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S T R O N G I N T E R A C T I O N E F F E C T S I N E " - A T O M S 

Th. Petridou 

Department of Theoretical Physics 

Aristotle University of Thessaloniki 

GR-54OO6, Thessaloniki, GREECE 

Abstract: An approximation is made for the Σ~ atomic energy shifts and widths 

due to strong interaction central and spin-orbit parts of the potential with the use 

of the S-Matrix Approach, introduced by DelofF. This simplified model is applied 

in Σ — 1 2 C in connection with the Σ-hypernuclear data: ™C. It is concluded 

that there is an essential influence of the strong interaction and especially of the 

nuclear spin-orbit coupling in the spectra of Σ — 1 2 C, mainly for the p-shell. 

1. Introduction 

The Σ"-atoms belong to the family of exotic atoms. An exotic a tom is an 

atom where a negative particle other than an electron is captured into an atomic 

orbit around a nucleus. Since electron is the least massive of the known negatively 

charged particles, the resulting exotic atomic states have smaller radii and larger 

binding energies than the electronic atomic states of the same quantum numbers. 

The heavy particle may be a lepton, a meson or a baryon [1]. 

The study of exotic atoms provides useful information for hadrons and for 

atomic nuclei which participate in the reaction and also for the interactions be

tween them. The heaviest particle observed so far in an atomic orbit is Σ~-

hyperon. The study of Σ~ hyperonic atoms is very interesting and can be used 

for the measurement of Σ~ magnetic moment, the study of nuclear properties 

and the understanding of ΣΝ interaction and generally of the hyperon-nucleon 

interaction [2]. 

The lifetime of Σ'-Ι^ρβΓοηβ is 1.49 χ 10~10 sec, nearly 100 times shorter than 

that of K~ mesons, so one cannot have a stopped Σ~ beam because Σ - particles 

should decay before reaching the target-nucleus. So, for the creation of Σ " atoms, 

beams of K~ mesons are used. When such a beam is stopped in a target, the K~ 

absorption is followed in some cases by the emission of low-energy Σ~-1^ρβΓοη8. 

The predominant elementary reactions which give rise to a Σ'-Ι^ρβΓοη are [3]: 

K~ + ρ -> Σ " + 7Γ+ 

K~ + η -> Σ " + 7Γ° 

Κ +ρ + η—+Σ. + ρ 



60 

The E~-hyperons produced by the first two reactions have energies about 

20 MeV. The E~-hyperons after being produced are emitted from the nucleus. 

Since the lifetime of the E~-hyperons is comparable with their slowing down 

time, a part of them decays before forming a E~-hyperonic atom. The third 

reaction yields less than 30% of the totally produced E~-hyperons. Since these 

E~-hyperons have very high energies, most of them decay before they are cap

tured, so the third reaction does not contribute to the formation of Σ " atoms 

Pi-
The Σ -hyperons that are produced by the first two reactions and do not 

decay, are captured into atomic orbits forming E~-atoms. This process is not 

a simple one, but follows some discrete stages. Initially the E~-hyperons have 

large kinetic energies and penetrate the electronic cloud without managing being 

captured by the atomic orbits. They lose their energy gradually and they take 

velocities comparable with the velocities of the atomic electrons. So, an atomic 

capture can occur and have a bound state [3]. 

The capture of E"-hyperons takes place in atomic levels with high main quan

tum number n. After the capture of the E~-hyperons and the formation of the 

E~-atoms, a deexcitation follows and cascade of the E~-hyperons in the inner 

orbits. This cascade is accompannied by the emission of an Auger-electron to 

which the energy difference between the two levels is transferred. This energy is 

usually enough to take the electron from the electronic cloud [3, 4]. 

T h e emission of Auger-electrons is accompanied by X-ray emission, but the 

Auger phenomenon dominates. This situation is inversed when the orbital radius 

of the E"-hyperon becomes less than that of the innermost orbital electron [1]. 

Then we have only X-ray transitions. The electrons lie outside the hyperonic 

orbits, so they have very little effect on them; the same happens with the nucleus 

in this phase. So it becomes obvious that in this phase the electromagnetic forces 

dominate [1, 3, 4]. 

T h e X-ray emission takes on with the same rate, until an overlap happens 

with the nuclear matter distribution. In this last phase, the influence of the 

strong interaction changes the X-ray transitions. In the atomic state that the 

effects of the strong interaction start to happen and also in the following states, 

we have a variation in the intensity of the X-ray transition of the spectrum. This 

change occurs in the shift and the width of the spectral line [1, 2, 3, 4]. 

Experimental Data 

T h e first clear evidence for the observation of E~-atoms was obtained at 

CERN in 1970 in three elements: S, CI and Zn [3]. In this experiment X-ray 

transitions in these elements were measured, as well as the number of Σ"-atoms 

produced per stopped K~. Σ/Κ~. For 1 6 5 all the transitions from η = 6 to 

η = 4 were measured, for 17Cl from η = 7 to η = 4 and for 30Zn from η = 11 to 

η = 5. There was an agreement between the measured and the calculated values 

of energy [3]. 
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The second experiment took place at CERN in 1975 [2]. They observed X-ray 

transitions in E~-atoms in eight elements: C, P, Ca, Ti, Zn, Nb, Cd, Ba (Z varies 

from 6 to 56). They measured the X-ray intensities in these cases (for Σ " atoms 

and K~ atoms), as well as the production of Σ~ hyperons per K~. For four 

elements: C, Ca, Ti, Ba the yields of X-ray transitions due to strong interaction 

were measured analytically. There were also some theoretical calculations in order 

to reproduce the data. 

The yield is defined by the ratio: 

Y = x 

In this formula Tx is the electromagnetic interaction in the [ (n,i) level] and 

T s is t h e strong interaction in the [(n + l,£ + 1) level]. 

The third experiment took place at the Rutherford Laboratory in 1978 [5]. It 

is the first direct measurement of X-ray shifts, widths and yields of Σ - - a t o m s in 

five elements: 0, Mg, Al, Si, S. In that experiment there was the first measure

ment of the width Ts due to the strong interaction. There was a fitting of the 

experimental values with the use of an optical potential model and the value of 

the effective complex scattering length a was calculated. 

Also in an experiment done in 1987 at BNL for the measurement of the 

magnetic dipole moment of the Σ " hyperon, they measured X-ray spectra of Σ - -

atoms in two elements: Pb and W. In these experiments strong interaction effects 

were also observed [6]. The effects of strong interaction in Σ~^ΐοπΐ8 of P b , W 

for the transition (n = 10 —• η = 9) were also studied analytically at BNL, where 

the shifts and the widths for this case were measured [1]. 

We must point out that the possibility of formation of Σ"-atoms (Σ/Κ~) for 

the heavy elements is about half the possibility for the light elements ( 3 % — 8% 

respectively) [7]. 

Reviewing the experimental data for Σ "-atoms, there are 5 measurements of 

shifts, 3 direct measurements of widths and 9 measurements of relative yields [8]. 

The Batty potential 

The description of strong interaction effects in exotic atoms was done by Batty 

by using an optical complex potential of the form [5, 8, 9]: 

^=- (? ) ( 1 + 3 ä ' M 

In the above formula μ is the reduced mass of the system Σ-nucleus, m is the 

mass of the Σ~ particle, M is the mass of the nucléon, α is the effective complex 

scattering length and p(r) is the nucléon density distribution. 

The calculations have given for a: 
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ä = (0.35 ± +0.004) + ê(0.19 + 0.03)f m 

For the density distribution p(r) a Fermi form was used: 

Po 
p{r) = 

1+βχρ(ψ) 

^ = 0.17, e = 6.624, 2r = 0.549 

There is a difference between the above calculated value of â and the value of 
the scattering length which corresponds to the free ΣΝ interaction [10], (the Ima 

is smaller for the Σ atoms). An explanation for that is that a possible Σ~ρ bound 

state causes an effect of the Pauli exclusion principle in the scattering length [11]. 

Finally the following potential was found: 

_„ , ( - 2 7 . 8 - 1 5 . 5 ) , , _. 
U(r) = \ -—-f MeV 

l + exp(T-f) 

This potential which was calculated from E~-atoms was used for the determi

nation of the width of E~-hypernuclei. So, it was found that: Γ ~ 30 MeV [12, 

13, 14]. This is very important for E~-hypernuclei, because initially all authors 

used for their study the Batty potential expecting to find the value of about 30 

MeV for the width. But this is not consistent with the experimental data, where 

the width was found to be about 4-7 MeV [14]. 

The existence of narrow Σ hypernuclear resonances was the puzzle of Σ~-

hypernuclei. The Σ hypernuclear states should have large width, because the 

conversion ΣΝ —* AN takes part. But the most important reason for that is the 

fitting of Σ atomic data done by Batty. If Batty took into consideration some 

other factors, he could have different results. 

2. Calculation of the atomic level energy shifts and w id ths 

In this chapter we will examine the effects of the nuclear spin-orbit coupling in 

Σ-atoms. This idea was also used by Bogdanova et al. [15] and it was concluded 

that there are sufficient effects in Σ-atoms due to the nuclear spin-orbit coupling. 

In order to calculate the effects of the nuclear spin-orbit coupling within our 

model, we consider the potential: 

Vint(r) = - — + ( V + iW ) - Vso(l • s)r2

0 I 6(r - R) 
τ Κ 

The first term corresponds to the Coulomb potential, the second to the nuclear 

central potential and the third term corresponds to the spin-orbit potential. 

Analytically, the spin-orbit potential is given by the formula: 

r dr 
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f i , r<R 
w(r) = l R = r0A

1/3 

U, r>R 
The spin-orbit forces act to a nucléon only to the surface r = R of the nucleus, 

because in this point there is a discontinuity in the potential. So, Vso(r) takes 
the form: 

Vso(r) = -Vso(hs)r2
0jS(r-R) 

The central line of the spectrum which corresponds to the Coulomb potential 
is shifted by the other two interactions. 

(i) First order Pertubation theory 

The first order Pertubation theory was used for the calculation of e and Γ in 

hadronic atoms, but without success, because the strong interaction between the 

hyperon and the nucléon is very large [16]. 
The widths that correspond to the nuclear potential and to the spin-orbit 

potential, are taken by the formula: 

Γ = | Φ, | 2 ImV{r)dr (1) 
Jo 

T h e function Φ 0 is the Coulomb eigenfunction which corresponds to the solu

tion of the Schrödinger equation for the Coulomb potential: 

dr* ' [h2 %' 

The wave function Φ ε for circular orbits η = £ + 1 has the form: 

2Z v 3 ' ì ' 

™--{(jtt) wrmkrw] -v"(-ir^+i)! 
Η2 2Z .μΖβ2 

a0 = — - , ρ = r = -2ik0r , k0 = ι με' ηα0 η η 

k0 are the eigenvalues of the Coulomb problem. 

It is: Φ 0 ( Γ ) = Ae-2 / + 1 ( r ) 

where A expresses the product of all the terms independent of r. 

Next we will calculate the widths r c e n t r and T/s that correspond to the central 

potential and the spin-orbit potential by using the equation (1). 
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| ^ ( r ) | 2 = A 2 e - V ' + 2 ( r ) 

, = Γ A2e~pp2W{r)ImV0dr 
Jo 

Λ2 r-2ik0R na n 

T h e above integral is given by the formula: 

— 2ik0R 
I = / e~pp2e+2 dp = j(2£ + 3, -2ik0R) 

Jo 

T h e function 7(0, x) is the incomplete gamma function, which is defined by 

the formula: 

Jo 

So we have: 

A2 

i c e n i r - - — Im V0Ί{2£ + 3 , -2ik0R) 

For the quantity Γ/5 we have: 

/•oo 

Tu= Ι Φο I2 ImVesdr 
Jo 

After the suitable substitutions we take: 

Te, = A2 e2ik°R (-2ik0Rf+2 \m(VM) (£ · S) % 
Κ 

T h e first order Pertubation theory does not give good results (the result is 

two or three times the real value or has the opposite sign). This fact makes the 

introduction of another method necessary [16]. 

(ii) The Deloff Approximation 

As was told, the strong interaction causes a variation in the energy eigenvalue. 

This variation SE is complex because it refers to both the shift ε and the width 

Γ. This complex shift δ E is due to the nuclear central potential which consists 

of two terms: one that corresponds to the nuclear central potential and the other 

that corresponds to the spin-orbit coupling. 

T h e quantities ε and Γ are much smaller than the Coulomb binding energy, 

so we can use an approximate method in order to calculate them. Next we will 

develop such a method which was used by DelofF and is called the S-Matrix Ap

proach [16]. This method provides a fast and accurate evaluation of the complex 
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level shifts and gives values comparable with the exact values, as was shown by 

Deloff [16]. 
We consider that every bound state of a Σ atom is characterised by the quan

tum numbers (n,£). If E and E0 are the energy eigenvalues with and without 
the strong interaction, the variation 6E is given by the relation: 

Γ 
8E = Ε-Ε0 = -€-ι-

We consider the equation: 

<PRe(r) f 2 m r _ _,, λ1 2m Ζ e2 ί(1 + 1)\ D , . n 
+ { TT [E - V(r)\ + -ΤΪ- ^ Τ - 2 ) Mr) = 0 

dr2 { h1 L W J %' r 

'V0, r<R 

Where: V(r) = i V0 - VS0{1 · s)r2

0^6{r - Ä), r = R 

> 0, r>R 

If we set: k2 = 2mE/h2, we take the equation: 

* < r > + {* + $£-^-£v(r)}*<r)-o (2) 
In equation (2), m is the reduced mass of the system Σ-nucleus: 

m s A m,M 
m = 

mj + Amu 

In the above formula m^ is the mass of the Σ~ particle, mjv is the mass of a 
nucléon and A is the nuclear mass number. 

Let the functions 4>(k,r), f(k,r) be the regular and the irregular solutions of 
equation (2). Also the functions <f>c(k,r), fc(k,r) are the pure Coulomb wave-
functions which are solutions of equation (2), when V(r) = 0. 

Next we define the Jost function, F(k): 

F(k) = W[f(k, r ) , <f>(k, r)] + ψν30(1 · s)r2

0±f(k, r)<f>{k, r ) 

When r > R: f(k,r) = fc(k,r), so we have: 

F(k) = W{f(k, r ) , <f>(k, r)] + ^VS0{1 • s)r2

0^fc(k, r)<f>{k, r) 

The solution of equation F(k) = 0 will give us the binding energy E0. 
We introduce the function: 

H(k) = F « 
f'(k,R)^h,R) 
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We will solve the equation: H{k) — 0. 

<j>'(k,R) f<\k,R) 2m . , 1 _ 

" ^ Τ ^ ' Τ ϊ ^ ^ K * ( ) 

This equation will be solved with the Newton-Raphson method [16]. The 
initial value of the root κ of the above relation is defined by setting: k = κ -f Sk 
and expanding the function H(k) in a Taylor series around κ: 

H(k) = Η(κ) + δ1οΗ(κ) + ... 

We omit the terms of higher order and we take: 

H(K) + 6kH(K)=0 => 8k = -S^- (4) 
Η (κ) 

(With the dot we mean different i at ion with respect to k). 
Next we will calculate the function Η (κ). We differentiate the equation (3) 

with respect to k and we set k = κ. 

• _ W^(K,R),^(K,R)] _ W[F(K,R)J°(K,R)] 

We can get rid of the terms /C(«,Ä), φ(κ,ϋ), by differentiating the initial 
equation (2) with respect to k and by setting: Re = (f>(k,r). 

.2 2 m £e2 f(£+j) 2m 
+ I2" ~ r2 T< 

^ (Är,r)+ ^ + - 5 - L - ^ _ _ K ( r ) U ( Ä r , r ) = -2^ (Ä: , r ) (6) 

0 (A:,r) + |Är2 + ^ r - ^ - ^ - -^ V{r)^ <j>(k,r) = 0 (2) 

We multiply equation (2) by <f>{k,r), equation (6) by <f>(k,r) and then by 
subtracting we have: 

φ (*, r) φ" (*, r) - 0" (*, r) 0 (*, r) = - 2 * [ # * , r) ]2 

We add and subtract in the first part of this equation the term (f>'(k, r) φ (k. r): 

d [φ (*, r) φ' (k, τ)-φ (k, r) φ' (k, r)) = -2k [φ^,ν)}2 

dr 

~W^(k,r)J(k,r)] = -2k^(k,r)\< 
dr 

In a similar way we calculate for the quantity fc(k, r) 
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Now we can take the two Wronskians W[<f>} φ] and W[fc,fc], by integrating 
the above relations in the limits (0, R) and (R, oo) respectively: 

W [φ (/c, R), φ (/c, Ä)] = -2Ä jf*[ # κ , r) ]2e/r 

W [/c(«, Ä), fc («, Ä)] = -2* jT[ /c(«, r) ]2<ir 

We substitute these relations in equation (5) and we take: 

Η (κ) = -2κ Ì I 
Φ(Κ,Γ) 

[<KK,R)\ 
dr + r 

JR 

fe(*,r] 

fc(K,R) 
dr 

Since the range R is small, we can in a first approximation neglect the first 
term. So we take: 

Η (κ) = -2κ Γ 
JR 

fe(*,r) 

lfc(*,R) 
dr 

Since from equation (4) we have: Sk = —Η(κ)/Η(κ), by substituting we take: 

{ W [fc(κ, r), φ(κ, R)] + ψν„(Ί · s)r2

0y
c(K, R) φ(κ, R)} / c ( * , R) 

2κφ{κ^)^[η^τ)]Ητ { ] 

This equation is the basis of the iterative Newton-Raphson method. The 
number of iterations depends on the accuracy of the initial value. Since as was 
told the quantity SE is smaller than the Coulomb binding energy, if we take the 
Coulomb energy as an initial value, we can reach the desired value with only two 
iterations. 

If Fc{k) is the Jost solution for the Coulomb eigenfunctions: 

Fc(k) = W{fc(k,r)Jc(k,r)} 

and k0 is the root of equation Fc(k) = 0, for k = k0 the function fc(k0,r) is 
analogous to the function </>c(fc0,r). 

Let be: fc(k0,r) = αφα^0,Γ). Then the formula (7) is simplified: 

Λ 1 \φ{Κ^) φ\Κ^) 2m 
2fc0\#fc0,Ä) <p(K,R) + η2 so{ } R 

Φ°(Κτ) 

Φ°{ΚΚ) 
dr 

There is also a similar relation for SE: SE. = ~2kSk. 
im 
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h2 U\ko,R) <f>'c(kOÌR) 2m 
Ö ^ = — < ί 777: m - ^ / ? , m + TT^(/ · s)— 2πι\φ{Κ,Κ) <j>c{k0,R) h2 v ' R J ' h l<f>c(k0,R) 

0 c(*o,r) 
ι 2 

(ir (8) 

' η * 

In Σ~ atoms and generally in hadronic atoms, we are interested in the circular 

orbits for which: η = £ + 1. In this case, the Coulomb eigenvalues k0 are given 

by the relation: 

mZ2e4 imZe2 

2/rn 2 n%z 

We must calculate the integral j^^c{k0,r)^c{k0,R)]2dr and the ratio 

φ c(k0,R)^c(k0, R) and substitute them in equation (8). 

The general form of the Coulomb wavefunction is: 

f{2Z\3 ( n - l - 1 ) ! γ , l+l 2I+1 

= -{{^-J 2n[(n+iy.fi P η+'ΛΡ) ( ) 

In the previous equation we have: a0 = h2/με2, ρ = —2ik0r . 

The functions L2^l are the Laguerre functions. 

For the case that η = i + 1, the functions L^+l are simplified: 

£$:!(/>) = (-i) 2 ' + 1 (2i + D! 

It is clear that the function L2

n+l is independent of r. We substitute in 

equation (9): 

« = - {((7Ä:)3
 ̂ TÏÏÏWTÏÏFF

 e4v+1 (-1)M+I (2i+1J ! 

This function was also used in the previous subsection. As was told, we are 
interested in the quantities $£°^c(kQ,r)^c(k0, R)]2dr and φ'α(Κ, R)^c{k0,R), 

so in the above relation we are interested only in the terms dependent on r. We 

introduce the constant A, which is equal with the product of all the independent 

of r terms. 

# ( r ) = -Aeik°r (-2ikoy
+l r m 

We differentiate with respect to r, and finally we take the relation: 

[ « M l ' ^ + £±i ( 1 0 ) 
ΦΙ(Γ) ' r 

So we now have to calculate the integral: J0°° [</>c(A:0,r)/^
c(Â:0, R)] dr and to 

substitute in equation (8). 
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r 
Jo 

<f>c(ko,r) 

,<t>c(k0,R) 

Finally we have: 

dr = e~2ik°R R-21-2 

0 

k„r r2l+2 fo 

r 
Jo 

Φ°(Κ,τ) 

l<f>c{ko,R) 
dr = 

RT{2£ + 3) 

exp{2ik0R) {~2ik0R)2£+3 

We substitute the equations (11) and (10) into equation (8) and we take: 

h2 exp{2ik0R){-2ik0R)2£+3 

(H) 

SE= n 2m 

(f>'{k0,R) {£+!) 

RT {2£ + 3) 

2m ,21 

<b(k0,R} R h R 

By multiplying and dividing with R we take the relation: 

h2 exp{2ik0R){-2ik0R)2e+3 

8E = 
2m R2T (2i + 3) 

We divide this relation into two terms: one that depends on the spin-orbit 
coupling δ Ει and another that includes the rest terms 6E2'. 

δΕλ = 

SE = 6E\ + δΕ2 

exp{2ik0R) {-2ik0R)2l+z 

Α2Γ(2^ + 3) 
V„Çl-t)r\ (12) 

SE - %2 exP(2ikQR)(-2lkoR)2e+3 

2 ~ 2m R2T {2£ + 3) 
(13) 

(where: k0 = imZe2/nh2). 
The above relations are very simple; the shift <5ϋ?2 is expressed only in terms 

of the logarithmic derivative of the regular wavefunction at the nuclear boundary 
[16]. The wavefunction is given by the confluent hypergeometric functions. 

3. Results and Conclusions 

Next we will show some numerical results for Σ —12 C for £ = l,£ = 2,£ = 3, 
(Tables 1, 2 and 3). We consider the case of 1 2 C , because only for this element 
there are atomic and hypernuclear data and the purpose of this paper is the study 
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of Σ-atoms in connection with Σ-hypernuclei. Since for £ > 1, the quantities 

δΕχ, 6E2 given by equations (12) and (13) are very small, we show only some 

representative results. 

The potential model is the same with the one used by the same authors for 

the study of Σ-hypernuclei [17]. The value of the constant r0 (R — r0A
1/3) is 

taken to be 1.31 fm [17]. The structure of the Σ-atomic wavefunctions is very 

sensitive on the value of r0 [18]. 

For I = 1, we take results for two values of the potential: 

(i) V = (-12 - ti) MeV, («) V = (-16 - 2i) MeV 

We also give some results for £ = 2,£ = 3, £ = 4, for the potential (i). 

Vso 

10 

20 

40 

50 

10 

20 

40 

50 

Table 1 

Energy Shifts in Σ - 1 2 C 

due to the spin-orbit coupling 8E\ 

and other quantities in MeV, 

when V=(-12-i4) MeV, E0= -0.2589 MeV 

and 6E2 = (-0.0128-i 0.0061) MeV. 

State 

P3/2 

#3/2 

P3/2 

P3/2 

Pl/2 

Pl/2 

Pl/2 

Pl/2 

SEi 

0.0037 

0.0074 

0.0147 

0.0185 

-0.0074 

-0.0147 

-0.0296 

-0.0370 

6E1 / 6E2 

-0.289 

-0.580 

-1.148 

-1.445 

0.578 

1.148 

2.311 

2.890 

δΕχΙ{Ε0 + 8E2) 

-0.014 

-0.027 

-0.054 

-0.068 

0.027 

0.054 

0.109 

0.136 

From the results of the tables 1, 2 and 3 we reach the following conclusions, 

which are valid only in the context of this simplified model: 

(i) The shifts in the energy eigenvalue E0 (Coulomb energy) caused by the 

nuclear central potential and the spin-orbit potential are small for £ > 1 and they 

tend to zero when £ is augmented. So only for £ = 1 we can take the effects of 

the central potential and the spin-orbit potential in Σ-atoms. 
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v30 

10 

10 

20 

20 

10 

State 

ds/2 

dz/2 

fr/2 

/δ/2 

99/2 

Energy Shifts in Σ -

and other quanti 

E0 

-0.1148 

-0.1148 

-0.0646 

-0.0646 

-0.0413 

δ Εχ 

0.940xl0- 5 

-O.UOxlO"4 

0.980xlO"8 

-0.131X10-8 

0.860xl0" 1 2 

Table 2 
1 2 C due to the spin-orbit coupling δΕχ 

ties in MeV, when V=(-12-i4) MeV. 

δΕ2 

-0.99xl0-5-i0.38xl0-5 

-0.99xlO-5-i0.38xlO"5 

-0.26xl0" 8-i0.89xl0- 9 

-0.26xlO-8-i0.89xlO"9 

-0.26xl0- 1 2-i0.94xl0- 1 3 

δΕχ/δΕ2 

-0.946 

1.414 

-3.769 

0.504 

-3.308 

δΕχ/(Ε0 + δΕ2) 

-0.822 χ IO" 4 

0.120xlO" 3 

-0.152xlO" 6 

0.202χ10~6 

-0.208Χ10"1 0 

' 

y so 

10 

20 

30 

40 

50 

10 

20 

30 

40 

50 

due 

Table 3 

Energy Shifts in Σ - 1 2 C 

to the spin-orbit coupling δΕχ 

and other quantities in MeV, 

when V '=(-16-12) MeV, E0= -0.2589 MeV 

and δΕ2 = (-0.0203 - i 0.0041) MeV. 

state 

P3/2 

P3/2 

P3/2 

P3/2 

P3/2 

Pl/2 

Pl/2 

Pl/2 

Pl/2 

Pl/2 

δΕχ 

0.0037 

0.0074 

0.0111 

0.0148 

0.0185 

-0.0074 

-0.0148 

-0.0222 

-0.0296 

-0.0367 

δΕχ/δΕ2 

-0.182 

-0.360 

-0.545 

-0.729 

-0.911 

0.365 

0.729 

1.094 

1.458 

1.808 

δΕχ/(Ε0 + δΕ2) 

-0.013 

-0.027 

-0.040 

-0.053 

-0.066 

0.027 

0.053 

0.079 

0.106 

0.131 
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(ii) For I = 1 the quantities 6E\, 6E2 are of the same range and when Va0 

is augmented, δΕ\ becomes greater than δΕ2· For great V30, 8E\ is of the same 

range with E0. 

(iii) For £ = 1 the quantities δΕ\, 8E2 shift the energy eigenvalue lightly. 

This shift is relatively important. So there is a considerable effect of the nuclear 

central potential and the spin-orbit coupling in Σ-atoms. 

There must be a comparison with the exact values with this type of the 

potential like the one done by Deloff [16] in order to confirm these conclusions. 

In this paper we have seen the importance of the third parameter of the central 

potential, the spin-orbit potential, in the spectra of Σ-atoms. The introduction of 

this third parameter of the potential in the fitting that gave the Batty potential 

is possible to change the values of the other two potential parameters, the real 

and the imaginary part. 

Bogdanova et al. also reached the same conclusion [15]. They calculated the 

shift AE, the width Γ and the yield Y for the Σ - atomic and the Σ hypernuclear 

level for the p-state for the at rest hypernuclear data for ψΟ [19, 20]. 

The study of Σ-atomic data is a source of information for the ΣΝ interaction, 

as was told. The Batty potential was used a lot for the study of Σ-hypernuclei, 

as it is next described. 

Stepien-Rudzka and Wycech calculated the Σ-atomic data by using the OBE 

Nijmegen potentials [21]. Also Yamada used the same potentials for a combined 

analysis of Σ-atomic and ^He data. He criticized the work of Rudzka-Wycech; 

they neglected the region outside the nucleus R > Rc(Rc: nuclear radius) which 

is the main source of the strong interaction effect. In that region the contribution 

from the p-state of the ΣΝ interaction is not negligible [22]. 

Oset et al. [23] modified the Batty potential in order to include saturation 

effects and by using the two potentials they calculated the Σ atomic data and 

Σ hypernuclear states. Tadokoro and Akaishi [24] used the above mentioned 

phenomenological saturation potential together with a microscopical potential 

for the theoretical calculation of the in-flight spectrum of | 0 8 Ρ6(Α'~,7τ + ) . 

Also Hayano [25] used this potential successfully for the representation of 

the at rest spectrum of ]?C. Kohno-Hausmann et al. [26, 18] studied strong 

interaction effects in Σ-atoms in relation with the Σ hypernuclear spectra. 

The perspectives of this work is the general study of all the Σ-atomic data 

with a more realistic potential, like the one done by the above mentioned authors. 

4. Discussion 

T h e study of Σ-atoms is directly connected with the other related topics: 
exotic nuclei and exotic atoms. 
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(i) Combined analysis of Σι-atoms and Σ-hypernuclei 

The need for a combined analysis of Σ-atoms and Σ-hypernuclei became clear 

from the previous analysis. The recent progress in that field has revealed some 

physical systems where there is a mixing of the atomic and the nuclear state; 

these systems are described below. 

The system of Σ-atoms and Σ-hypernuclei is an example of exotic halo which 

is a system of a nucleus and a strong interacting exotic particle [27]. In the exotic 

halo the particle wavefunction extends a lot outside the nucleus. 

In the case where a Σ~ particle is bound to a medium heavy nucleus, the 

strong potential coexists with an attractive Coulomb potential [28]. T h e n we 

have the formation of a Coulomb Assisted Hybrid Bound State: CAHBS. 

The case of Σ hyperatom is also very interesting. A hyperatom is an atom-

nucleus hybrid bound state. Representative example is the %Be [29] (there is also 

a Ξ hyperatom: l 2 C [29]). 

These states are of hybrid character and can be called either excited Σ-

hypernuclei, or deeply bound Σ-atoms [27, 12]. 

(ii) Other exotic atoms and exotic nuclei 

The production and study of other exotic atoms, like the Kaonic-atoms, 

the antiprotonic-atoms and the pionic-atoms is very similar with that of Σ-

hypernuclei [8]. 

The K~-atoms were experimentally studied together with the Σ-atoms and 

they were studied theoretically with the same optical potential [2, 8, 9, 12]. 

The p-atoms initially were studied together with the Σ ~ ^ ο π ΐ 8 and t h e K~-

atoms [9]. But since 1985 there were new experiments at CERN [4]. T h e mea

surement of the strong interaction spin-orbit effects in p—174Yb is very interesting 

[4]. 
The most interesting are the deeply bound pionic atoms. They are deeply 

bound pionic states of hybrid character, between pionic nuclei and pionic atoms 

that form a pion halo around the nucleus [27]. The production of pionic atoms via 

the (d, 2p) interaction was applied successfully in SATURNE for the production 

of the deeply bound τ~ - 2 0 8 Pb atom [27, 30]. 
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