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STRONG INTERACTION EFFECTS IN X7-ATOMS

Th. Petridou
Department of Theoretical Physics
Aristotle University of Thessaloniki
GR-54006, Thessaloniki, GREECFE

Abstract: An approximation is made for the £~ atomic energy shifts and widths
due to strong interaction central and spin-orbit parts of the potential with the use
of the S-Matriz Approach, introduced by Deloff. This simplified model is applied
in ¥ —'2 C in connection with the E-hypernuclear data: ¥C. It is concluded
that there is an essential influence of the strong interaction and especially of the
nuclear spin-orbit coupling in the spectra of £ —!? C, mainly for the p-shell.

1. Introduction

The ¥~-atoms belong to the family of exotic atoms. An exotic atom is an
atom where a negative particle other than an electron 1s captured into an atomic
orbit around a nucleus. Since electron is the least massive of the known negatively
charged particles, the resulting exotic atomic states have smaller radii and larger
binding energies than the electronic atomic states of the same quantum numbers.
The heavy particle may be a lepton, a meson or a baryon [1].

The study of exotic atoms provides useful information for hadrons and for
atomic nuclei which participate in the reaction and also for the interactions be-
tween them. The heaviest particle observed so far in an atomic orbit is X~-
hyperon. The study of £~ hyperonic atoms is very interesting and can be used
for the measurement of ¥~ magnetic moment, the study of nuclear properties
and the understanding of ¥ N interaction and generally of the hyperon-nucleon
interaction [2].

The lifetime of £~-hyperons is 1.49 x 1071 sec, nearly 100 times shorter than
that of K~ mesons, so one cannot have a stopped £~ beam because ¥~ particles
should decay before reaching the target-nucleus. So, for the creation of £~ atoms,
beams of K~ mesons are used. When such a beam is stopped in a target, the K~
absorption is followed in some cases by the emission of low-energy £~ -hyperons.
The predominant elementary reactions which give rise to a £~ -hyperon are [3]:

f&'_+p—->2—+7r+
K +n—->Y +nx°

K +p+n—->X".+p
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The Y ~-hyperons produced by the first two reactions have energies about
20 MeV. The E~-hyperons after being produced are emitted from the nucleus.
Since the lifetime of the ¥ ~-hyperons is comparable with their slowing down
time, a part of them decays before forming a X~-hyperonic atom. The third
reaction yields less than 30% of the totally produced L~-hyperons. Since these
Y~ -hyperons have very high energies, most of them decay before they are cap-
tured, so the third reaction does not contribute to the formation of ¥~ atoms

(3]

The X~ -hyperons that are produced by the first two reactions and do not
decay, are captured into atomic orbits forming X~ -atoms. This process is not
a simple one, but follows some discrete stages. Initially the £~-hyperons have
large kinetic energies and penetrate the electronic cloud without managing being
captured by the atomic orbits. They lose their energy gradually and they take
velocities comparable with the velocities of the atomic electrons. So, an atomic
capture can occur and have a bound state [3].

The capture of ¥~ -hyperons takes place in atomic levels with high main quan-
tum number n. After the capture of the ¥~ -hyperons and the formation of the
¥ ~-atoms, a deexcitation follows and cascade of the ¥~ -hyperons in the inner
orbits. This cascade is accompannied by the emission of an Auger-electron to
which the energy difference between the two levels is transferred. This energy is
usually enough to take the electron from the electronic cloud [3, 4].

The emission of Auger-electrons is accompanied by X-ray emission, but the
Auger phenomenon dominates. This situation is inversed when the orbital radius
of the £~-hyperon becomes less than that of the innermost orbital electron [1].
Then we have only X-ray transitions. The electrons lie outside the hyperonic
orbits, so they have very little effect on them; the same happens with the nucleus
in this phase. So it becomes obvious that in this phase the electromagnetic forces
dominate [1, 3, 4].

The X-ray emission takes on with the same rate, until an overlap happens
with the nuclear matter distribution. In this last phase, the influence of the
strong interaction changes the X-ray transitions. In the atomic state that the
effects of the strong interaction start to happen and also in the following states,
we have a variation in the intensity of the X-ray transition of the spectrum. This
change occurs in the shift and the width of the spectral line [1, 2, 3, 4].

Ezperimental Data

The first clear evidence for the observation of L~ -atoms was obtained at
CERN in 1970 in three elements: S, Cl and Zn [3]. In this experiment X-ray
transitions in these elements were measured, as well as the number of £~ -atoms
produced per stopped K~. £/K~. For 'S all the transitions from n = 6 to
n = 4 were measured, for 7Cl from n = 7 to n = 4 and for 3°Zn from n = 11 to
n = 5. There was an agreement between the measured and the calculated values
of energy [3].
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The second experiment took place at CERN in 1975 [2]. They observed X-ray
transitions in ¥~ -atoms in eight elements: C, P, Ca, Ti, Zn, Nb, Cd, Ba (Z varies
from 6 to 56). They measured the X-ray intensities in these cases (for £~ atoms
and K~ atoms), as well as the production of ¥~ hyperons per K~. For four
elements: C, Ca, Ti, Ba the yields of X-ray transitions due to strong interaction
were measured analytically. There were also some theoretical calculations in order
to reproduce the data.

The yield is defined by the ratio:

T
Pt
| P

In this formula T'; is the electromagnetic interaction in the [(n,£) level] and
T'; is the strong interaction in the [(n + 1, +1) level].

The third experiment took place at the Rutherford Laboratory in 1978 [5]. It
is the first direct measurement of X-ray shifts, widths and yields of ¥~-atoms in
five elements: O, Mg, Al, Si, S. In that experiment there was the first measure-
ment of the width I'y due to the strong interaction. There was a fitting of the
experimental values with the use of an optical potential model and the value of
the effective complex scattering length @ was calculated.

Also in an experiment done in 1987 at BNL for the measurement of the
magnetic dipole moment of the ¥~ hyperon, they measured X-ray spectra of £--
atoms in two elements: Pb and W. In these experiments strong interaction effects
were also observed [6]. The effects of strong interaction in £~ -atoms of Pb, W
for the transition (n = 10 — n = 9) were also studied analytically at BNL, where
the shifts and the widths for this case were measured [1].

We must point out that the possibility of formation of £~ -atoms (X/K~) for
the heavy elements is about half the possibility for the light elements (3% — 8%
respectively) [7].

Reviewing the experimental data for ¥~ -atoms, there are 5 measurements of
shifts, 3 direct measurements of widths and 9 measurements of relative yields [8].

The Batty potential
The description of strong interaction effects in exotic atoms was done by Batty
by using an optical complex potential of the form [5, 8, 9]:

Ur) = - <2’ZL2> (1+ =) anlr)

In the above formula 4 is the reduced mass of the system E-nucleus, m is the
mass of the ¥~ particle, M is the mass of the nucleon, @ is the effective complex
scattering length and p(r) is the nucleon density distribution.

The calculations have given for a:
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@ = (0.35 + +0.004) + :(0.19 + 0.03) fn

For the density distribution p(r) a Fermi form was used:

p(r)

=P
. 1 *exp(==E)

po=0.17, c¢=6624, z=0.549

There is a difference between the above calculated value of @ and the value of
the scattering length which corresponds to the free £V interaction [10], (the Ima
is smaller for the ¥ atoms). An explanation for that is that a possible £~ p bound
state causes an effect of the Pauli exclusion principle in the scattering length [11].

Finally the following potential was found:

(—27.8 — 15.5)
1+ exp(=°)

This potential which was calculated from £~-atoms was used for the determi-
nation of the width of £~-hypernuclei. So, it was found that: I' ~ 30 MeV [12.
13, 14]. This is very important for £~ -hypernuclei, because initially all authors
used for their study the Batty potential expecting to find the value of about 30
MeV for the width. But this is not consistent with the experimental data, where
the width was found to be about 4-7 MeV [14].

The existence of narrow ¥ hypernuclear resonances was the puzzle of £~-
hypernuclei. The ¥ hypernuclear states should have large width, because the
conversion N — AN takes part. But the most important reason for that is the
fitting of ¥ atomic data done by Batty. If Batty took into consideration some
other factors, he could have different results.

U(r)= MeV

2. Calculation of the atomic level energy shifts and widths

In this chapter we will examine the effects of the nuclear spin-orbit coupling in
Y-atoms. This idea was also used by Bogdanova et al. [15] and it was concluded
that there are sufficient effects in E-atoms due to the nuclear spin-orbit coupling.

In order to calculate the effects of the nuclear spin-orbit coupling within our
model, we consider the potential:

Ze? , PR |
Vine(r) = - +(V +iW ) = V(1 - 3)re Eé(r - R)
The first term corresponds to the Coulomb potential, the second to the nuclear
central potential and the third term corresponds to the spin-orbit potential.
Analytically, the spin-orbit potential is given by the formula:

Vio(r) = =Voo(1-3) 1 % %.—)



63

1, <R
w(r) = { R =r,AY?
0, >R
The spin-orbit forces act to a nucleon only to the surface r = R of the nucleus,
because in this point there is a discontinuity in the potential. So, V,,(r) takes
the form:

Vie(r) = —Violl-3)72 = 6(r = R)

The central line of the spectrum which corresponds to the Coulomb potential
is shifted by the other two interactions.

(i} First order pertubation theory

The first order pertubation theory was used for the calculation of ¢ and T in
hadronic atoms, but without success, because the strong interaction between the

hyperon and the nucleon is very large [16].
The widths that correspond to the nuclear potential and to the spin-orbit
potential, are taken by the formula:

r=/0°°|\115 ? ImV(r)dr (1)

The function ¥, is the Coulomb eigenfunction which corresponds to the solu-
tion of the Schrédinger equation for the Coulomb potential:

d* ¥, 2 Qe
Tm+{2mE+—m-Zi— ( “)}wc(r)=o

e R r r2
The wave function ¥, for circular orbits n = ¢ + 1 has the form:

() — _ 2Z ’ 1 : -1p 41 1y26+1
Yalr) = {((Z—f—l)ao) 2(e+1)[(2e+1)!]3} e77 p™T (=121 (24 + 1)!

h? 27 . pnZe?
=—, i = r=-2tk,r, kozzﬂ j
e na, nh

aO
k, are the eigenvalues of the Coulomb problem.

It is: U (r) = Ae™ % p*(r)

where A expresses the product of all the terms independent of r.
Next we will calculate the widths .., and I';; that correspond to the central
potential and the spin-orbit potential by using the equation (1).
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| W5(r) P= A% e p?*2(r)

R
[eentr =/ Are™? P2 (r) ImV, dr
0

o
20k,
The above integral is given by the formula:

—2ikoR
ImV, /0 e p* 2 dp

~2ikoR
I:/ e p* 2 dp =y (20 +3, —2ik,R)
0

The function y(a,z) is the incomplete gamma function, which is defined by
the formula:

/ et ldt = v (a,z)
0
So we have:
2
21k,
For the quantity I';, we have:

ImV,v(2¢0+ 3, —2ik,R)

I-‘cemlr = =

T = /0°° | 0, | Im Vi, dr

After the suitable substitutions we take:

Ty, = A2 e¥*R (~2ik,R)**? Im(V,,) (£ - 5)

=l

The first order pertubation theory does not give good results (the result is
two or three times the real value or has the opposite sign). This fact makes the
introduction of another method necessary [16].

(ii) The Deloff Approzimation

As was told, the strong interaction causes a variation in the energy eigenvalue.
This variation 6E is complex because it refers to both the shift ¢ and the width
I'. This complex shift §E is due to the nuclear central potential which consists
of two terms: one that corresponds to the nuclear central potential and the other
that corresponds to the spin-orbit coupling.

The quantities ¢ and ' are much smaller than the Coulomb binding energy,
so we can use an approximate method in order to calculate them. Next we will
develop such a method which was used by Deloff and is called the S-Matriz Ap-
proach [16]. This method provides a fast and accurate evaluation of the complex
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level shifts and gives values comparable with the exact values, as was shown by
Deloff [16].

We consider that every bound state of a ¥ atom is characterised by the quan-
tum numbers (n,f). If E and E, are the energy eigenvalues with and without
the strong interaction, the variation § E is given by the relation:

r
5E=E—Eo=—6—i§

We consider the equation:

d? Ry(r) 2m 2m Zer {({+1) _
—g2 P g BVt oy = Re(r) =0
Vo r<R
Where: V(r) =4 Vo= Voo(l-5)r258(r —R), r=R
0, r>R
If we set: k2 = 2mE/h?, we take the equation:
" 2m Ze?* L(l+1) 2m
Rf(T)+{k2+F—r————r—2———?{2—V(T‘) Rg(?‘).—_"o (2)
In equation (2), m is the reduced mass of the system X-nucleus:
_ mg Ampy
" mz + Amp

In the above formula my is the mass of the ¥~ particle, my is the mass of a
nucleon and A is the nuclear mass number.

Let the functions ¢(k,r), f(k,r) be the regular and the irregular solutions of
equation (2). Also the functions ¢°(k,r), f°(k,r) are the pure Coulomb wave-
functions which are solutions of equation (2), when V(r) = 0.

Next we define the Jost function, F(k):

22

F() = WUk, 6(k, 1)) + T3 ViolT - 3)r2 (b, )k, 7)
When r > R: f(k,r) = f°(k,r), so we have:
F(k) = WISk ), 6k, )]+ S Vao T S)r2 5 15K,k )

The solution of equation F(k) = 0 will give us the binding energy E..
We introduce the function:
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We will solve the equation: H(k) = 0.

é(k,R) f'(k,R) 2m_ - _ ,1
= - —Vsa [ oy —

A0 =30 ~ Fem) T IR
This equation will be solved with the Newton-Raphson method [16]. The
initial value of the root  of the above relation is defined by setting: k = x + 6k

and expanding the function H(k) in a Taylor series around «:

0 (3)

H(k)= H(k)+ 8k H(x) + ...
We omit the terms of higher order and we take:

; H
H(k)+6kH(k)=0 = <51<:=—.—(Q (4)

H(r)

(With the dot we mean differentiation with respect to k).
Next we will calculate the function H(x). We differentiate the equation (3)

with respect to k and we set k& = &.

1) = WLk, B), 6k R)] _ WFo(k, ), f*(x, F)]
A= et B (s BT ?

We can get rid of the terms fc(fc,R),q:‘»(n,R), by differentiating the initial
equation (2) with respect to k and by setting: R, = ¢(k,r).

§ e+ {p+ R 28 L By ) = -aks b))
o'ty +{e+ 222D Byl s =0

We multiply equation (2) by é(k,r), equation (6) by #(k,r) and then by
subtracting we have:

¢ (k,r) ‘;.5" (k,r) — ¢” (k, T‘)(ﬁ(k, r) = —2k[(k,r) ]2
We add and subtract in the first part of this equation the term &'(k,r) é'(k.r):

% [6(k,r) 8 (k,) = (k,r) ¢ (k,7)] = =2k [k, 7))

= W lekr), 40k = -2k 6k, 1)

In a similar way we calculate for the quantity f°(k,r):
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d

W[5 (kyr), f (k)] = —2k [ fo(k, ) ?

Now we can take the two Wronskians W[¢, ¢] and W[f¢, ], by integrating
the above relations in the limits (0, R) and (R, co) respectively:

W (s, B), $(x,B)] = ~2k [ 16s,)dr

[fc(fi R},fc K)R "—-9]{;/ KT]sz

We substitute these relations in equation (5) and we take:

H“)z'a“{AR[ > ] +/ fCKR] r}

Since the range R is small, we can in a first approximation neglect the first

term. So we take:
C K,T
H(xk) = =2« / [J{C T R]

Since from equation (4) we have: §k = —H(x)/H(x), by substituting we take:

W [f2(k,7), ¢(5, R)) + BVio(1- 5)r2% f(x, B) 6(x, R)} f(k, R)

_{
Sy = 2k ¢(k, R) [5°[fe(&,7)]2dr (7)

This equation is the basis of the iterative Newton-Raphson method. The
number of iterations depends on the accuracy of the initial value. Since as was
told the quantity §F is smaller than the Coulomb binding energy, if we take the
Coulomb energy as an initial value, we can reach the desired value with only two
iterations.

If F¢(k) is the Jost solution for the Coulomb eigenfunctions:

Fe(k) = W[f(k,r),6°(k,7)]

and k, is the root of equation F¢(k) = 0, for k = k, the function f°(k,,r) is
analogous to the function ¢°(k,,r).
Let be: f(k,,r) = a¢®(k,,r). Then the formula (7) is simplified:

’

_ 1 ¢,(ko7R)_¢c(kovR) 2_m 7. o ¢(k0’
‘5’“‘2ko{¢<ko,8> ok, B) Tzl } /), [¢c ko,R] o

'nl

There is also a similar relation for 6E: §E =

2 9k6k.

2
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B (¢ (koyR)  ¢°(ko,R)  2m_, -
- ZVo(1-3)
oF= °m{ Sk B) ~ (ko B) T ANt e e
In £~ atoms and generally in hadronic atoms, we are interested in the circular

orbits for which: n = ¢ + 1. In this case, the Coulomb eigenvalues k, are given
by the relation:

_ mZ%! __imZé®
T
We must calculate the integral [5°[¢°(ko,7)/¢°(ks, R)]*dr and the ratio
¢°(k,, R)/¢°(k,, R) and substitute them in equation (8).

The general form of the Coulomb wavefunction is:

c 27Z\° (n—£=1)! : —1p 41 r2e+1
e == {(;l‘a—;) W} €72 p" Lo (p) (9)
In the previous equation we have: a, = A%/ue?, p = —2ik,r .

The functions L2} are the Laguerre functions.
For the case that n = £ + 1, the functions L2;' are simplified:
Lyfi(p) = (-1 (20 + 1!

It is clear that the function L2 is independent of r. We substitute in
equation (9):

¢ = — ( 2Z 8 1 %e“%p B (1) (90 + 1)1
o (l+1)a,) 2(6+1)[(2¢+1)!]? p !

This function was also used in the previous subsection. As was told, we are
interested in the quantities [$°[6°(k,,7)/0°(ko, R)]?dr and ¢°(k,, R)/¢%(ks, R),
so in the above relation we are interested only in the terms dependent on r. We
introduce the constant A, which is equal with the product of all the independent
of r terms.

gi(r) = —A e (—2ik,) 1 !
We differentiate with respect to r, and finally we take the relation:
[qﬁlc(r)] ik £4+1 (10)
3(r)
So we now have to calculate the integral: [5° [¢°(ko,7)/8%(ko, R)]? dr and to
substitute in equation (8).
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C 2 (o o}
/oo [45 (ko,r)] dr = ¢-2ikeR p-2t-2 / Rikor 1 20+2 g,
0 0

¢°(k,, R)
Finally we have:
[ ¢°(kayr)]* , _ RT (20 +3)
/o Lsc(ko,R)} U= Cap(aik, ) (~2ik, B2 (11)

We substitute the equations (11) and (10) into equation (8) and we take:

B _h?_exp(Zz'koR) (—2ik, R)*+3

= 2m RT (2¢ + 3)
§lknR) (E+1) . m. o 12
[q&(ko,R) — TR etV

By multiplying and dividing with R we take the relation:

SE = _hz_ezp(Qz'koR) (=2ik, R)%+3
T 2m RT (2¢ + 3)

¢'(ko,R) . 2m = _\ 2
[Rm - (f-}-l) —2k0R+ -}1—2‘/:,0 (E-S)TOJ

We divide this relation into two terms: one that depends on the spin-orbit
coupling §F; and another that includes the rest terms 8 E;:

6E = 6E, + §F,
exp(2ik,R) (=2ik,R)*+3 2,
6B = Vrso l- 2
' R?T (2€ + 3) (t-3)rs (12)
h? exp(2ik,R) (—2ik,R)¥+? ¢ (ko, R)
6F, = — o 0) _ o
*T om R?T (2¢ + 3) 2 é(ko, R) (€+1) —ik,R (13)

(where: k, = imZe?/nh?).

The above relations are very simple; the shift §E; is expressed only in terms
of the logarithmic derivative of the regular wavefunction at the nuclear boundary
[16]. The wavefunction is given by the confluent hypergeometric functions.

3. Results and Conclusions

Next we will show some numerical results for ¥ =2 C for £ = 1,0 = 2,¢ = 3,
(Tables 1, 2 and 3). We consider the case of ?C, because only for this element
there are atomic and hypernuclear data and the purpose of this paper is the study
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of -atoms in connection with X-hypernuclei. Since for £ > 1, the quantities
8E,, 6E, given by equations (12) and (13) are very small, we show only some
representative results.

The potential model is the same with the one used by the same authors for
the study of S-hypernuclei [17]. The value of the constant r, (R = r,A!/?) is
taken to be 1.31 fm [17]. The structure of the L-atomic wavefunctions is very
sensitive on the value of r, [18].

For ¢ = 1, we take results for two values of the potential:

(i) V = (=12 — 4) MeV, (i) V = (=16 — 2i) MeV

We also give some results for £ = 2,{ = 3,¢ = 4, for the potential (i).

Table 1
Energy Shifts in £ —12C
due to the spin-orbit coupling 6 Ey
and other quantities in MeV,
when V=(-12-i4) MeV, E,= -0.2589 MeV
and 6E; = (-0.0128-1 0.0061) MeV.

V;o State 6E1 6E1 / 5E2 6E1/(Eo + 5E2)
10 | ps/2 | 0.0037 -0.289 -0.014
20 | psj2 | 0.0074 -0.580 -0.027
40 | psj2 | 0.0147 -1.148 -0.054
50 | ps2 | 0.0185 -1.445 -0.068
10 | pyj2 | -0.0074 0.578 0.027
20 | pij2 |-0.0147 1.148 0.054
40 | pij2 | -0.0296 2.311 0.109
50 | pij2 | -0.0370 2.890 0.136

From the results of the tables 1, 2 and 3 we reach the following conclusions,
which are valid only in the context of this simplified model:

(1) The shifts in the energy eigenvalue E, (Coulomb energy) caused by the
nuclear central potential and the spin-orbit potential are small for £ > 1 and they
tend to zero when / is augmented. So only for £ = 1 we can take the effects of
the central potential and the spin-orbit potential in ¥-atoms.
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Table 2

Energy Shifts in £ =2 C due to the spin-orbit coupling 6 Ey
and other quantities in MeV, when V=(-12-i4¢) MeV.

Vo | State E, 6Ey 6E, SE\/8E,; | 6E,/(E, + 6E>)
10 | dsj2 [-0.1148 | 0.940x107° | -0.99x107°-10.38x10~° -0.946 -0.822x107*
10 | d3j, |-0.1148 | -0.140x107* | -0.99x107%-10.38x10~° 1.414 0.120x1073
20 | fr72 |-0.0646 | 0.980x1078 | -0.26x107%-10.89x107° -3.769 -0.152x10°¢
20 | fsj2 |-0.0646 | -0.131x107® | -0.26x1078-10.89x10~° 0.504 0.202x10-®
10 | goj2 |-0.0413 | 0.860x107'% | -0.26x1072-i0.94x10~1% | -3.308 -0.208x 10710
Table 3
Energy Shifts in £ -12C
due to the spin-orbit coupling 6 F;
and other quantities in MeV,
when V=(-16-i2) MeV, E,= -0.2589 MeV
and 6E; = (-0.0203 - i 0.0041) MeV.

Vyo state 6E1 5E1/6E2 6E1/(Eo + 6E2)

10 | psjz | 0.0037 | -0.182 -0.013

20 | pas2 | 0.0074 | -0.360 -0.027

30 | p3jz | 0.0111 | -0.545 -0.040

40 | psj2 | 0.0148 | -0.729 -0.053

50 | ps2 | 0.0185 | -0.911 -0.066

10 | pyjz |-0.0074 | 0.365 0.027

20 | pyy2 |-0.0148 | 0.729 0.053

30 | pyj2 |-0.0222 | 1.094 0.079

40 | pyj2 | -0.0296 | 1.458 0.106

50 | pis2 | -0.0367 1.808 0.131
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(ii) For £ = 1 the quantities §E;, §E; are of the same range and when V,,
is augmented, 6 £, becomes greater than §F,. For great V,,, 6E; is of the same
range with F,.

(iii) For £ = 1 the quantities §E;, 6 E; shift the energy eigenvalue lightly.
This shift is relatively important. So there is a considerable effect of the nuclear
central potential and the spin-orbit coupling in ¥-atoms.

There must be a comparison with the exact values with this type of the
potential like the one done by Deloff [16] in order to confirm these conclusions.

In this paper we have seen the importance of the third parameter of the central
potential, the spin-orbit potential, in the spectra of £-atoms. The introduction of
this third parameter of the potential in the fitting that gave the Batty potential
is possible to change the values of the other two potential parameters, the real
and the imaginary part.

Bogdanova et al. also reached the same conclusion [15]. They calculated the
shift AE, the width I and the yield Y for the £~ atomic and the ¥ hypernuclear
level for the p-state for the at rest hypernuclear data for $*C [19, 20].

The study of ¥-atomic data is a source of information for the ¥V interaction,
as was told. The Batty potential was used a lot for the study of X-hypernuclei,
as it is next described.

Stepien-Rudzka and Wycech calculated the ¥-atomic data by using the OBE
Nijmegen potentials [21]. Also Yamada used the same potentials for a combined
analysis of E-atomic and § He data. He criticized the work of Rudzka-Wycech;
they neglected the region outside the nucleus R > R, ( R.: nuclear radius) which
is the main source of the strong interaction effect. In that region the contribution
from the p-state of the ¥V interaction is not negligible [22].

Oset et al. [23] modified the Batty potential in order to include saturation
effects and by using the two potentials they calculated the ¥ atomic data and
¥ hypernuclear states. Tadokoro and Akaishi [24] used the above mentioned
phenomenological saturation potential together with a microscopical potential
for the theoretical calculation of the in-flight spectrum of ¥8Pb(K~, 7).

Also Hayano [25] used this potential successfully for the representation of
the at rest spectrum of {*C. Kohno-Hausmann et al. [26, 18] studied strong
interaction effects in T-atoms in relation with the ¥ hypernuclear spectra.

The perspectives of this work is the general study of all the Z-atomic data
with a more realistic potential, like the one done by the above mentioned authors.

4. Discussion

The study of ¥-atoms is directly connected with the other related topics:
exotic nuclei and exotic atoms.
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(i) Combined analysis of E-atoms and L-hypernuclei

The need for a combined analysis of L-atoms and X-hypernuclei became clear
from the previous analysis. The recent progress in that field has revealed some
physical systems where there is a mixing of the atomic and the nuclear state;
these systems are described below.

The system of L-atoms and X-hypernuclei is an example of ezotic halo which
is a system of a nucleus and a strong interacting exotic particle [27]. In the exotic
halo the particle wavefunction extends a lot outside the nucleus.

In the case where a ¥~ particle is bound to a medium heavy nucleus, the
strong potential coexists with an attractive Coulomb potential [28]. Then we
have the formation of a Coulomb Assisted Hybrid Bound State: CAHBS.

The case of ¥ hyperatom is also very interesting. A hyperatom is an atom-
nucleus hybrid bound state. Representative example is the % Be [29] (there is also
a = hyperatom: L2C [29]).

These states are of hybrid character and can be called either ezcited -
hypernuclei, or deeply bound Z-atoms [27, 12].

(11) Other exotic atoms and ezotic nuclei

The production and study of other exotic atoms, like the Kaonic-atoms,
the antiprotonic-atoms and the pionic-atoms is very similar with that of X-
hypernuclei [38].

The K~ -atoms were experimentally studied together with the Y-atoms and
they were studied theoretically with the same optical potential [2, 8, 9, 12].

The p-atoms initially were studied together with the ¥~-atoms and the K-
atoms [9]. But since 1985 there were new experiments at CERN [4]. The mea-
surement of the strong interaction spin-orbit effects in p—17*Y'b is very interesting
4]

The most interesting are the deeply bound pionic atoms. They are deeply
bound pionic states of hybrid character, between pionic nuclei and pionic atoms
that form a pion halo around the nucleus [27]. The production of pionic atoms via
the (d, 2p) interaction was applied successfully in SATURNE for the production
of the deeply bound =~ —2% Pb atom [27, 30].
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