponding 
experimental values. The potential model is described in the next section 
where its advantages are pointed out. In the same section the density dis
tribution and its m — th moment are given for nuclei of the Is and Ip shell. 
In section 3, the analytic expressions for the form factor and the nucléon 
momentum distribution are given. In the final section the numerical results 
are presented and commented upon. 

2. The single particle potential model, 
wave functions and density distributions. 

The single particle potential which we assume for our treatment is 

V(r) = -V0 + \l<r2 + -2 (1) 

where V0 > Q,B > 0 and Κ = πιω2 — J ^ > 0 This potential approaches 
the harmonic oscillator one at large distances r, but it has also a short range 
strong repulsion, an "infinite soft core", becoming infinite like r~2 as r tends 
to zero. The parameter A', or equivalently 6, determines the "strength" of the 
attractive part while Β the "strength" of the repulsive one. The equilibrium 
position r0 for this potential may be calculated analytically and is given by 

r, = ( f )1/4 = (ψΒγ'Η (2) 

The main advantage in using potential (1) is that the Schrödinger eigenvalue 
problem can be solved analytically [25], not only for the ground state but 
also for any bound state. The energy eigenvalues are given by the simple 
expression 

2 V m 
4n + 2+t / (2/ + l ) ' + 5iLË 
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= -Vo + ^ ^ [ 4 ( n + A,) + l ] n,/ = 0,l,2,3,... (3) 

where the parameter A; depends both on the orbital angular momentum 
quantum number and on the strength Β of the repulsive part of the potential 
and is given by the expression 

λ, = - 1 + W(2/ + 1)2 + 
8mB 

The normalized energy eigenfuctions are 

ynlm(r,e,f) = Rnl(r)Yl

m(e,f) = 
fm(r) 

ΥΓ(θ,φ) 

(4) 

(5) 

where the radial eigenfunctions φ are given analytically in terms of the con
fluent hypergeometric function 

<Pni(r) = 
2Γ(η + 2λ, + ί ) 

n\ [Γ(2λ, + \)}2b*^ 

1/2 
.2λ 1 r' 

r ^ 1 F 1 ( - n ; 2 A / + - ; - ) e (6) 

The cpni{r) may be also expressed in terms of the associated Laguerre poly
nomials because of the relation of these polynomials to the confluent hyper
geometric function [26]. The relevant expression is 

9m{r) 
2n! 

Γ(η + 2λ, + \ )6 4 λ ' + 1 

!/2 , 2 
2 λ ί Γ 2 λ , - | , Γ 

2 

(?) 

It may be easily checked that when Β = 0, that is when A/ = | ( / -f 1), the 
above expressions coincide with the well known expressions for the radial 
harmonic oscillator eigenfunctions. It is also immediately seen that the wave 
functions for the ground state and the first excited ones are given by very 
simple expressions, as in the case of the harmonic oscillator potential. 

Knowing the eigenfunctions, the (normalized to unity) point-proton den
sity distributions of closed shell nuclei may be calculated by using the ex
pression 

PM = 7^E2(2/ + I)^(r) (8) 
4:ΚΖ 

nl 
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In the case of open shell-nuclei we may use as an approximation the "average 

radial density" defined by 

Mr) = j-J'ptfdii (9) 

Thus, the expression used for p{r) is 

Mr) = ~ Σ Inibir) (10) 
nl 

where the summation is over the quantum numbers η and / of occupied 
proton states and η is the number of protons occupying the states with given 
n and /. Obviously, for the closed shell nuclei ηηι = 2(2/ +1) . Quite analogous 
is the expression of the (normalized to unity) point-neutron density. Since 
we are interested in light nuclei with Ν = Z, the same expressions may 
be used as an approximation of the corresponding point-nucleon or "body" 
density distribution ps(r). As we mentioned in the introduction we focus 
our attention on the Is and Ip nuclei. 

The interesting feature of the single particle model we are using is that 
the following simple expression for p(r) arises for nuclei with 2 protons in the 
Is shell and Ζ — 2 protons in the \p shell: 

P(r) = \ 
1 Γ4 λ ο"2 __rl Z - 2 1 r 4 A l " 2 £_ 

b2 + — ζ τττΓ, „e~b2 

πΡΓ{2λ0 + Ι) δ4λο-2 2 πίΡΓ{2λ1 + f ) ο4λ>-2 

•1) 

This is a little more complex than the corresponding harmonic oscillator 
expression and coincides with it for λ/ = | ( / -f 1),/ = 0,1 [27]. 

It should be noted that the above expression can be easily generalized to 
allow for state dependence of the potential parameters. In such a case we 
have 

P(r) = \ 
1 r 4 i °- 2 -•£ Ζ - 2 1 r 4 > ' - 2 ~ £ 

^ Γ ( 2 λ 0 + Ì) b^-21 ° + 2 πο3

ιΓ(2λ1 + | ) b?'"2 β 

(12) 
It should be understood that now λο and λχ differ not only because of the 
different value of / (/ = 0 and / = 1, respectively), but also because of the 
different value of B. 
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We may also note that the m-th moment < rm > of the density distribu
tion ρ may be calculated analytically. The result is 

< Γ > = 
r ( 4 A * + m + 1 ) Z-2 Γ(*&ψ*±) 

+ ο "1 Ζ [ ° Γ(2λ0 + 1) τ 2 * Γ(2λχ + | ) 
(13) 

Among the various moments the "mean-square radius" of the density distri
bution is given simply by 

< r2 > = | ^ ( 2 λ „ + Ì ) + ^ 6 ? ( 2 λ , + ì ) ] (14) 

Again these expressions coincide with the corresponding harmonic oscillator 
ones for λ/ = | (/+1). It is seen from (14) that when the potential becomes less 
attractive, that is when b and λ increase, the mean square radius increases, 
as one should expect. 

3. The analytic expressions for the elastic form factors 
and the momentum distributions 

The point-proton elastic form factor in Born approximation may be ob
tained analytically by performing the Fourier transform of the corresponding 
density distribution (12): 

2 -&?* 2 
" n 0 1 3 t f , ^ Z - 2 3 b\q -3. 
1 ^ ( 1 - 2 λ 0 ; - ; — )e * + —— ^(l - 2λ ι ; -; — )e * F(q) = | 

(15) 
In this section too, we consider nuclei with two protons in the Is shell 

and Ζ — 2 protons in the lp shell and we allow also for different potential 
parameters in each of these shells. 

The elastic charge form factor Fch{q) ''an be calculated by performing 
the Darwin-Foldy correction /DF^)·, the finite proton size correction fp(q) 
and the correction for the center of mass motion. By performing the latter, 
one obtains an expression F(q) from F(q). Unfortunately , as it is well 
known, this can not be done in a unique and exact way for a single-particle 
potential, except for the harmonic oscillator one in which case a Tassie and 
Barker correction factor [28] exp(^-) arises: F(q) = exp(~fc~)F(q). Use of 
such a factor, even in an approximate way, does not seem to be generally 
appropriate in our case. The best thing which seems that one can do is to 
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use the "fixed centre of mass correction " [29] which for \He leads to the 
expression 

F{q) J,PvF<(o>) ( 1 6 ) 

The integrations in the above expressions are carried out numerically in our 
case, which is not so convenient and it is also expected to lead to inaccuracies, 
in particular at large values of momentum transfers. They are feasible, how
ever, and we have in fact used expression (16) in reporting our first results 
for \Ht [24]. For heavier nuclei, it is impracticable to use such a procedure in 
our approach. In view of this, we resort to using simply the reduced nucléon 
mass in the form factor F(q), although such a treatment is ambiguous. For 
2-i/e, however, a comparison with the results obtained with the fixed center 
of mass correction, shows that the quality of the fit, though less satisfactory, 
does not change too much in this case (see next section). We also note that 
for the results we obtained for Fch{q) with the harmonic oscillator model and 
we display also in the next section, the usual Tassie and Barker correction 
was used. 

Concerning the correction for the finite proton size, the Chandra and 
Sauer [30] proton charge form factor 

3 „2 „2 

/ρ(ΐ) = Σ Λ , « " " ί _ (17) 
»=1 

where 
AP1 = .506373, AP2 = .327922, AP3 = .165705 

.2 i O K c / j f 2 i o n i c i ™ „2 a'pi = .431566/m,<z;2 = .139140/m,a;3 = 1.52554/m 

was used. Other similar expressions [31] may also be used. 
The expression of the charge form factor which is therefore used in fitting 

the experimental results for the Is, lp nuclei is: 

Fch(q) = fDF(q)fP(q)F(q) 

2 Λ , l ( 1 _ 2 A o ; | f ) e - ¥ + ^ / l ( 1 _ 2 A i ; 3 ; Ç ) e 
(18) 
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w here 

c0, = «p, + èo + « - j , c l t = α ρ ι + 6j + 
2 m 2 ' ~l< ~~p' ' _ i ' 2m 2 

From expression (18) we can find the number of zeros of the form factor 

in the case of \Ht. It is well known that the confluent hypergeometric and 

the Whittaker's function are related as follows 

Fi( 
1 + a - z 1 + a 

+ Ar; 1 + a ; - 2 ) = e 2 ζ 2 Mk&(z) 

where M is the Whittaker's function. The number of zeros of the function 

1F1 is the number of zeros of the function 

f(k,a,z) = z 2 a M f c , | (z) 

which is known [32] 

r 0 
N = I 

for - o c < k < ^ 

•[ψ-k] f or 
l + a 

2 
< A: < +00 

In our case 

ί 0 
i V = < 

/ o r - 00 < λ 0 < I 

(19) 

k - [ 1 - 2A0] for \ < Xo < +00 

where [x] is the maximum integer which is smaller than (or equal to) x. Thus 

we have the following table: 

Values of λ 0 0 1/2 1 3/2 5/2 
Number of zeros 

of F(q) 0 1 

By using the above table we can obtain the number of diffraction minima 

and compare with the known experimental data. The value of λ 0 which is 

found from the various fittings is on the average ~ 0.7. It is seen from the 

above table that the charge form factor for \He has one diffraction minimum. 

T h e existing experimental d a t a have also one diffraction minimum. 
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Another rather interesting feature regarding the form factor of 4He in 
the framework of the present approach is that the position of the diffraction 
minima may also be given analytically in an approximate way. This may 
be done by noting [26] that the n-th root of the confluent hypergeometric 
function is given by the expression 

-«et (20) 

where 

; c _ l i n ~ x(n + | - -) (21) 

is the n-th positive root of the Bessel functions Jc-i(x). Thus we may write 
for the approximate value of the q2 where the diffraction minima appear 

9 47Γ 2 η 2 , Λ n / Λ Λ Ν 

It is seen, on the basis of the above analysis, that the number of the 
diffraction minima of the charge form factor of 4He depend on A0 that is 
on the strength of the repulsive part of the potential, while their position 
depends both, on λ0 and b that is on the strength of the repulsive and of 
the attractive part. The stronger the repulsive part the larger the number 
of the diffraction minima. In addition, the position of each diffraction mini
mum is moved to smaller values of momentum transfer when the attractive 
part becomes weaker (b increases) and also when the repulsive part becomes 
stronger (λ increases). 

It is obvious that the above results hold also for the charge form factor 
of 4He since the proton form factor fp{q) has no roots.It does not seem, 
however, possible to extend the above analysis to heavier nuclei. 

We also note that by Fourier transforming of (18) we may obtain an 
analytic expression for the charge density distribution and its m — th moment. 
These expressions are, however, quite complex, the former one containing also 
Hermite polynomials. It is therefore preferable in practice to use numerical 
integration. Nevertheless, the mean-square radius is given, by a fairly simple 
analytic expression, namely 
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< r2 >ch= | Σ APi [cl + ^ c l - | [(1 - 2A0)6g + ^ ( 1 - 2^)6? 

(23) 
Regarding the nucléon momentum distributions, these may be obtained by 
means of the wave functions y3{k) in momentum space 

yj(k) = J yj(f)e
rkfdf (24) 

through the formula [3] 

rt*)«Elfe(£)l2 (25) 
i=i 

where Λ is the mass number. In the case of Is, lp nuclei this leads after 
some algebra to the following expression: 

^ W - Γ(2λ„ + I) e ^"H·—)+ 

K^)«^^Vr^;f) (26) 

This expression is derived from another one, in which two confluent hy-
pergeometric functions appear in the second term, which however, may be 
reduced to one. 

It should be noted that the normalization of the above momentum dis

tribution is as in section 4 of ref. [3], that is 

We also note that expression (26) may be derived directly, and in a simpler 
way, by using the expression: 

m = ^zEVnl\Rnl(k)\2 (28) 

where 

47Γ , 
n,l 
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2 ι , r°° 
Rni(k) = (-)H-i)1 / drr2ii(*r)Än/(r) (29) 

7Γ JO 

and ji(kr) are the spherical Bessel functions of order /, if we take also into 
account the difference in the normalization, since the η(ίο) given by (28) is 
normalized to Z. The above expression follows from expressions (7.49) and 
(7.50) of ref. [3], adjusted to our case. By ηηι we denote here the number of 
nucléons occupying the states with given η and / (r/n/ = 2(2/ + 1) for closed 
shell nuclei). 

From expressions (15), (23) and (26), the corresponding state-dependent 
and state-independent harmonic oscillator results follow immediately for var
ious nuclei. In particular, for the momentum distribution, we find, for the 
state independet harmonic oscillator results: 

a) For 4He 

b) For 6Li 

c) For UC 

d) For 1 6 0 

qHO(k) = 32Kh3e-b2k2 (30) 

m o { k ) = 32nh*(l + ~)e-b2k2 (31) 

iHoih) = 32πΙ&3(1 + ~ K ò 2 f c 2 (32) 

W * ; ) = 32*i&3(l+2^)e-6 2 f c 2 (33) 

The expression for the state independent harmonic oscillator in the cases 
of 4He and 160 are also given in ref. [3]. 

Another interesting feature of the analytic expression (26) derived is that 
the asymptotic behaviour of the nucléon momentum distribution for large k 
is easily obtained and shows a remarkable difference from the corresponding 
harmonic oscillator expression. By using the well known asymptotic expan
sion of the confluent hypergeometric function for large χ [26,33]: 

lF1(b,c;x)=T{c) 

T(b) x('-b) 
1 , ( l - 6 ) ( c - * ) , χ > 0 (34) 



ηα 

we find that for large values of k the nucléon momentum distribution behaves 
like: 

7 Γ 2 2 4 λ 0 + 5 Γ 2 ( λ ο + 1 ) ! 

+ ( A - 4 ) 

Γ(2Λ0 + | ) Γ 2 ( | - λο) 6^0 + 1^(λο+ι) 

7 Γ224λ1 +3Γ2 ( Α ι + Ι) 1 

(λο + 1)(2Α0 + 1) 

Γ(2Α1 + 1 ) Γ 2 ( 1 - λ 1 ) δ ί Α ι + 1 Η Α ι + 1 ) 

provided that 

1 , Α1(2Λ1+3) 2 

(35) 

λο # Γ + η , λ χ ^ Ι + η , η = 0,1,2,... 

The dominant term is the first one (see the next section for the values 
of AQ and Ai)and therefore for sufficiently large values of the momentum k, 
the momentum distribution tends to zero like an inverse power of k which is 
determined from the repulsive part of the potential, namely, like ~ k~4(Xo+1\ 
The coefficient of proportionality depends both on the attractive and the 
repulsive term. We may also note that if both λ0 = | + η and λχ = 1 + η, η = 
0,1,2,..., the momentum distribution tends to zero for large k very rapidly, 
namely as a Gaussian or as a power of k times a Gaussian. This situation is 
however, very unlikely, all the more so since both the above conditions have 
to be satisfied. 

4. Numerical results and discussion. 

The results for the nucléon momentum distribution reported in this sec
tion have mostly been obtained by using for the values of the potential pa
rameters b and Β their best fit values resulting by least squares fitting of 
the expressions of the elastic charge form factor (see section 3 for the rele
vant corrections), to the corresponding experimental results, which we know 
from the elastic electron scattering experiments from light nuclei. Results 
are reported for 4He, 6Li, l2C and 1 6 0 . 

The best fit values for 4He are b0 = 0.952/m, A0 = 0.759 . As it is seen 
from fig. 1 the quality of the fitting is very close to that obtained with the 
fixed center of mass correction (ref. [29]). The corresponding best fit values 



I l l 

are 60 = 1.0575/m and A0 = 0.759. These values are close to those reported 
in ref. [24]: b = 1.08/m and λ0 = 0.74, which were obtained with a different 
correction for the finite proton size. 

The momentum distribution η(}ς) calculated with the values òo = 0.952/m, 
λ0 = 0.759 is shown in fig. 5 (FF dashed line), where the corresponding ex
perimental points are also shown [34]. It should be noted that the values of 
the momentum distribution in this and the other figures of this section are 
normalized to unity. It is seen that except for the region of the observed dip, 
in FF, the calculated values are quite satisfactory. The dotted AS line in 
fig. 5 (and also in the other figures showing the variation of the momentum 
distribution with k, for 6Li,12 C and 1 6 0 ) depicts the values of τ/(Α;) obtained 
by means of expression (35) (neglecting the terms indicated by dots) which 
was derived with the asymptotic expansion for the Confluent Hypergeomet-
ric series and using the parameters from the fitting of the charge form factor. 
It is seen that for k > 3.5/ra - 1 the FF line approaches quite closely the AS 
line. 

Relatively improved results in the region of the known experimental values 
of //(&) are obtained, as one should expect, if the parameters are determined 
by least squares fitting to the experimental values of η(^. The values of the 
parameters are 60 = 0.995/m and λ0 = 0.538 (see solid line MD of fig. 5). 

The FM dotted line in fig. 5 is obtained by least squares fitting to the 
experimental results of both the form factor and the momentum distribution. 
In this case, for which 60 = 1.078/m and A0 = 0.653, the line differs from 
the one obtained with the parameters resulting from the fitting of the form 
factor in the region k > 2.5/m - 1, where it lies below the FF dashed line. 
Finally, the considerable improvement (in comparison to the harmonic oscil
lator results with the best fit value of the oscillator parameter 6 = 1.432/m 
obtained from the fitting of the form factor), indicated by the solid MD and 
the FF and FM lines in the region of the larger value of k, (except near the 
dips in certain cases), is clear. 

The results for the charge form factor and the nucléon momentum distri
bution for 6Li are given in figures 2 and 6 respectively. The best fit values 
are in this case δ0 = 1.452/m,6i = 1.868/m,A0 = 0.560, A! = 1.022. It is 
seen again that the quality of the fitting of the charge form factor is very 
satisfactory, while with the H.O. model (ò0 = 1.553/ra,òi = 1.715/m) it is 
not good for q2 > 7fm~2. In the later case, the average value of the b pa
rameters were used in the Tassie and Barker factor. The nucléon momentum 
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distribution shows again a pronounced dip and there is considerable increase 
in the higher values of k, in comparison with the harmonic oscillator results. 

In figures 3 and 7 the results for the charge form factor and the nucléon 
momentum distribution respectively are shown for 12C. The best fit values 
of Fch(q) are b0 - 1.306/771,0! = 1.353/m, A0 = 0.647, \x = 1.406. The best 
fit values if state dependence of the potential parameters is not considered 
are: ό = 1.534/m,A0 = 0.573, Αχ = 1.03. The results with the harmonic 
oscillator model have been obtained with the best fit value b — 1.626/m. It 
is seen from fig. 3 that the fitting of the charge factor is very good with the 
present model if state dependence of the parameters is considered. With the 
simple H.O. model the fitting is also quite satisfactory, though worse in com
parison with this model as one should expect. The difference of the results 
obtained with the two models is much more pronounced as far as the mo
mentum distribution is concerned. In this case the harmonic oscillator fails 
completely to reproduce the data for large k while with the present model 
the situation is considerably improved, although there is still disagreement 
in the region of the larger values of k(k > 1.7/m - 1). Use of the state in
dependent best fit values gives worse results for the larger k values. The 
other interesting observation one can make is that if the parameters are de
termined by least squares fitting of the theoretical expression for the nucléon 
momentum distribution to the corresponding experimental results, a very 
good fit on the whole is obtained (except for some deviations, mainly at s-
mall k). Moreover, the dip (around k = 2 / m - 1 ) almost disappears in this 
case (see MD solid line of fig. 7). The corresponding best fit values are: 
b0 = 0.789/m, Ò! = 1.079/m, A0 = 1.518, Ai = 3.155. 

The results for ieO are displayed in figures 4 and 8 for the charge form 
factor and the nucléon momentum distribution, respectively. The best fit 
values of Fch(q) are: b0 = 1.18/m, bx = 1.40/m, A0 = 0.798, Αχ = 1.634, 
while for the state independent best fit values we obtain b — 1.727 / m , Ao = 
0.551, Ai = 1.02. For the harmonic oscillator model b = 1.762/m. It is 
seen that the fit of Fch is good except for the large values of q, where there 
are deviations, which are more pronounced in the state indepndent case. 
It is, however, better than the one obtained with the harmonic oscillator 
model.The behaviour of the nucléon momentum distribution is rather similar 
to that of 12C. 
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In conclusion, the detailed analysis described in this paper for light nu
clei indicates that although the elastic charge form factor and the nucléon 
momentum distribution cannot be fitted simultaneously with a single par
ticle potential model, as it is well known, considerable improvement can be 
achieved in general if a short range repulsion is included in this potential. 

The authors would like to thank Prof. A. Antonov and Drs S. Massen 
and M. Stoitsov for useful discussions and suggestions. 
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Fig. 1. The charge form factor of ^Be obtained with the present 
approach using the reduced mass (full line) and "fixed center of 
mass correction" (dashed line). The HO dashed line is the h a r m o 
nic oscillator model with the best fit value b=1.432 fm (obtained 
with the Tassie and Barker factor for the center of mass cor
rection). 
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Fig. 2. The charge form factor of ^ i obtained with the present 
approach (full line) and the one with the harmonic oscillator 
model (HO dashed line) with b0=1.553 fm and b,=1.715 fm. 
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Fig. 3. The charge form factor of C obtained with the present 
approach (full line) and the one with the harmonic oscillator mo
del (HO dashed line) with b= 1.626 fm. The SI dashed line is the 
state independent case with λο=0.573, λι=1.03 and b=1.534 fm. 
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Fig. 4. The charge form factor of 0 obtained with the present 
approach (full line) and the one with the harmonic oscillator mo
del (HO dashed line) with b= 1.762. The SI dashed line is the s ta
te independent case with λ«=0.551, λι=1.02 and b=1.727 fm. 
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Fig. 5. The nucléon momentum distribution of *He. The FM line 
is draim using the parameters determined from the fitting of the 
form factor and the momentum distribution. The FF line is drawn 
using the parameters from the fitting of the form factor. The ΜΏ 
line is the momentum distribution obtained -with the present ap
proach by fitting to the experimental r){Jk.) values. The HO line 
is the harmonic oscillator momentum distribution and the AS line 
is the asymptotic behaviour of the momentum distribution FF. 
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Fig. 6. The nucléon momentum distribution of ^i with the present 
approach using the parameters from the fitting of the form factor 
(full line) and with the harmonic oscillator model (dashed line). 
The AS dotted line is the asymptotic behaviour of the momentum 
distribution. 
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Fig. 7. The nucléon momentum distribution of C obtained with, the 
present approach by fitting to the experimental η(1ε) values (MD 
full line), using the parameters determined from the fittine of the 
form factor (FF dashed line) and its asymptotic behaviour (AS dotted 
line). The HO dashed line is the harmonic oscillator nucléon momentum 
distribution. The SI dashed line is the nucléon momentum distribution 
with the state independent parameters in the fitting of the form factor. 
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Fig. 8. The nucléon momentum distribution of 0 with the present 
approach using the parameters from the fitting of the form factor 
(full line) and with the harmonic oscillator model (HO dashed 
line). The AS dotted line is the asymptotic behaviour of the nuclé
on momentum distribution. The SI dashed line is the nucléon m o 
mentum distribution with the state independent parameters in the 
fitting of the form factor. 
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