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THE NUCLEON MOMENTUM DISTRIBUTION IN LIGHT
NUCLEI

K. N. Ypsilantis, M. E. Grypeos
Theoretical Physics Department
Aristotle University of Thessaloniki
GR-54006 Thessaloniki, Greece

Abstract

The nucleon momentum distribution in light nuclei is studied by means
of a single particle potential model which consists of an attractive harmonic
oscillator potential V, = jmw?r? and also of a repulsive one of the form
V, = %, B > 0. The latter simulates to some extend effects which would
result if short range correlations were included (e.g. by a Jastrow factor) in
a nuclear wave function, having as uncorrelated part a Slater determinant
of harmonic oscillator orbitals. The main advantage of this model is that
it leads to fairly simple analytic expressions for the momentum distribution
of light nuclei and also for the density distributions and the elastic form
factors. These expressions are quite useful in obtaining, for example, the
asymptotic form of n(k) for large £ from which it is seen that the steep
decrease of the nucleon momentum distribution observed with the harmonic
oscillator model in this region is improved. Numerical results using various
least squares fittings are obtained and discussed for a number of nuclei of the
1s, 1p shell.
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1. Introduction

The nucleon momentum distribution 7(k) in nuclei is a quantity of par-
ticular interest in Nuclear Physics and has received considerable theoretical
attention in the past and recent years. Ref. [1-5] are very useful reviews of
this and of related subjects.

The nucleon momentum distribution contains information on the mean-
field aspects of the nuclear many-body wave functions, and also on the effects
of short-range nucleon-nucleon correlations which is complementary to that
characterizing the density distribution in the r-space p(r). For example n(k)
is much more sensitive to the finite size effects than p(r). Thus, for 2% Pb,
there is a factor of two between the calculated n(k) at £ = 0 and the nuclear
matter value. On the other hand, the value of the density p(r) at r =
0 is very close to the saturation value of nuclear matter [6]. We finally
mention that both n(k) and p(r) can be related to measured quantities in
electron scattering, though for the former much less experimental information
is available in comparison to the latter.

Various theoretical approaches have been used for the calculation of the
nucleon momentum distribution, which are appropriate for the study of light
or medium and heavy nuclei and also nuclear matter (see for example refs.
[3,6-23]). Many of these approaches are based on many-body techniques,
which are usually quite complicated, in contrast to those using well-known
single-particle models which are admittedly much simpler. However, the
latter ones seem to lead to values of (k) which are unrealistically small in
the region of large values of k. The agreement between the values obtained
with many body approaches is not always sufficiently satisfactory but it is
a characteristic feature of them to lead to larger values of the momentum
distribution in the above mentioned region, compared to those obtained with
the single particle models.

It is usefull to recall that a single-particle wave function (Slater deter-
minant) cannot reproduce simultaneously the charge form factor and the
momentum distribution of a correlated system [19]. As our first results for
4He [24] indicate, however, one might be able to considerably improve the
values of 7n(k), calculated with an harmonic oscillator single particle wave
function, in which the parameters have been fixed by fitting to the experi-
mental charge form factor. This is achieved by suitably modifying the single
particle potential.
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The purpose of this paper is to use a modified harmonic oscillator po-
tential, which contains a short-range repulsion and calculate the nucleon
momentum distribution of light nuclei by determinig the parameters mainly
by fitting of the calculated elastic charge form factor to the corresponding
experimental values. The potential model is described in the next section
where its advantages are pointed out. In the same section the density dis-
tribution and its m — th moment are given for nuclei of the 1s and 1p shell.
In section 3, the analytic expressions for the form factor and the nucleon
momentum distribution are given. In the final section the numerical results
are presented and commented upon.

2. The single particle potential model,
wave functions and density distributions.

The single particle potential which we assume for our treatment is

1 B
V(r)=~Vo+ Kr*+ 5 (1)

where V5 > 0,B > 0 and K = mw? = %2317 > 0 This potential approaches
the harmonic oscillator one at large distances r, but it has also a short range
strong repulsion, an ”infinite soft core”, becoming infinite like =% as r tends
to zero. The parameter K, or equivalently b, determines the ”strength” of the
attractive part while B the ”strength” of the repulsive one. The equilibrium
position r, for this potential may be calculated analytically and is given by

M4 = (ST B) &

2B
K

To = (
The main advantage in using potential (1) is that the Schrédinger eigenvalue

problem can be solved analytically [25], not only for the ground state but
also for any bound state. The energy eigenvalues are given by the simple

expression
h K 8mB
En = -V —y [ — 2 -
! 0+2V [4n+2+\/(2l+1) + 7
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2

:—V0+£—L[4(n+/\1)+1] e 1, 233, (3)
2m b2

where the parameter \; depends both on the orbital angular momentum
quantum number and on the strength B of the repulsive part of the potential
and is given by the expression

A= % {1 + \/(21 +1)24 8’;;3 } (4)

The normalized energy eigenfuctions are
@ni(T) < om
Ynim (1, 0,0) = Ru(r)Y" (6, 9) = ﬂ-lr—(—)Y, (6, ) (5)

where the radial eigenfunctions ¢ are given analytically in terms of the con-
fluent hypergeometric function

2f(n+2n+1) 172 4, 172 g
Pri(r) = [n! T(2h + %)]263'\!“ Py (=n; 20 + 5; E;) et (6)

The ¢,(r) may be also expressed in terms of the associated Laguerre poly-
nomials because of the relation of these polynomials to the confluent hyper-
geometric function [26]. The relevant expression is

2

271' 14 -1 r _r2
pulr) = [F(n + 2\ + %)b‘h\ﬁl] rMLn TR () e (7)

<

It may be easily checked that when B = 0, that is when A\, = (I + 1), the
above expressions coincide with the well known expressions for the radial
harmonic oscillator eigenfunctions. It is also immediately seen that the wave
functions for the ground state and the first excited ones are given by very
simple expressions, as in the case of the harmonic oscillator potential.

Knowing the eigenfunctions, the (normalized to unity) point-proton den-
sity distributions of closed shell nuclei may be calculated by using the ex-
pression

) = gog S22+ DRAC) (®
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In the case of open shell-nuclei we may use as an approximation the ”average
radial density” defined by

olr) = 1= [ elFIa0 9)

Thus, the expression used for p(r) is
1 R?
i n 1
P(r) 47fZ %:77 I nl(r) ( O)

where the summation is over the quantum numbers n and [ of occupied
proton states and 7 is the number of protons occupying the states with given
n and . Obviously, for the closed shell nuclei 9, = 2(2/+1). Quite analogous
is the expression of the (normalized to unity) point-neutron density. Since
we are interested in light nuclei with N = Z, the same expressions may
be used as an approximation of the corresponding point-nucleon or "body”
density distribution pg(r). As we mentioned in the introduction we focus
our attention on the 1s and 1p nuclei.

The interesting feature of the single particle model we are using is that
the following simple expression for p(r) arises for nuclei with 2 protons in the
1s shell and Z — 2 protons in the 1p shell:

1 | rio=2 2 7 -2 1 rth-2 2

p(r) = Z [T (220 + 1) Ytho—2 7 2 + 2 (24 + 1) el 52

(11)

This is a little more complex than the corresponding harmonic oscillator
expression and coincides with it for A, = 2(I+1),1= 0,1 [27].

It should be noted that the above expression can be easily generalized to

allow for state dependence of the potential parameters. In such a case we

have

o) = L 1 et g 72 1 i o
Z |73l (2h0 + 3) bgro~? 2 wbil(2A + 3) bi?
(12)

It should be understood that now Ay and A; differ not only because of the
different value of [ (I = 0 and | = 1, respectively), but also because of the
different value of B.
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We may also note that the m-th moment < r™ > of the density distribu-
tion p may be calculated analytically. The result is

F( 4Ag+m+1 ) 7 -9 F( 4A,+2mj:1 )

2 m

Tt T2 " T@n+D)

(13)

<rm>=—= b

Z 0

Among the various moments the "mean-square radius” of the density distri-
bution is given simply by

1 Z 2

+ 5) —b(2\ + )] (14)

2
< r? >= 2[63(2 0
Again these expressions coincide with the corresponding harmonic oscillator
ones for A, = 3(/+1). It is seen from (14) that when the potential becomes less
attractive, that is when b and A increase, the mean square radius increases,
as one should expect.

3. The analytic expressions for the elastic form factors
and the momentum distributions

The point-proton elastic form factor in Born approximation may be ob-
tained analytically by performing the Fourier transform of the corresponding
density distribution (12):

2 3 b3g: ¥ 7 -2 3 big?, -
= — — v 1 (1 — 2A: P= Y
F(q) Z 1Fl(1 2A072’ 4 )6 + 1 1( 1 2 4 )6

(15)

In this section too, we consider nuclei with two protons in the 1s shell
and Z — 2 protons in the 1p shell and we allow also for different potential
parameters in each of these shells.

The elastic charge form factor Fu(gq) can be calculated by performing
the Darwin-Foldy correction fpr(g), the finite proton size correction f,(g)
and the correction for the center of mass motion. By performing the latter,
one obtains an expression F(g) from F(g). Unfortunately , as it is well
known, this can not be done in a unique and exact way for a single-particle
potential, except for the harmonic oscillator one in which case a Tassie and
Barker correction factor [28] ewp(b—a:) arises: F(q) = emp( ) (¢). Use of
such a factor, even in an approximate way, does not seem to be generally
appropriate in our case. The best thing which seems that one can do is to
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use the "fixed centre of mass correction ” [29] which for 3He leads to the
expression
Py = LEOFT+ G
[dBoF4(w)

The integrations in the above expressions are carried out numerically in our
case, which is not so convenient and it is also expected to lead to inaccuracies,
in particular at large values of momentum transfers. They are feasible, how-
ever, and we have in fact used expression (16) in reporting our first results
for 5He [24]. For heavier nuclei, it is impracticable to use such a procedure in
our approach. In view of this, we resort to using simply the reduced nucleon
mass in the form factor F(q), although such a treatment is ambiguous. For
3He, however, a comparison with the results obtained with the fixed center
of mass correction, shows that the quality of the fit, though less satisfactory,
does not change too much in this case (see next section). We also note that
for the results we obtained for F,4(q) with the harmonic oscillator model and
we display also in the next section, the usual Tassie and Barker correction
was used.

Concerning the correction for the finite proton size, the Chandra and
Sauer [30] proton charge form factor

(16)

o) =3 Ay (17)

where
A, = 506373, A,, = 327922, A, = .165705

= 431566 fm, a2, = .139140fm, o, = 1.52554fm

was used. Other similar expressions [31] may also be used.
The expression of the charge form factor which is therefore used in fitting
the experimental results for the 1s, 1p nuclei is:

Fen(q) = for(q)fo(9)F(q) =

be?, -8t Z—
e

blg?, _ T
S——— 4
AT,

N W

3
S A, 1Fi(1 = 2);

=1

2
F](l - 2)\1,
1

le
I\DICAJ
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where 1 i
2 2 | p2 2 _ 2 | p2
o, = ap, + b5 + 570 Ol = G, + b7 + 52
From expression (18) we can find the number of zeros of the form factor
in the case of 3He. It is well known that the confluent hypergeometric and

the Whittaker’s function are related as follows

l+a

=z _1lta
1Fi( +kl+a;—z)=e727 2 Mys(2)

where M is the Whittaker’s function. The number of zeros of the function
1F} is the number of zeros of the function

flkya,2) = 2 F My a(2)
which is known [32]

N 0 for —o0<k< %
—[M2—k] for MH2<k<+oo
In our case
0 for —o0o< A< %
N = (19)
—[1—=2X] for 1< Xo<+4o00

where [z] is the maximum integer which is smaller than (or equal to) z. Thus
we have the following table:

Values of Ag 0 /2 1 3/2 2 5/2
Number of zeros
of F(q) 0 1 2 3 4

By using the above table we can obtain the number of diffraction minima
and compare with the known experimental data. The value of A¢ which is
found from the various fittings is on the average ~ 0.7. It is seen from the
above table that the charge form factor for 3 He has one diffraction minimum.
The existing experimental data have also one diffraction minimum.
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Another rather interesting feature regarding the form factor of *He in
the framework of the present approach is that the position of the diffraction
minima may also be given analytically in an approximate way. This may
be done by noting [26] that the n-th root of the confluent hypergeometric
function is given by the expression

Jia
nr:__c.l 20
‘ 2c —4a (20)
where
c 3
o1 2 -~ — - 2
]C 1, 71'(77,"1"2 4) ( 1)

is the n-th positive root of the Bessel functions J._;(z). Thus we may write
for the approximate value of the ¢? where the diffraction minima appear

2, 4n2n?

= 8 — 1)

It is seen, on the basis of the above analysis, that the number of the

diffraction minima of the charge form factor of *He depend on ), that is

on the strength of the repulsive part of the potential, while their position

depends both, on Ay and b that is on the strength of the repulsive and of

the attractive part. The stronger the repulsive part the larger the number

of the diffraction minima. In addition, the position of each diffraction mini-

mum is moved to smaller values of momentum transfer when the attractive

part becomes weaker (b increases) and also when the repulsive part becomes
stronger (X increases).

It is obvious that the above results hold also for the charge form factor
of *He since the proton form factor f,(¢q) has no roots.It does not seem,
however, possible to extend the above analysis to heavier nuclei.

We also note that by Fourier transforming of (18) we may obtain an
analytic expression for the charge density distribution and its m —th moment.
These expressions are, however, quite complex, the former one containing also
Hermite polynomials. It is therefore preferable in practice to use numerical
integration. Nevertheless, the mean-square radius is given, by a fairly simple
analytic expression, namely

me=1,23:e (22)
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-2
2

z - ch_ - % [(1 —2X0)0% + ]

(1- 2/\1)1;’;’”

(23)
Regarding the nucleon momentum distributions, these may be obtained by
means of the wave functions y;(k) in momentum space

3 3
<1 >g= 2 > Ay, [cg,_ -
1=1

5i(R) = [wi(P)eFdr (24)
through the formula [3]
(R (25)

2

. A
(R =3

where A is the mass number. In the case of 1s, 1p nuclei this leads after
some algebra to the following expression:

Tr22l°+2(2b0)3F2(A0 + 1) b2k2 2 1 3 bzk2
- -bg 2 Qg = 2
nsp(k) F(2A0 + %) € 1Fl (2 0 2’ 2 )+
72PN (95,)% (kb)) T2\ +2) e 5 B2k
— =9 — A . . 1_ 2
+(A 4) 91’\(2/\1 + %) € lFl (]‘ 112, 2 ) ( 6)

This expression is derived from another one, in which two confluent hy-
pergeometric functions appear in the second term, which however, may be
reduced to one.

It should be noted that the normalization of the above momentum dis-
tribution is as in section 4 of ref. [3], that is

(2rt1)3A/ k=1 )

We also note that expression (26) may be derived directly, and in a simpler
way, by using the expression:

200) = = 3 Tl R (23)
n,l

where



1Q9

Rk = (=) [ deri(hr) R (29)

e
and jj(kr) are the spherical Bessel functions of order [, if we take also into
account the difference in the normalization, since the n(k) given by (28) is
normalized to Z. The above expression follows from expressions (7.49) and
(7.50) of ref. [3], adjusted to our case. By 5,; we denote here the number of
nucleons occupying the states with given n and [ (7, = 2(2!{ 4 1) for closed
shell nuclei).

From expressions (15), (23) and (26), the corresponding state-dependent
and state-independent harmonic oscillator results follow immediately for var-
ious nuclei. In particular, for the momentum distribution, we find, for the
state independet harmonic oscillator results:

a) For *He
nwo(k) = 3215 8% 0K (30)
b) For ®L:
3 b2 )
o (k) = 32n26°(1 + %7;)6"’2" (31)
c) For 12C
3.3 2 b2 _52k2
laod) =B+ 5 (32)
d) For 0O
3 b2
mro(k) = 32n36%(1 + 235)e ™ (33)

The expression for the state independent harmonic oscillator in the cases
of *He and ®0 are also given in ref. [3].

Another interesting feature of the analytic expression (26) derived is that
the asymptotic behaviour of the nucleon momentum distribution for large k
is easily obtained and shows a remarkable difference from the corresponding
harmonic oscillator expression. By using the well known asymptotic expan-
sion of the confluent hypergeometric function for large z [26,33]:

1F1(b,c;z)=Mi— 1+(1—_—b-)(£b—)+... , =30 (34)
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we find that for large values of k£ the nucleon momentum distribution behaves
like:

- w2240+ T2(\g 4 1) 1 (Mo +1)(20 +1) . 2
T T T@he + DTG — Do) 6§ F 100+ b3k?
7r224’\‘+3F2(/\1 + %) 1 A1(2X +3) 2
+Hd~ 4)F(2A1 + DI2(1 = Ay) s a0+ et (39

provided that
I
/\0¢—2-+n, )\1#1+n, n=20,1,2,..

The dominant term is the first one (see the next section for the values
of Ao and A;)and therefore for sufficiently large values of the momentum k,
the momentum distribution tends to zero like an inverse power of k which is
determined from the repulsive part of the potential, namely, like ~ k=4(*e+1),
The coefficient of proportionality depends both on the attractive and the
repulsive term. We may also note that if both A\g = %-{-n and Ay =14+n,n =
0,1,2,..., the momentum distribution tends to zero for large k very rapidly,
namely as a Gaussian or as a power of k times a Gaussian. This situation is
however, very unlikely, all the more so since both the above conditions have
to be satisfied.

4. Numerical results and discussion.

The results for the nucleon momentum distribution reported in this sec-
tion have mostly been obtained by using for the values of the potential pa-
rameters b and B their best fit values resulting by least squares fitting of
the expressions of the elastic charge form factor (see section 3 for the rele-
vant corrections), to the corresponding experimental results, which we know
from the elastic electron scattering experiments from light nuclei. Results
are reported for *He, 8Li, 12C and '60.

The best fit values for *He are by = 0.952fm, Ao = 0.759 . As it is seen
from fig. 1 the quality of the fitting is very close to that obtained with the
fixed center of mass correction (ref. [29]). The corresponding best fit values
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are by = 1.0575fm and A\g = 0.759. These values are close to those reported
in ref. [24]: b = 1.08 fm and Ao = 0.74, which were obtained with a different
correction for the finite proton size.

The momentum distribution (k) calculated with the values by = 0.952 fm,
Ao = 0.759 is shown in fig. 5 (FF dashed line), where the corresponding ex-
perimental points are also shown [34]. It should be noted that the values of
the momentum distribution in this and the other figures of this section are
normalized to unity. It is seen that except for the region of the observed dip,
in FF, the calculated values are quite satisfactory. The dotted AS line in
fig. 5 (and also in the other figures showing the variation of the momentum
distribution with k, for ®L:,}2 C' and 1®0) depicts the values of n(k) obtained
by means of expression (35) (neglecting the terms indicated by dots) which
was derived with the asymptotic expansion for the Confluent Hypergeomet-
ric series and using the parameters from the fitting of the charge form factor.
It is seen that for £ > 3.5fm™! the FF line approaches quite closely the AS
line.

Relatively improved results in the region of the known experimental values
of n(k) are obtained, as one should expect, if the parameters are determined
by least squares fitting to the experimental values of (k). The values of the
parameters are by = 0.995fm and \¢ = 0.538 (see solid line MD of fig. 5).

The FM dotted line in fig. 5 is obtained by least squares fitting to the
experimental results of both the form factor and the momentum distribution.
In this case, for which by = 1.078fm and Ay = 0.653, the line differs from
the one obtained with the parameters resulting from the fitting of the form
factor in the region k > 2.5fm™!, where it lies below the FF dashed line.
Finally, the considerable improvement (in comparison to the harmonic oscil-
lator results with the best fit value of the oscillator parameter b = 1.432fm
obtained from the fitting of the form factor), indicated by the solid MD and
the FF and FM lines in the region of the larger value of k, (except near the
dips in certain cases), is clear.

The results for the charge form factor and the nucleon momentum distri-
bution for L: are given in figures 2 and 6 respectively. The best fit values
are in this case by = 1.452fm,b; = 1.868fm, Ay = 0.560,\; = 1.022. It is
seen again that the quality of the fitting of the charge form factor is very
satisfactory, while with the H.O. model (b = 1.553fm,b; = 1.715fm) it is
not good for g2 > 7fm~2. In the later case, the average value of the b pa-
rameters were used in the Tassie and Barker factor. The nucleon momentum
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distribution shows again a pronounced dip and there is considerable increase
in the higher values of k, in comparison with the harmonic oscillator results.

In figures 3 and 7 the results for the charge form factor and the nucleon
momentum distribution respectively are shown for '2C. The best fit values
of Fou(q) are by = 1.306fm, by = 1.353fm, Ag = 0.647, A\, = 1.406. The best
fit values if state dependence of the potential parameters is not considered
are: b = 1.534fm, Ao = 0.573,A\; = 1.03. The results with the harmonic
oscillator model have been obtained with the best fit value b = 1.626 fm. It
is seen from fig. 3 that the fitting of the charge factor is very good with the
present model if state dependence of the parameters is considered. With the
simple H.O. model the fitting is also quite satisfactory, though worse in com-
parison with this model as one should expect. The difference of the results
obtained with the two models is much more pronounced as far as the mo-
mentum distribution is concerned. In this case the harmonic oscillator fails
completely to reproduce the data for large & while with the present model
the situation is considerably improved, although there is still disagreement
in the region of the larger values of k(k > 1.7fm™!). Use of the state in-
dependent best fit values gives worse results for the larger k values. The
other interesting observation one can make is that if the parameters are de-
termined by least squares fitting of the theoretical expression for the nucleon
momentum distribution to the corresponding experimental results, a very
good fit on the whole is obtained (except for some deviations, mainly at s-
mall k). Moreover, the dip (around k = 2fm™!) almost disappears in this
case (see MD solid line of fig. 7). The corresponding best fit values are:
bo = 0.789fm, by = 1.079fm, Ao = 1.518, \; = 3.155.

The results for 0 are displayed in figures 4 and 8 for the charge form
factor and the nucleon momentum distribution, respectively. The best fit
values of F.4(q) are: bp = 1.18fm, b = 1.40fm, Ao = 0.798, A\, = 1.634,
while for the state independent best fit values we obtain b = 1.727 fm, Ay =
0.551, \y = 1.02. For the harmonic oscillator model b = 1.762fm. It is
seen that the fit of Fi; is good except for the large values of q, where there
are deviations, which are more pronounced in the state indepndent case.
It is, however, better than the one obtained with the harmonic oscillator
model.The behaviour of the nucleon momentum distribution is rather similar
to that of '2C.
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In conclusion, the detailed analysis described in this paper for light nu-
clei indicates that although the elastic charge form factor and the nucleon
momentum distribution cannot be fitted simultaneously with a single par-
ticle potential model, as it is well known, considerable improvement can be
achieved in general if a short range repulsion is included in this potential.

The authors would like to thank Prof. A. Antonov and Drs S. Massen
and M. Stoitsov for useful discussions and suggestions.
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Fig. 1. The charge form factor of ‘He obtained with the present
approach using the reduced mass (full line) and "fixed center of
mass correction" (dashed line). The HO dashed line is the harmo-
nic oscillator model with the best fit value b=1.432 fm (obtained
'itEi t)he Tassie and Barker factor for the center of mass cor-
rection).
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Fig. 2. The charge form factor of °Li oi)tained with the present
approach (full line) and the one with the harmonic oscillator
model (HO dashed line) with b,=1.553 fm and b,=1.715 fm.
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Fig. 3. The charge form factor of '°C obtained with the present
ap}:roach (full line) and the one with the harmonic oscillator mo-
del (HO dashed line) with b=1.828 fm. The SI dashed line is the
state independent case with A,=0.573, A\(=1.03 and b=1.534 fm.
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Fig. 4. The charge form factor of '°0 obtained with the present
approach (full line) and the one with the harmonic oscillator mo-
del (HO dashed line) with b=1.762. The SI dashed line is the sta-
te independent case with A,=0.551, \,=1.02 and b=1.727 fm.
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Fig. 5. The nucleon momentum distribution of ‘He. The FM line

is drawn using the parameters determined from the fitting of the
form factor and the momentum distribution. The FF line is drawn
using the parameters from the fitti of the form factor. The MD
line is the momentum distribution obtained with the present ap-
proach by fitting to the experimental 7(k) values. The HO line

18 the harmonic oscillator momentum distribution and the AS line
is the asymptotic behaviour of the momentum distribution FF.
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Fig. 8. The nucleon momentum distribution of °Li with the present
nrpproa'ch usinﬁ the parameters from the fitting of the form factor
ull line) an witg the harmonic oscillator model (dashed line).
he AbS gotted line is the asymptotic behaviour of the momentum

ution.
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Fig. 7. The nucleon momentum distribution of *C obtained with the
le-lelsent approach by fitting to the experimental 17(1& values (MD
line), usigg the parameters determined from the fitting of the
form factor (FF dashed line) and its asymptotic behaviour (AS dotted
line). The HO dashed line is the harmonic oscillator nucleon momentum
distribution. The SI dashed line is the nucleon momentum distribution
with the state independent parameters in the fitting of the form factor.
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Fig. 8. The nucleon momentum distribution of '°0 with the present
agsfonch using the parameters from the fitting of the form factor
( line) and with the harmonic oscillator model (HO dashed
line). The AS dotted line is the asymptotic behaviour of the nucle-
on momentum distribution. The SI dashed line is the nucleon mo-
mentum distribution with the state independent parameters in the
fitting of the form factor.
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